Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (5) : 486-495    https://doi.org/10.1007/s11515-013-1269-8
REVIEW
Neurotrophin treatment to promote regeneration after traumatic CNS injury
Lakshmi KELAMANGALATH, George M. SMITH()
Center for Neural Repair and Rehabilitation, Department of Neuroscience, & Shriners Hospitals for Pediatric Research, Temple University School of Medicine, Philadelphia, PA 19140-4106, USA
 Download: PDF(265 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Neurotrophins are a family of growth factors that have been found to be central for the development and functional maintenance of the nervous system, participating in neurogenesis, neuronal survival, axonal growth, synaptogenesis and activity-dependent forms of synaptic plasticity. Trauma in the adult nervous system can disrupt the functional circuitry of neurons and result in severe functional deficits. The limitation of intrinsic growth capacity of adult nervous system and the presence of an inhospitable environment are the major hurdles for axonal regeneration of lesioned adult neurons. Neurotrophic factors have been shown to be excellent candidates in mediating neuronal repair and establishing functional circuitry via activating several growth signaling mechanisms including neuron-intrinsic regenerative programs. Here, we will review the effects of various neurotrophins in mediating recovery after injury to the adult spinal cord.

Keywords axonal guidance      neurotrophin      regeneration      functional recovery      sprouting     
Corresponding Author(s): SMITH George M.,Email:george.smith@temple.edu   
Issue Date: 01 October 2013
 Cite this article:   
Lakshmi KELAMANGALATH,George M. SMITH. Neurotrophin treatment to promote regeneration after traumatic CNS injury[J]. Front Biol, 2013, 8(5): 486-495.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1269-8
https://academic.hep.com.cn/fib/EN/Y2013/V8/I5/486
Fig.1  Signaling cascades mediated by Trk receptors and p75. Trk family members recruit and increase the phosphorylation of PLC-γ and Src homologous and collagen-like adaptor protein (Shc), which leads to activation of PI3K and Erk, and participate in cell survival, differentiation, and synaptic plasticity, respectively. Collaboration of p75 with Trk augments the Trk effects. In the absence of Trk, p75 predominantly signals to activate NF-κB and Jun N-terminal kinase (JNK), and modulates RhoA activity. Pro-neurotrophins also preferentially bind to the p75 signaling apoptotic pathways. These responses are mediated through adaptor proteins that bind to the cytoplasmic domain of p75, including neurotrophin-receptor interacting factor (NRIF), neurotrophin-associated cell death executor (NADE), neurotrophin-receptor-interacting MAGE homolog (NRAGE), and Schwann cell 1 (SC1), which can exert effects on apoptosis, growth cone collapse and cell cycle arrest. Akt, protein kinase B; FRS2, fibroblast growth factor receptor substrate 2; Gab1, Grb2-associated binder-1; Grb2, growth factor receptor-bound protein 2; MEK, mitogen-activated protein kinase (MAPK)/Erk kinase; SOS, Son of Sevenless; TRAF6, tumor necrosis factor receptor-associated factor 6.
Fig.2  Neurotrophin treatments on nerve regeneration after neurotrauma. Traumatic injury in CNS, such as root avulsion, spinal cord injury (SCI), and traumatic brain injury (TBI), results in death of injured neurons and failure of severed axonal regeneration. Neurotrophin treatments are reported to induce sensory axons to regenerate through the DREZ after root avulsion (1) and severed axons to re-grow (2) across the lesion site (3) into distal host tissues (4), enhance neuronal survival after SCI (5) and TBI (6, 7).
1 Bamber N I, Li H Y, Lu X B, Oudega M, Aebischer P, Xu X M (2001). Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels. Eur J Neurosci , 13(2): 257–268
pmid:11168530
2 Bartus K, James N D, Bosch K D, Bradbury E J (2012). Chondroitin sulphate proteoglycans: key modulators of spinal cord and brain plasticity. Exp Neurol , 235(1): 5–17
doi: 10.1016/j.expneurol.2011.08.008 pmid:21871887
3 Bibel M, Barde Y A (2000). Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev , 14(23): 2919–2937
doi: 10.1101/gad.841400 pmid:11114882
4 Blesch A, Yang H, Weidner N, Hoang A, Otero D (2004). Axonal responses to cellularly delivered NT-4/5 after spinal cord injury. Mol Cell Neurosci , 27(2): 190–201
doi: 10.1016/j.mcn.2004.06.007 pmid:15485774
5 Blum R, Konnerth A (2005). Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology (Bethesda) , 20(1): 70–78
doi: 10.1152/physiol.00042.2004 pmid:15653842
6 Bonner J F, Blesch A, Neuhuber B, Fischer I (2010). Promoting directional axon growth from neural progenitors grafted into the injured spinal cord. J Neurosci Res , 88(6): 1182–1192
pmid:19908250
7 Boyd J G, Gordon T (2002). A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain-derived neurotrophic factor. Eur J Neurosci , 15(4): 613–626
doi: 10.1046/j.1460-9568.2002.01891.x pmid:11886442
8 Bretzner F, Liu J, Currie E, Roskams A J, Tetzlaff W (2008). Undesired effects of a combinatorial treatment for spinal cord injury—transplantation of olfactory ensheathing cells and BDNF infusion to the red nucleus. Eur J Neurosci , 28(9): 1795–1807
doi: 10.1111/j.1460-9568.2008.06462.x pmid:18973595
9 Brock J H, Rosenzweig E S, Blesch A, Moseanko R, Havton L A, Edgerton V R, Tuszynski M H (2010). Local and remote growth factor effects after primate spinal cord injury. J Neurosci , 30(29): 9728–9737
doi: 10.1523/JNEUROSCI.1924-10.2010 pmid:20660255
10 Cajal S R y 1928. Degeneration and regeneration of the nervous system. Hafner, New York
11 Cameron A A, Smith G M, Randall D C, Brown D R, Rabchevsky A G (2006). Genetic manipulation of intraspinal plasticity after spinal cord injury alters the severity of autonomic dysreflexia. J Neurosci , 26(11): 2923–2932
doi: 10.1523/JNEUROSCI.4390-05.2006 pmid:16540569
12 Cao Q, Xu X M, Devries W H, Enzmann G U, Ping P, Tsoulfas P, Wood P M, Bunge M B, Whittemore S R (2005). Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci , 25(30): 6947–6957
doi: 10.1523/JNEUROSCI.1065-05.2005 pmid:16049170
13 Chan J R, Cosgaya J M, Wu Y J, Shooter E M (2001). Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proc Natl Acad Sci USA , 98(25): 14661–14668
doi: 10.1073/pnas.251543398 pmid:11717413
14 Chan J R, Watkins T A, Cosgaya J M, Zhang C Z, Chen L, Reichardt L F, Shooter E M, Barres B A (2004). NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron , 43(2): 183–191
doi: 10.1016/j.neuron.2004.06.024 pmid:15260955
15 Chao M V (2003a). Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci , 4(4): 299–309
doi: 10.1038/nrn1078 pmid:12671646
16 Chao M V (2003b). Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci , 4(4): 299–309
doi: 10.1038/nrn1078 pmid:12671646
17 Chiaretti A, Antonelli A, Genovese O, Pezzotti P, Rocco C D, Viola L, Riccardi R (2008). Nerve growth factor and doublecortin expression correlates with improved outcome in children with severe traumatic brain injury. J Trauma , 65(1): 80–85
doi: 10.1097/TA.0b013e31805f7036 pmid:18580535
18 Chu Q, Wang Y, Fu X, Zhang S (2004). Mechanism of in vitro differentiation of bone marrow stromal cells into neuron-like cells. J Huazhong Univ Sci Technolog Med Sci , 24(3): 259–261
doi: 10.1007/BF02832006 pmid:15315342
19 Cosgaya J M, Chan J R, Shooter E M (2002). The neurotrophin receptor p75NTR as a positive modulator of myelination. Science , 298(5596): 1245–1248
doi: 10.1126/science.1076595 pmid:12424382
20 Coumans J V, Lin T T, Dai H N, MacArthur L, McAtee M, Nash C, Bregman B S (2001). Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J Neurosci , 21(23): 9334–9344
pmid:11717367
21 Deumens R, Koopmans G C, Joosten E A (2005). Regeneration of descending axon tracts after spinal cord injury. Prog Neurobiol , 77(1-2): 57–89
doi: 10.1016/j.pneurobio.2005.10.004 pmid:16271433
22 Domeniconi M, Filbin M T (2005). Overcoming inhibitors in myelin to promote axonal regeneration. J Neurol Sci , 233(1-2): 43–47
doi: 10.1016/j.jns.2005.03.023 pmid:15949495
23 Epa W R, Markovska K, Barrett G L (2004). The p75 neurotrophin receptor enhances TrkA signalling by binding to Shc and augmenting its phosphorylation. J Neurochem , 89(2): 344–353
doi: 10.1111/j.1471-4159.2004.02344.x pmid:15056278
24 Ferguson I A, Koide T, Rush R A (2001). Stimulation of corticospinal tract regeneration in the chronically injured spinal cord. Eur J Neurosci , 13(5): 1059–1064
doi: 10.1046/j.1460-9568.2001.01482.x pmid:11264681
25 Ferraro G B, Alabed Y Z, Fournier A E (2004). Molecular targets to promote central nervous system regeneration. Curr Neurovasc Res , 1(1): 61–75
doi: 10.2174/1567202043480251 pmid:16181067
26 Freidman W J (2010). Proneurotrophin, seizures, and neuronal apoptosis. Neuroscienctist , 16(3): 244–252
doi: 10.1177/1073858409349903
27 Galtrey C M, Kwok J C F, Carulli D, Rhodes K E, Fawcett J W (2008). Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur J Neurosci , 27(6): 1373–1390
doi: 10.1111/j.1460-9568.2008.06108.x pmid:18364019
28 Gámez E, Ikezaki K, Fukui M, Matsuda T (2003). Photoconstructs of nerve guidance prosthesis using photoreactive gelatin as a scaffold. Cell Transplant , 12(5): 481–490
pmid:12953922
29 Grill R J, Blesch A, Tuszynski M H (1997). Robust growth of chronically injured spinal cord axons induced by grafts of genetically modified NGF-secreting cells. Exp Neurol , 148(2): 444–452
doi: 10.1006/exnr.1997.6704 pmid:9417824
30 Hendriks W T, Ruitenberg M J, Blits B, Boer G J, Verhaagen J (2004). Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord. Prog Brain Res , 146: 451–476
doi: 10.1016/S0079-6123(03)46029-9 pmid:14699980
31 H?ke A, Redett R, Hameed H, Jari R, Zhou C, Li Z B, Griffin J W, Brushart T M (2006). Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci , 26(38): 9646–9655
doi: 10.1523/JNEUROSCI.1620-06.2006 pmid:16988035
32 Hollis E R 2nd, Jamshidi P, L?w K, Blesch A, Tuszynski M H (2009). Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc Natl Acad Sci USA , 106(17): 7215–7220
doi: 10.1073/pnas.0810624106 pmid:19359495
33 Hollis E R 2nd, Tuszynski M H (2011). Neurotrophins: potential therapeutic tools for the treatment of spinal cord injury. Neurotherapeutics , 8(4): 694–703
doi: 10.1007/s13311-011-0074-9 pmid:21904786
34 Huang E J, Reichardt L F (2003). Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem , 72(1): 609–642
doi: 10.1146/annurev.biochem.72.121801.161629 pmid:12676795
35 Iarikov D E, Kim B G, Dai H N, McAtee M, Kuhn P L, Bregman B S (2007). Delayed transplantation with exogenous neurotrophin administration enhances plasticity of corticofugal projections after spinal cord injury. J Neurotrauma , 24(4): 690–702
doi: 10.1089/neu.2006.0172 pmid:17439351
36 Ide C (1996). Peripheral nerve regeneration. Neurosci Res , 25(2): 101–121
pmid:8829147
37 Jin Y, Ziemba K S, Smith G M (2008). Axon growth across a lesion site along a preformed guidance pathway in the brain. Exp Neurol , 210(2): 521–530
doi: 10.1016/j.expneurol.2007.11.030 pmid:18261727
38 Jones L L, Sajed D, Tuszynski M H (2003). Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J Neurosci , 23(28): 9276–9288
pmid:14561854
39 Kadoya K, Tsukada S, Lu P, Coppola G, Geschwind D, Filbin M T, Blesch A, Tuszynski M H (2009). Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury. Neuron , 64(2): 165–172
doi: 10.1016/j.neuron.2009.09.016 pmid:19874785
40 Kim G, Choe Y, Park J, Cho S, Kim K (2002). Activation of protein kinase A induces neuronal differentiation of HiB5 hippocampal progenitor cells. Brain Res Mol Brain Res , 109(1-2): 134–145
doi: 10.1016/S0169-328X(02)00550-8 pmid:12531523
41 Kim J E, Liu B P, Park J H, Strittmatter S M (2004). Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron , 44(3): 439–451
doi: 10.1016/j.neuron.2004.10.015 pmid:15504325
42 Kobayashi N R, Fan D P, Giehl K M, Bedard A M, Wiegand S J, Tetzlaff W (1997). BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. J Neurosci , 17(24): 9583–9595
pmid:9391013
43 Kuruvilla R, Zweifel L S, Glebova N O, Lonze B E, Valdez G, Ye H, Ginty D D (2004). A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell , 118(2): 243–255
doi: 10.1016/j.cell.2004.06.021 pmid:15260993
44 Kusano K, Enomoto M, Hirai T, Tsoulfas P, Sotome S, Shinomiya K, Okawa A (2010). Transplanted neural progenitor cells expressing mutant NT3 promote myelination and partial hindlimb recovery in the chronic phase after spinal cord injury. Biochem Biophys Res Commun , 393(4): 812–817
doi: 10.1016/j.bbrc.2010.02.088 pmid:20171177
45 Kwon B K, Liu J, Lam C, Plunet W, Oschipok L W, Hauswirth W, Di Polo A, Blesch A, Tetzlaff W (2007). Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury. Spine , 32(11): 1164–1173
doi: 10.1097/BRS.0b013e318053ec35 pmid:17495772
46 Kwon B K, Liu J, Messerer C, Kobayashi N R, McGraw J, Oschipok L, Tetzlaff W (2002). Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury. Proc Natl Acad Sci USA , 99(5): 3246–3251
doi: 10.1073/pnas.052308899 pmid:11867727
47 Lee H, McKeon R J, Bellamkonda R V (2010). Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci USA , 107(8): 3340–3345
doi: 10.1073/pnas.0905437106 pmid:19884507
48 Lehmann H C, H?ke A (2010). Schwann cells as a therapeutic target for peripheral neuropathies. CNS Neurol Disord Drug Targets , 9(6): 801–806
doi: 10.2174/187152710793237412 pmid:20874704
49 Lessmann V, Gottmann K, Malcangio M (2003). Neurotrophin secretion: current facts and future prospects. Prog Neurobiol , 69(5): 341–374
doi: 10.1016/S0301-0082(03)00019-4 pmid:12787574
50 Longhi L, Watson D J, Saatman K E, Thompson H J, Zhang C, Fujimoto S, Royo N, Castelbuono D, Raghupathi R, Trojanowski J Q, Lee V M, Wolfe J H, Stocchetti N, McIntosh T K (2004a). Ex vivo gene therapy using targeted engraftment of NGF-expressing human NT2N neurons attenuates cognitive deficits following traumatic brain injury in mice. J Neurotrauma , 21(12): 1723–1736
pmid:15684764
51 Longhi L, Watson D J, Saatman K E, Thompson H J, Zhang C, Fujimoto S, Royo N, Castelbuono D, Raghupathi R, Trojanowski J Q, Lee V M, Wolfe J H, Stocchetti N, McIntosh T K (2004b). Ex vivo gene therapy using targeted engraftment of NGF-expressing human NT2N neurons attenuates cognitive deficits following traumatic brain injury in mice. J Neurotrauma , 21(12): 1723–1736
pmid:15684764
52 Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, Pavlova G, Parfyonova Y, Tkachuk V (2011). Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS ONE , 6(3): e17899
doi: 10.1371/journal.pone.0017899 pmid:21423756
53 Lu B, Pang P T, Woo N H (2005). The yin and yang of neurotrophin action. Nat Rev Neurosci , 6(8): 603–614
doi: 10.1038/nrn1726 pmid:16062169
54 Lu P, Blesch A, Tuszynski M H (2001). Neurotrophism without neurotropism: BDNF promotes survival but not growth of lesioned corticospinal neurons. J Comp Neurol , 436(4): 456–470
doi: 10.1002/cne.1080 pmid:11447589
55 Lu P, Jones L L, Snyder E Y, Tuszynski M H (2003). Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol , 181(2): 115–129
doi: 10.1016/S0014-4886(03)00037-2 pmid:12781986
56 Mahmood A, Lu D, Wang L, Chopp M (2002). Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. J Neurotrauma , 19(12): 1609–1617
doi: 10.1089/089771502762300265 pmid:12542861
57 Massey J M, Amps J, Viapiano M S, Matthews R T, Wagoner M R, Whitaker C M, Alilain W, Yonkof A L, Khalyfa A, Cooper N G F, Silver J, Onifer S M (2008). Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Exp Neurol , 209(2): 426–445
doi: 10.1016/j.expneurol.2007.03.029 pmid:17540369
58 Nielson J L, Strong M K, Steward O (2011). A reassessment of whether cortical motor neurons die following spinal cord injury. J Comp Neurol , 519(14): 2852–2869
doi: 10.1002/cne.22661 pmid:21618218
59 Novikova L N, Novikov L N, Kellerth J O (2000). Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration. Eur J Neurosci , 12(2): 776–780
doi: 10.1046/j.1460-9568.2000.00978.x pmid:10712659
60 Philips M F, Mattiasson G, Wieloch T, Bj?rklund A, Johansson B B, Tomasevic G, Martínez-Serrano A, Lenzlinger P M, Sinson G, Grady M S, McIntosh T K (2001). Neuroprotective and behavioral efficacy of nerve growth factor-transfected hippocampal progenitor cell transplants after experimental traumatic brain injury. J Neurosurg , 94(5): 765–774
doi: 10.3171/jns.2001.94.5.0765 pmid:11354408
61 Ramer M S, Priestley J V, McMahon S B (2000). Functional regeneration of sensory axons into the adult spinal cord. Nature , 403(6767): 312–316
doi: 10.1038/35002084 pmid:10659850
62 Ray S K, Dixon C E, Banik N L (2002). Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol Histopathol , 17(4): 1137–1152
pmid:12371142
63 Romero M I, Rangappa N, Garry M G, Smith G M (2001). Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy. J Neurosci , 21(21): 8408–8416
pmid:11606629
64 Romero M I, Smith G M (1998). Adenoviral gene transfer into the normal and injured spinal cord: enhanced transgene stability by combined administration of temperature-sensitive virus and transient immune blockade. Gene Ther , 5(12): 1612–1621
doi: 10.1038/sj.gt.3300774 pmid:10023440
65 Royo N C, Schouten J W, Fulp C T, Shimizu S, Marklund N, Graham D I, McIntosh T K (2003). From cell death to neuronal regeneration: building a new brain after traumatic brain injury. J Neuropathol Exp Neurol , 62(8): 801–811
pmid:14503636
66 Sinson G, Voddi M, McIntosh T K (1996). Combined fetal neural transplantation and nerve growth factor infusion: effects on neurological outcome following fluid-percussion brain injury in the rat. J Neurosurg , 84(4): 655–662
doi: 10.3171/jns.1996.84.4.0655 pmid:8613859
67 Smith GMandOnifer S (2011) Construction of pathways to promote axon growth within the adult central nervous system. Brain Research Bulletin Brain Res Bull . 2011 84(4–5).
68 Smith G M, Romero M I (1999). Adenoviral-mediated gene transfer to enhance neuronal survival, growth, and regeneration. J Neurosci Res , 55(2): 147–157
doi: 10.1002/(SICI)1097-4547(19990115)55:2<147::AID-JNR2>3.0.CO;2-8 pmid:9972817
69 Tang X Q, Cai J, Nelson K D, Peng X J, Smith G M (2004a). Functional repair after dorsal root rhizotomy using nerve conduits and neurotrophic molecules. Eur J Neurosci , 20(5): 1211–1218
doi: 10.1111/j.1460-9568.2004.03595.x pmid:15341593
70 Tang X Q, Tanelian D L, Smith G M (2004b). Semaphorin3A inhibits nerve growth factor-induced sprouting of nociceptive afferents in adult rat spinal cord. J Neurosci , 24(4): 819–827
doi: 10.1523/JNEUROSCI.1263-03.2004 pmid:14749426
71 Taylor S J, Rosenzweig E S, McDonald J W 3rd, Sakiyama-Elbert S E (2006). Delivery of neurotrophin-3 from fibrin enhances neuronal fiber sprouting after spinal cord injury. J Control Release , 113(3): 226–235
doi: 10.1016/j.jconrel.2006.05.005 pmid:16797770
72 Tobias C A, Shumsky J S, Shibata M, Tuszynski M H, Fischer I, Tessler A, Murray M (2003). Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol , 184(1): 97–113
doi: 10.1016/S0014-4886(03)00394-7 pmid:14637084
73 Tonra J R, Curtis R, Wong V, Cliffer K D, Park J S, Timmes A, Nguyen T, Lindsay R M, Acheson A, DiStefano P S (1998). Axotomy upregulates the anterograde transport and expression of brain-derived neurotrophic factor by sensory neurons. J Neurosci , 18(11): 4374–4383
pmid:9592114
74 Trojanowski J Q, Kleppner S R, Hartley R S, Miyazono M, Fraser N W, Kesari S, Lee V M (1997). Transfectable and transplantable postmitotic human neurons: a potential “platform” for gene therapy of nervous system diseases. Exp Neurol , 144(1): 92–97
doi: 10.1006/exnr.1996.6393 pmid:9126157
75 Tuszynski M H, Gabriel K, Gage F H, Suhr S, Meyer S, Rosetti A (1996). Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury. Exp Neurol , 137(1): 157–173
doi: 10.1006/exnr.1996.0016 pmid:8566208
76 Vavrek R, Girgis J, Tetzlaff W, Hiebert G W, Fouad K (2006). BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain , 129(Pt 6): 1534–1545
doi: 10.1093/brain/awl087 pmid:16632552
77 Wang Z T, Yao W F, Deng Q J, Zhang X H, Zhang J N (2013). Protective effects of BDNF overexpression bone marrow stromal cell transplantation in rat models of traumatic brain injury. J Mol Neurosci , 49(2): 409–416
doi: 10.1007/s12031-012-9908-0 pmid:23143881
78 Woolley A G, Tait K J, Hurren B J, Fisher L, Sheard P W, Duxson M J (2008). Developmental loss of NT-3 in vivo results in reduced levels of myelin-specific proteins, a reduced extent of myelination and increased apoptosis of Schwann cells. Glia , 56(3): 306–317
doi: 10.1002/glia.20614 pmid:18080292
79 Xiao J, Wong A, Kilpatrick T, Murray S (2010). BDNF ENHANCES CENTRAL NERVOUS SYSTEM MYELINATION VIA A DIRECT SIGNALLING TO OLIGODENDROGLIAL TrKB RECEPTORS. J Neurochem , 115: 36–36
pmid:20626563
80 Xiao J H, Kilpatrick T J, Murray S S (2009). The role of neurotrophins in the regulation of myelin development. Neurosignals , 17(4): 265–276
doi: 10.1159/000231893 pmid:19816063
81 Xu X M, Guénard V, Kleitman N, Aebischer P, Bunge M B (1995). A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol , 134(2): 261–272
doi: 10.1006/exnr.1995.1056 pmid:7556546
82 Ye J H, Houle J D (1997). Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp Neurol , 143(1): 70–81
doi: 10.1006/exnr.1996.6353 pmid:9000447
83 Zhou X F, Li W P, Zhou F H, Zhong J H, Mi J X, Wu L L, Xian C J (2005). Differential effects of endogenous brain-derived neurotrophic factor on the survival of axotomized sensory neurons in dorsal root ganglia: a possible role for the p75 neurotrophin receptor. Neuroscience , 132(3): 591–603
doi: 10.1016/j.neuroscience.2004.12.034 pmid:15837121
84 Zhou Z, Chen H, Zhang K, Yang H, Liu J, Huang Q (2003). Protective effect of nerve growth factor on neurons after traumatic brain injury. J Basic Clin Physiol Pharmacol , 14(3): 217–224
doi: 10.1515/JBCPP.2003.14.3.217 pmid:14964734
85 Zou L L, Huang L, Hayes R L, Black C, Qiu Y H, Perez-Polo J R, Le W, Clifton G L, Yang K (1999). Liposome-mediated NGF gene transfection following neuronal injury: potential therapeutic applications. Gene Ther , 6(6): 994–1005
doi: 10.1038/sj.gt.3300936 pmid:10455401
[1] Anatoly I. Bozhkov,Natalia G. Menzyanova,Vadim V. Davydov,Natalia I. Kurguzova,Vadim I. Sidorov,Anastasia S. Vasilieva. Liver regeneration is associated with lipid reorganization in membranes of the endoplasmic reticulum[J]. Front. Biol., 2016, 11(5): 396-403.
[2] Jamie K. WONG,Hongyan ZOU. Reshaping the chromatin landscape after spinal cord injury[J]. Front. Biol., 2014, 9(5): 356-366.
[3] Li-Ya QIAO. Neurotrophin signaling and visceral hypersensitivity[J]. Front. Biol., 2014, 9(3): 216-224.
[4] Chandler L. WALKER, Nai-Kui LIU, Xiao-Ming XU. PTEN/PI3K and MAPK signaling in protection and pathology following CNS injuries[J]. Front Biol, 2013, 8(4): 421-433.
[5] Ahlke HEYDEMANN. The super super-healing MRL mouse strain[J]. Front Biol, 2012, 7(6): 522-538.
[6] Peng LIU, Zhipeng FAN, Songlin WANG. Understanding of stem cells in bone biology and translation into clinical applications[J]. Front Biol, 2010, 5(5): 396-406.
[7] Ying Hua SU, Zhi Juan CHENG, Yu Xiao SU, Xian Sheng ZHANG. Pattern analysis of stem cell differentiation during in vitroArabidopsis organogenesis[J]. Front Biol, 2010, 5(5): 464-470.
[8] Xiangcheng MI, Jihua HOU, . Regeneration pattern analysis of Quercus liaotungensis in a temperate forest using two-dimensional wavelet analysis[J]. Front. Biol., 2009, 4(4): 491-502.
[9] Bizeng MAO, Bowei HE, Zaiming CHEN, Bingliang WANG, Huifeng PAN, Debao LI. Effects of plant growth regulators on the rapid proliferation of shoots and root induction in the Chinese traditional medicinal plant Atractylodes macrocephala[J]. Front Biol Chin, 2009, 4(2): 217-221.
[10] Laiye QU ,   Keming MA ,   Xiaoniu XU ,   Lihua WANG ,   Kaichiro SASA. Effects of post-fire conditions on soil respiration in boreal forests with special reference to Northeast China forests[J]. Front Biol Chin, 2009, 4(2): 180-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed