Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (6) : 522-538    https://doi.org/10.1007/s11515-012-1192-4
REVIEW
The super super-healing MRL mouse strain
Ahlke HEYDEMANN()
Department of Physiology and Biophysics, Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA
 Download: PDF(1024 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Murphy Roths Large (MRL/MpJ) mice provide unique insights into wound repair and regeneration. These mice and the closely related MRL/MpJ-Faslpr/J and Large strains heal wounds made in multiple tissues without production of a fibrotic scar. The precise mechanism of this remarkable ability still eludes researchers, but some data has been generated and insights are being revealed. For example, MRL cells reepithelialize over dermal wound sites faster than cells of other mouse strains. This allows a blastema to develop beneath the protective layer. The MRL mice also have an altered basal immune system and an altered immune response to injury. In addition, MRL mice have differences in their tissue resident progenitor cells and certain cell cycle regulatory proteins. The difficulty often lies in separating the causative differences from the corollary differences. Remarkably, not every tissue in these mice heals scarlessly, and the specific type of wound and priming affect regeneration ability as well. The MRL/MpJ, MRL/MpJ-Faslpr/J, and Large mouse strains are also being investigated for their autoimmune characteristic. Whether the two phenotypes of regeneration and autoimmunity are related remains an enigma.

Keywords MRL      wound healing      regeneration     
Corresponding Author(s): HEYDEMANN Ahlke,Email:ahlkeh@uic.edu   
Issue Date: 01 December 2012
 Cite this article:   
Ahlke HEYDEMANN. The super super-healing MRL mouse strain[J]. Front Biol, 2012, 7(6): 522-538.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1192-4
https://academic.hep.com.cn/fib/EN/Y2012/V7/I6/522
Fig.1  
Fig.2  
Fig.3  
Fig.4  Electron micrographs demonstrating aberrant mitochondria in the MRL/MpJ mouse strain quadriceps, compared to the DBA/2J control strain. Note the standard arrangement of interfibril mitochondrial pairs in the control quadriceps (black arrows) and the increased number of mitochondria at this anatomical position in the MRL/MpJ strain (black arrowheads). Some of the MRL/MpJ mitochondria also demonstrate abnormal shapes (white arrows) and lipid-like inclusion bodies (asterisk). Top panels’ bar is 2 μm, bottom panels’ bar is 1 μm.
Fig.5  Table4 Ear hole healing associated quantitative trait loci
Fig.6  Schematic of possible mechanisms altering the wound healing properties of MRL/MpJ animals.
1 Abdullah I, Lepore J J, Epstein J A, Parmacek M S, Gruber P J (2005). MRL mice fail to heal the heart in response to ischemia-reperfusion injury. Wound Repair and Regeneration, 13: 205–208
2 Adachi M, Watanabe-Fukunaga R, Nagata S (1993). Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc Natl Acad Sci USA , 90(5): 1756–1760
doi: 10.1073/pnas.90.5.1756
3 Alexakis C, Partridge T, Bou-Gharios G (2007). Implication of the satellite cell in dystrophic muscle fibrosis: a self-perpetuating mechanism of collagen overproduction. Am J Physiol Cell Physiol , 293(2): C661–C669
doi: 10.1152/ajpcell.00061.2007
4 Alleva D G, Kaser S B, Beller D I (1997). Aberrant cytokine expression and autocrine regulation characterize macrophages from young MRL+/+ and NZB/W F1 lupus-prone mice. J Immunol , 159: 5610–5619
5 Anversa P, Rota M, Urbanek K, Hosoda T, Sonnenblick E H, Leri A, Kajstura J, Bolli R (2005). Myocardial aging–a stem cell problem. Basic Res Cardiol , 100(6): 482–493
doi: 10.1007/s00395-005-0554-3
6 Arthur L M, Demarest R M, Clark L, Gourevitch D, Bedelbaeva K, Anderson R, Snyder A, Capobianco A J, Lieberman P, Feigenbaum L, Heber-Katz E (2010). Epimorphic regeneration in mice is p53-independent. Cell Cycle , 9(18): 3667–3673
doi: 10.4161/cc.9.18.13119
7 Ashcroft G S, Yang X, Glick A B, Weinstein M, Letterio J L, Mizel D E, Anzano M, Greenwell-Wild T, Wahl S M, Deng C (1999). Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol , 1(5): 260–266
doi: 10.1038/12971
8 Baker K L, Daniels S B, Lennington J B, Lardaro T, Czap A, Notti R Q, Cooper O, Isacson O, Frasca S Jr, Conover J C (2006). Neuroblast protuberances in the subventricular zone of the regenerative MRL/MpJ mouse. J Comp Neurol , 498(6): 747–761
doi: 10.1002/cne.21090
9 Balomenos D, Martin-Caballero J, Garcia M I, Prieto I, Flores J M, Serrano M, Martinez A C (2000). The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development. Nat Med , 6(2): 171–176
doi: 10.1038/72272
10 Balu D T, Hodes G E, Anderson B T, Lucki I (2009). Enhanced sensitivity of the MRL/MpJ mouse to the neuroplastic and behavioral effects of chronic antidepressant treatments. Neuropsychopharmacology , 34(7): 1764–1773
doi: 10.1038/npp.2008.234
11 Beare A H, Metcalfe A D, Ferguson M W (2006). Location of injury influences the mechanisms of both regeneration and repair within the MRL/MpJ mouse. J Anat , 209(4): 547–559
doi: 10.1111/j.1469-7580.2006.00641.x
12 Bedelbaeva K, Gourevitch D, Clark L, Chen P, Leferovich J M, Heber-Katz E (2004). The MRL mouse heart healing response shows donor dominance in allogeneic fetal liver chimeric mice. Cloning Stem Cells , 6(4): 352–363
doi: 10.1089/clo.2004.6.352
13 Bedelbaeva K, Snyder A, Gourevitch D, Clark L, Zhang X M, Leferovich J, Cheverud J M, Lieberman P, Heber-Katz E (2010). Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc Natl Acad Sci USA , 107(13): 5845–5850
doi: 10.1073/pnas.1000830107
14 Blankenhorn E P, Bryan G, Kossenkov A V, Clark L D, Zhang X M, Chang C, Horng W, Pletscher L S, Cheverud J M, Showe L C (2009). Genetic loci that regulate healing and regeneration in LG/J and SM/J mice. Mammalian Genome, 20: 720–733
15 Blankenhorn E P, Troutman S, Clark L D, Zhang X M, Chen P, Heber-Katz E (2003). Sexually dimorphic genes regulate healing and regeneration in MRL mice. Mamm Genome , 14(4): 250–260
doi: 10.1007/s00335-002-2222-3
16 Buckley G, Metcalfe A D, Ferguson M W (2011). Peripheral nerve regeneration in the MRL/MpJ ear wound model. J Anat , 218(2): 163–172
doi: 10.1111/j.1469-7580.2010.01313.x
17 Bulfield G, Siller W G, Wight P A, Moore K J (1984). X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA , 81(4): 1189–1192
doi: 10.1073/pnas.81.4.1189
18 Chadwick R B, Bu L, Yu H, Hu Y, Wergedal J E, Mohan S, Baylink D J (2007). Digit tip regrowth and differential gene expression in MRL/Mpj, DBA/2, and C57BL/6 mice. Wound Repair and Regeneration, 15: 275–284
19 Chaudhuri T, Rehfeldt F, Sweeney H L, Discher D E (2010). Preparation of collagen-coated gels that maximize in vitro myogenesis of stem cells by matching the lateral elasticity of in vivo muscle. Methods Mol Biol , 621: 185–202
doi: 10.1007/978-1-60761-063-2_13
20 Cimini M, Fazel S, Fujii H, Zhou S, Tang G, Weisel R D, Li R K (2008). The MRL mouse heart does not recover ventricular function after a myocardial infarction. Cardiovascular pathology: the official journal of the Society for Cardiovascular Pathology 17, 32–39 .
21 Clark L D, Clark R K, Heber-Katz E (1998). A new murine model for mammalian wound repair and regeneration. Clin Immunol Immunopathol , 88(1): 35–45
doi: 10.1006/clin.1998.4519
22 Colwell A S, Krummel T M, Kong W, Longaker M T, Lorenz H P (2006). Skin wounds in the MRL/MPJ mouse heal with scar. Wound Repair and Regeneration, 14: 81–90
23 Cowin A J, Brosnan M P, Holmes T M, Ferguson M W (1998). Endogenous inflammatory response to dermal wound healing in the fetal and adult mouse. Developmental Dynamics, 212: 385–393 .
24 Cullen M J, Jaros E (1988). Ultrastructure of the skeletal muscle in the X chromosome-linked dystrophic (mdx) mouse. Comparison with Duchenne muscular dystrophy. Acta Neuropathol , 77(1): 69–81
doi: 10.1007/BF00688245
25 Darby I A, Bisucci T, Pittet B, Garbin S, Gabbiani G, Desmouliere A (2002). Skin flap-induced regression of granulation tissue correlates with reduced growth factor and increased metalloproteinase expression. J Pathol , 197: 117–127
doi: 10.1002/path.1074
26 Davis T A, Amare M, Naik S, Kovalchuk A L, Tadaki D (2007). Differential cutaneous wound healing in thermally injured MRL/MPJ mice. Wound Repair and Regeneration, 15: 577–588
27 Davis T A, Longcor J D, Hicok K C, Lennon G G (2005). Prior injury accelerates subsequent wound closure in a mouse model of regeneration. Cell Tissue Res , 320(3): 417–426
doi: 10.1007/s00441-005-1107-7
28 Desmouliere A, Chaponnier C, Gabbiani G (2005). Tissue repair, contraction, and the myofibroblast. Wound Repair and Regeneration, 13: 7–12
29 Donnelly R P, Levine J, Hartwell D Q, Frendl G, Fenton M J, Beller D I (1990). Aberrant regulation of IL-1 expression in macrophages from young autoimmune-prone mice. J Immunol , 145: 3231–3239
30 Fawcett J W, Asher R A (1999). The glial scar and central nervous system repair. Brain Res Bull , 49(6): 377–391
doi: 10.1016/S0361-9230(99)00072-6
31 Ferguson M W, O'Kane S (2004). Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci , 359(1445): 839–850
doi: 10.1098/rstb.2004.1475
32 Fitzgerald J, Rich C, Burkhardt D, Allen J, Herzka A S, Little C B (2008). Evidence for articular cartilage regeneration in MRL/MpJ mice. Osteoarthritis and cartilage / OARS. Osteoarthritis Research Society , 16(11): 1319–1326
doi: 10.1016/j.joca.2008.03.014
33 Gawronska-Kozak B (2004). Regeneration in the ears of immunodeficient mice: identification and lineage analysis of mesenchymal stem cells. Tissue Eng , 10: 1251–1265
34 Goss R J (1980). Prospects of regeneration in man. Clin Orthop Relat Res : 270–282
35 Gourevitch D, Clark L, Chen P, Seitz A, Samulewicz S J, Heber-Katz E (2003). Matrix metalloproteinase activity correlates with blastema formation in the regenerating MRL mouse ear hole model. Developmental Dynamics, 226: 377–387
36 Gourevitch D L, Clark L, Bedelbaeva K, Leferovich J, Heber-Katz E (2009). Dynamic changes after murine digit amputation: the MRL mouse digit shows waves of tissue remodeling, growth, and apoptosis. Wound Repair and Regeneration, 17: 447–455
37 Grisel P, Meinhardt A, Lehr H A, Kappenberger L, Barrandon Y, Vassalli G (2008). The MRL mouse repairs both cryogenic and ischemic myocardial infarcts with scar. Cardiovascular Pathology, 17: 14–22
38 Hampton D W, Seitz A, Chen P, Heber-Katz E, Fawcett J W (2004). Altered CNS response to injury in the MRL/MpJ mouse. Neuroscience , 127(4): 821–832
doi: 10.1016/j.neuroscience.2004.05.057
39 Han M, Yang X, Taylor G, Burdsal C A, Anderson R A, Muneoka K (2005). Limb regeneration in higher vertebrates: developing a roadmap. Anat Rec B New Anat , 287B(1): 14–24
doi: 10.1002/ar.b.20082
40 Harty M, Neff A W, King M W, Mescher A L (2003). Regeneration or scarring: an immunologic perspective. Developmental Dynamics, 226: 268–279
41 Havran W L, Allison J P (1988). Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature , 335(6189): 443–445
doi: 10.1038/335443a0
42 Heber-Katz E (1999). The regenerating mouse ear. Semin Cell Dev Biol , 10(4): 415–419
doi: 10.1006/scdb.1999.0328
43 Heber-Katz E, Chen P, Clark L, Zhang X M, Troutman S, Blankenhorn E P (2004a). Regeneration in MRL mice: further genetic loci controlling the ear hole closure trait using MRL and M.m. Castaneus mice. Wound Repair and Regeneration, 12: 384–392
44 Heber-Katz E, Leferovich J, Bedelbaeva K, Gourevitch D, Clark L (2004b). The scarless heart and the MRL mouse. Philos Trans R Soc Lond B Biol Sci , 359(1445): 785–793
doi: 10.1098/rstb.2004.1468
45 Heber-Katz E, Leferovich J, Bedelbaeva K, Gourevitch D, Clark L (2006). Conjecture: Can continuous regeneration lead to immortality? Studies in the MRL mouse. Rejuvenation Res , 9(1): 3–9
doi: 10.1089/rej.2006.9.3
46 Heydemann A, Ceco E, Lim J E, Hadhazy M, Ryder P, Moran J L, Beier D R, Palmer A A, McNally E M (2009). Latent TGF-beta-binding protein 4 modifies muscular dystrophy in mice. J Clin Invest , 119(12): 3703–3712
doi: 10.1172/JCI39845
47 Hong Y, Cervantes R B, Tichy E, Tischfield J A, Stambrook P J (2007). Protecting genomic integrity in somatic cells and embryonic stem cells. Mutat Res , 614(1–2): 48–55
doi: 10.1016/j.mrfmmm.2006.06.006
48 Hopkinson-Woolley J, Hughes D, Gordon S, Martin P (1994). Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse. J Cell Sci , 107(Pt 5): 1159–1167
49 Ito M R, Ono M, Itoh J, Nose M (2003). Bone marrow cell transfer of autoimmune diseases in a MRL strain of mice with a deficit in functional Fas ligand: dissociation of arteritis from glomerulonephritis. Pathol Int , 53(8): 518–524
doi: 10.1046/j.1440-1827.2003.01516.x
50 Kench J A, Russell D M, Fadok V A, Young S K, Worthen G S, Jones-Carson J, Henson J E, Henson P M, Nemazee D (1999). Aberrant wound healing and TGF-beta production in the autoimmune-prone MRL/+ mouse. Clin Immunol , 92(3): 300–310
doi: 10.1006/clim.1999.4754
51 Leader B, Leder P (2000). Formin-2, a novel formin homology protein of the cappuccino subfamily, is highly expressed in the developing and adult central nervous system. Mech Dev , 93(1–2): 221–231
doi: 10.1016/S0925-4773(00)00276-8
52 Leferovich J M, Bedelbaeva K, Samulewicz S, Zhang X M, Zwas D, Lankford E B, Heber-Katz E (2001). Heart regeneration in adult MRL mice. Proc Natl Acad Sci USA , 98(17): 9830–9835
doi: 10.1073/pnas.181329398
53 Li X, Mohan S, Gu W, Baylink D J (2001). Analysis of gene expression in the wound repair/regeneration process. Mammalian Genome, 12: 52–59
54 Li X, Mohan S, Gu W, Miyakoshi N, Baylink D J (2000). Differential protein profile in the ear-punched tissue of regeneration and non-regeneration strains of mice: a novel approach to explore the candidate genes for soft-tissue regeneration. Biochim Biophys Acta , 1524(2–3): 102–109
doi: 10.1016/S0304-4165(00)00118-5
55 Liu H, Ding Q, Yang K, Zhang T, Li G, Wu G (2011). Meta-analysis of systemic lupus erythematosus and the risk of cervical neoplasia. Rheumatology , 50(2): 343–348
doi: 10.1093/rheumatology/keq304
56 Mann C J, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano A L, Munoz-Canoves P (2011). Aberrant repair and fibrosis development in skeletal muscle. Skeletal muscle 1, 21
57 Masinde G, Li X, Baylink D J, Nguyen B, Mohan S (2005). Isolation of wound healing/regeneration genes using restrictive fragment differential display-PCR in MRL/MPJ and C57BL/6 mice. Biochem Biophys Res Commun , 330(1): 117–122
doi: 10.1016/j.bbrc.2005.02.143
58 Masinde G L, Li X, Gu W, Davidson H, Mohan S, Baylink D J (2001). Identification of wound healing/regeneration quantitative trait loci (QTL) at multiple time points that explain seventy percent of variance in (MRL/MpJ and SJL/J) mice F2 population. Genome Res , 11(12): 2027–2033
doi: 10.1101/gr.203701
59 McBrearty B A, Clark L D, Zhang X M, Blankenhorn E P, Heber-Katz E (1998). Genetic analysis of a mammalian wound-healing trait. Proc Natl Acad Sci USA , 95(20): 11792–11797
doi: 10.1073/pnas.95.20.11792
60 Metcalfe A D, Willis H, Beare A, Ferguson M W (2006). Characterizing regeneration in the vertebrate ear. J Anat , 209(4): 439–446
doi: 10.1111/j.1469-7580.2006.00632.x
61 Michalopoulos G K, DeFrances M C (1997). Liver regeneration. Science , 276(5309): 60–66
doi: 10.1126/science.276.5309.60
62 Midwood K S, Williams L V, Schwarzbauer J E (2004). Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol , 36(6): 1031–1037
doi: 10.1016/j.biocel.2003.12.003
63 Moseley F L, Faircloth M E, Lockwood W, Marber M S, Bicknell K A, Valasek P, Brooks G (2011). Limitations of the MRL mouse as a model for cardiac regeneration. J Pharm Pharmacol , 63(5): 648–656
doi: 10.1111/j.2042-7158.2011.01261.x
64 Namazi M R, Fallahzadeh M K, Schwartz R A (2011). Strategies for prevention of scars: what can we learn from fetal skin? Int J Dermatol , 50(1): 85–93
doi: 10.1111/j.1365-4632.2010.04678.x
65 Naseem R H, Meeson A P, Michael Dimaio J, White M D, Kallhoff J, Humphries C, Goetsch S C, De Windt L J, Williams M A, Garry M G (2007). Reparative myocardial mechanisms in adult C57BL/6 and MRL mice following injury. Physiol Genomics , 30(1): 44–52
doi: 10.1152/physiolgenomics.00070.2006
66 Naviaux R K, Le T P, Bedelbaeva K, Leferovich J, Gourevitch D, Sachadyn P, Zhang X M, Clark L, Heber-Katz E (2009). Retained features of embryonic metabolism in the adult MRL mouse. Mol Genet Metab , 96(3): 133–144
doi: 10.1016/j.ymgme.2008.11.164
67 Oh Y S, Thomson L E, Fishbein M C, Berman D S, Sharifi B, Chen P S (2004). Scar formation after ischemic myocardial injury in MRL mice. Cardiovascular Pathology, 13: 203–206
68 Peled Z M, Phelps E D, Updike D L, Chang J, Krummel T M, Howard E W, Longaker M T (2002). Matrix metalloproteinases and the ontogeny of scarless repair: the other side of the wound healing balance. Plast Reconstr Surg , 110(3): 801–811
doi: 10.1097/00006534-200209010-00013
69 Peng S L, Madaio M P, Craft J (1996). Systemic autoimmunity in LG/J mice. Immunol Lett , 53(2–3): 153–155
doi: 10.1016/S0165-2478(96)02616-8
70 Potter P K, Cortes-Hernandez J, Quartier P, Botto M, Walport M J (2003). Lupus-prone mice have an abnormal response to thioglycolate and an impaired clearance of apoptotic cells. J Immunol , 170: 3223–3232
71 Rajnoch C, Ferguson S, Metcalfe A D, Herrick S E, Willis H S, Ferguson M W (2003). Regeneration of the ear after wounding in different mouse strains is dependent on the severity of wound trauma. Developmental Dynamics, 226: 388–397
72 Rao N, Jhamb D, Milner D J, Li B, Song F, Wang M, Voss S R, Palakal M, King M W, Saranjami B, Nye H L D, Cameron J, Stocum D L (2009). Proteomic analysis of blastema formation in regenerating axolotl limbs. BMC Biol , 7(1): 83
doi: 10.1186/1741-7007-7-83
73 Robey T E, Murry C E (2008). Absence of regeneration in the MRL/MpJ mouse heart following infarction or cryoinjury. Cardiovascular Pathology, 17: 6–13
74 Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau H M (2008). Self-renewal and expansion of single transplanted muscle stem cells. Nature , 456(7221): 502–506
doi: 10.1038/nature07384
75 Sachadyn P, Zhang X M, Clark L D, Naviaux R K, Heber-Katz E (2008). Naturally occurring mitochondrial DNA heteroplasmy in the MRL mouse. Mitochondrion , 8(5–6): 358–366
doi: 10.1016/j.mito.2008.07.007
76 Saika S (2007). Yin and yang in cytokine regulation of corneal wound healing: roles of TNF-alpha. Cornea , 26(Supplement 1): S70–S74
doi: 10.1097/ICO.0b013e31812f6d14
77 Santiago-Raber M L, Lawson B R, Dummer W, Barnhouse M, Koundouris S, Wilson C B, Kono D H, Theofilopoulos A N (2001). Role of cyclin kinase inhibitor p21 in systemic autoimmunity. J Immunol , 167: 4067–4074
78 Shah M, Foreman D M, Ferguson M W (1995). Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci , 108(Pt 3): 985–1002
79 Stocum D L (1984). The urodele limb regeneration blastema. Determination and organization of the morphogenetic field. Differentiation , 27(1–3): 13–28
doi: 10.1111/j.1432-0436.1984.tb01403.x
80 Stocum, D.L., and Crawford, K. (1987). Use of retinoids to analyze the cellular basis of positional memory in regenerating amphibian limbs. Biochemistry and cell biology, 65: 750–761
81 Tassava R A (1983). Limb regeneration to digit stages occurs in well-fed adult newts after hypophysectomy. J Exp Zool , 225(3): 433–441
doi: 10.1002/jez.1402250311
82 Theofilopoulos A N, Dixon F J (1985). Murine models of systemic lupus erythematosus. Adv Immunol , 37: 269–290
doi: 10.1016/S0065-2776(08)60342-9
83 Thuret S, Toni N, Aigner S, Yeo G W, Gage F H (2009). Hippocampus-dependent learning is associated with adult neurogenesis in MRL/MpJ mice. Hippocampus , 19(7): 658–669
doi: 10.1002/hipo.20550
84 Tolba R H, Schildberg F A, Decker D, Abdullah Z, Buttner R, Minor T, von Ruecker A (2010). Mechanisms of improved wound healing in Murphy Roths Large (MRL) mice after skin transplantation. Wound Repair Regen , 18(6): 662–670
doi: 10.1111/j.1524-475X.2010.00631.x
85 Torres V E, Leof E B (2011). Fibrosis, regeneration, and aging: playing chess with evolution. J Am Soc Nephrol , 22(8): 1393–1396
doi: 10.1681/ASN.2011060603
86 Ueno M, Lyons B L, Burzenski L M, Gott B, Shaffer D J, Roopenian D C, Shultz L D (2005). Accelerated wound healing of alkali-burned corneas in MRL mice is associated with a reduced inflammatory signature. Invest Ophthalmol Vis Sci , 46(11): 4097–4106
doi: 10.1167/iovs.05-0548
87 Vorotnikova E, McIntosh D, Dewilde A, Zhang J, Reing J E, Zhang L, Cordero K, Bedelbaeva K, Gourevitch D, Heber-Katz E(2010). Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vitro. Matrix Biology, 29: 690–700
88 Wandstrat A, Wakeland E (2001). The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nat Immunol , 2(9): 802–809
doi: 10.1038/ni0901-802
89 Ward B D, Furman B D, Huebner J L, Kraus V B, Guilak F, Olson S A (2008). Absence of posttraumatic arthritis following intraarticular fracture in the MRL/MpJ mouse. Arthritis Rheum , 58(3): 744–753
doi: 10.1002/art.23288
90 Watson M L, Rao J K, Gilkeson G S, Ruiz P, Eicher E M, Pisetsky D S, Matsuzawa A, Rochelle J M, Seldin M F (1992). Genetic analysis of MRL-lpr mice: relationship of the Fas apoptosis gene to disease manifestations and renal disease-modifying loci. J Exp Med , 176(6): 1645–1656
doi: 10.1084/jem.176.6.1645
91 Whitby D J, Ferguson M W (1991). Immunohistochemical localization of growth factors in fetal wound healing. Dev Biol , 147(1): 207–215
doi: 10.1016/S0012-1606(05)80018-1
92 Williams B O, Insogna K L (2009). Where Wnts went: the exploding field of Lrp5 and Lrp6 signaling in bone. Journal of Bone and Mineral Research: 24: 171–178
93 Xu H, Christmas P, Wu X R, Wewer U M, Engvall E (1994). Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. Proc Natl Acad Sci USA , 91(12): 5572–5576
doi: 10.1073/pnas.91.12.5572
94 Yu H, Baylink D J, Masinde G L, Li R, Nguyen B, Davidson H M, Xu S, Mohan S (2007). Mouse chromosome 9 quantitative trait loci for soft tissue regeneration: congenic analysis and fine mapping. Wound Repair and Regeneration, 15: 922–927
95 Yu H, Mohan S, Masinde GL, Baylink D J (2005). Mapping the dominant wound healing and soft tissue regeneration QTL in MRL x CAST. Mammalian Genome, 16: 918–924
96 Yuan R, Tsaih S W, Petkova S B, Marin de Evsikova C, Xing S, Marion M A, Bogue M A, Mills K D, Peters L L, Bult C J, (2009). Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell , 8(3): 277–287
doi: 10.1111/j.1474-9726.2009.00478.x
97 Ziv E, Hu D (2011). Genetic variation in insulin/IGF-1 signaling pathways and longevity. Ageing Res Rev , 10(2): 201–204
doi: 10.1016/j.arr.2010.09.002
[1] Anatoly I. Bozhkov,Natalia G. Menzyanova,Vadim V. Davydov,Natalia I. Kurguzova,Vadim I. Sidorov,Anastasia S. Vasilieva. Liver regeneration is associated with lipid reorganization in membranes of the endoplasmic reticulum[J]. Front. Biol., 2016, 11(5): 396-403.
[2] Jamie K. WONG,Hongyan ZOU. Reshaping the chromatin landscape after spinal cord injury[J]. Front. Biol., 2014, 9(5): 356-366.
[3] Lakshmi KELAMANGALATH, George M. SMITH. Neurotrophin treatment to promote regeneration after traumatic CNS injury[J]. Front Biol, 2013, 8(5): 486-495.
[4] Chandler L. WALKER, Nai-Kui LIU, Xiao-Ming XU. PTEN/PI3K and MAPK signaling in protection and pathology following CNS injuries[J]. Front Biol, 2013, 8(4): 421-433.
[5] Peng LIU, Zhipeng FAN, Songlin WANG. Understanding of stem cells in bone biology and translation into clinical applications[J]. Front Biol, 2010, 5(5): 396-406.
[6] Ying Hua SU, Zhi Juan CHENG, Yu Xiao SU, Xian Sheng ZHANG. Pattern analysis of stem cell differentiation during in vitroArabidopsis organogenesis[J]. Front Biol, 2010, 5(5): 464-470.
[7] Xiangcheng MI, Jihua HOU, . Regeneration pattern analysis of Quercus liaotungensis in a temperate forest using two-dimensional wavelet analysis[J]. Front. Biol., 2009, 4(4): 491-502.
[8] Bizeng MAO, Bowei HE, Zaiming CHEN, Bingliang WANG, Huifeng PAN, Debao LI. Effects of plant growth regulators on the rapid proliferation of shoots and root induction in the Chinese traditional medicinal plant Atractylodes macrocephala[J]. Front Biol Chin, 2009, 4(2): 217-221.
[9] Laiye QU ,   Keming MA ,   Xiaoniu XU ,   Lihua WANG ,   Kaichiro SASA. Effects of post-fire conditions on soil respiration in boreal forests with special reference to Northeast China forests[J]. Front Biol Chin, 2009, 4(2): 180-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed