|
|
Neurotrophin treatment to promote regeneration after traumatic CNS injury |
Lakshmi KELAMANGALATH, George M. SMITH( ) |
Center for Neural Repair and Rehabilitation, Department of Neuroscience, & Shriners Hospitals for Pediatric Research, Temple University School of Medicine, Philadelphia, PA 19140-4106, USA |
|
|
Abstract Neurotrophins are a family of growth factors that have been found to be central for the development and functional maintenance of the nervous system, participating in neurogenesis, neuronal survival, axonal growth, synaptogenesis and activity-dependent forms of synaptic plasticity. Trauma in the adult nervous system can disrupt the functional circuitry of neurons and result in severe functional deficits. The limitation of intrinsic growth capacity of adult nervous system and the presence of an inhospitable environment are the major hurdles for axonal regeneration of lesioned adult neurons. Neurotrophic factors have been shown to be excellent candidates in mediating neuronal repair and establishing functional circuitry via activating several growth signaling mechanisms including neuron-intrinsic regenerative programs. Here, we will review the effects of various neurotrophins in mediating recovery after injury to the adult spinal cord.
|
Keywords
axonal guidance
neurotrophin
regeneration
functional recovery
sprouting
|
Corresponding Author(s):
SMITH George M.,Email:george.smith@temple.edu
|
Issue Date: 01 October 2013
|
|
1 |
Bamber N I, Li H Y, Lu X B, Oudega M, Aebischer P, Xu X M (2001). Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels. Eur J Neurosci , 13(2): 257–268 pmid:11168530
|
2 |
Bartus K, James N D, Bosch K D, Bradbury E J (2012). Chondroitin sulphate proteoglycans: key modulators of spinal cord and brain plasticity. Exp Neurol , 235(1): 5–17 doi: 10.1016/j.expneurol.2011.08.008 pmid:21871887
|
3 |
Bibel M, Barde Y A (2000). Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev , 14(23): 2919–2937 doi: 10.1101/gad.841400 pmid:11114882
|
4 |
Blesch A, Yang H, Weidner N, Hoang A, Otero D (2004). Axonal responses to cellularly delivered NT-4/5 after spinal cord injury. Mol Cell Neurosci , 27(2): 190–201 doi: 10.1016/j.mcn.2004.06.007 pmid:15485774
|
5 |
Blum R, Konnerth A (2005). Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology (Bethesda) , 20(1): 70–78 doi: 10.1152/physiol.00042.2004 pmid:15653842
|
6 |
Bonner J F, Blesch A, Neuhuber B, Fischer I (2010). Promoting directional axon growth from neural progenitors grafted into the injured spinal cord. J Neurosci Res , 88(6): 1182–1192 pmid:19908250
|
7 |
Boyd J G, Gordon T (2002). A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain-derived neurotrophic factor. Eur J Neurosci , 15(4): 613–626 doi: 10.1046/j.1460-9568.2002.01891.x pmid:11886442
|
8 |
Bretzner F, Liu J, Currie E, Roskams A J, Tetzlaff W (2008). Undesired effects of a combinatorial treatment for spinal cord injury—transplantation of olfactory ensheathing cells and BDNF infusion to the red nucleus. Eur J Neurosci , 28(9): 1795–1807 doi: 10.1111/j.1460-9568.2008.06462.x pmid:18973595
|
9 |
Brock J H, Rosenzweig E S, Blesch A, Moseanko R, Havton L A, Edgerton V R, Tuszynski M H (2010). Local and remote growth factor effects after primate spinal cord injury. J Neurosci , 30(29): 9728–9737 doi: 10.1523/JNEUROSCI.1924-10.2010 pmid:20660255
|
10 |
Cajal S R y 1928. Degeneration and regeneration of the nervous system. Hafner, New York
|
11 |
Cameron A A, Smith G M, Randall D C, Brown D R, Rabchevsky A G (2006). Genetic manipulation of intraspinal plasticity after spinal cord injury alters the severity of autonomic dysreflexia. J Neurosci , 26(11): 2923–2932 doi: 10.1523/JNEUROSCI.4390-05.2006 pmid:16540569
|
12 |
Cao Q, Xu X M, Devries W H, Enzmann G U, Ping P, Tsoulfas P, Wood P M, Bunge M B, Whittemore S R (2005). Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci , 25(30): 6947–6957 doi: 10.1523/JNEUROSCI.1065-05.2005 pmid:16049170
|
13 |
Chan J R, Cosgaya J M, Wu Y J, Shooter E M (2001). Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proc Natl Acad Sci USA , 98(25): 14661–14668 doi: 10.1073/pnas.251543398 pmid:11717413
|
14 |
Chan J R, Watkins T A, Cosgaya J M, Zhang C Z, Chen L, Reichardt L F, Shooter E M, Barres B A (2004). NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron , 43(2): 183–191 doi: 10.1016/j.neuron.2004.06.024 pmid:15260955
|
15 |
Chao M V (2003a). Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci , 4(4): 299–309 doi: 10.1038/nrn1078 pmid:12671646
|
16 |
Chao M V (2003b). Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci , 4(4): 299–309 doi: 10.1038/nrn1078 pmid:12671646
|
17 |
Chiaretti A, Antonelli A, Genovese O, Pezzotti P, Rocco C D, Viola L, Riccardi R (2008). Nerve growth factor and doublecortin expression correlates with improved outcome in children with severe traumatic brain injury. J Trauma , 65(1): 80–85 doi: 10.1097/TA.0b013e31805f7036 pmid:18580535
|
18 |
Chu Q, Wang Y, Fu X, Zhang S (2004). Mechanism of in vitro differentiation of bone marrow stromal cells into neuron-like cells. J Huazhong Univ Sci Technolog Med Sci , 24(3): 259–261 doi: 10.1007/BF02832006 pmid:15315342
|
19 |
Cosgaya J M, Chan J R, Shooter E M (2002). The neurotrophin receptor p75NTR as a positive modulator of myelination. Science , 298(5596): 1245–1248 doi: 10.1126/science.1076595 pmid:12424382
|
20 |
Coumans J V, Lin T T, Dai H N, MacArthur L, McAtee M, Nash C, Bregman B S (2001). Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J Neurosci , 21(23): 9334–9344 pmid:11717367
|
21 |
Deumens R, Koopmans G C, Joosten E A (2005). Regeneration of descending axon tracts after spinal cord injury. Prog Neurobiol , 77(1-2): 57–89 doi: 10.1016/j.pneurobio.2005.10.004 pmid:16271433
|
22 |
Domeniconi M, Filbin M T (2005). Overcoming inhibitors in myelin to promote axonal regeneration. J Neurol Sci , 233(1-2): 43–47 doi: 10.1016/j.jns.2005.03.023 pmid:15949495
|
23 |
Epa W R, Markovska K, Barrett G L (2004). The p75 neurotrophin receptor enhances TrkA signalling by binding to Shc and augmenting its phosphorylation. J Neurochem , 89(2): 344–353 doi: 10.1111/j.1471-4159.2004.02344.x pmid:15056278
|
24 |
Ferguson I A, Koide T, Rush R A (2001). Stimulation of corticospinal tract regeneration in the chronically injured spinal cord. Eur J Neurosci , 13(5): 1059–1064 doi: 10.1046/j.1460-9568.2001.01482.x pmid:11264681
|
25 |
Ferraro G B, Alabed Y Z, Fournier A E (2004). Molecular targets to promote central nervous system regeneration. Curr Neurovasc Res , 1(1): 61–75 doi: 10.2174/1567202043480251 pmid:16181067
|
26 |
Freidman W J (2010). Proneurotrophin, seizures, and neuronal apoptosis. Neuroscienctist , 16(3): 244–252 doi: 10.1177/1073858409349903
|
27 |
Galtrey C M, Kwok J C F, Carulli D, Rhodes K E, Fawcett J W (2008). Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur J Neurosci , 27(6): 1373–1390 doi: 10.1111/j.1460-9568.2008.06108.x pmid:18364019
|
28 |
Gámez E, Ikezaki K, Fukui M, Matsuda T (2003). Photoconstructs of nerve guidance prosthesis using photoreactive gelatin as a scaffold. Cell Transplant , 12(5): 481–490 pmid:12953922
|
29 |
Grill R J, Blesch A, Tuszynski M H (1997). Robust growth of chronically injured spinal cord axons induced by grafts of genetically modified NGF-secreting cells. Exp Neurol , 148(2): 444–452 doi: 10.1006/exnr.1997.6704 pmid:9417824
|
30 |
Hendriks W T, Ruitenberg M J, Blits B, Boer G J, Verhaagen J (2004). Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord. Prog Brain Res , 146: 451–476 doi: 10.1016/S0079-6123(03)46029-9 pmid:14699980
|
31 |
H?ke A, Redett R, Hameed H, Jari R, Zhou C, Li Z B, Griffin J W, Brushart T M (2006). Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci , 26(38): 9646–9655 doi: 10.1523/JNEUROSCI.1620-06.2006 pmid:16988035
|
32 |
Hollis E R 2nd, Jamshidi P, L?w K, Blesch A, Tuszynski M H (2009). Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc Natl Acad Sci USA , 106(17): 7215–7220 doi: 10.1073/pnas.0810624106 pmid:19359495
|
33 |
Hollis E R 2nd, Tuszynski M H (2011). Neurotrophins: potential therapeutic tools for the treatment of spinal cord injury. Neurotherapeutics , 8(4): 694–703 doi: 10.1007/s13311-011-0074-9 pmid:21904786
|
34 |
Huang E J, Reichardt L F (2003). Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem , 72(1): 609–642 doi: 10.1146/annurev.biochem.72.121801.161629 pmid:12676795
|
35 |
Iarikov D E, Kim B G, Dai H N, McAtee M, Kuhn P L, Bregman B S (2007). Delayed transplantation with exogenous neurotrophin administration enhances plasticity of corticofugal projections after spinal cord injury. J Neurotrauma , 24(4): 690–702 doi: 10.1089/neu.2006.0172 pmid:17439351
|
36 |
Ide C (1996). Peripheral nerve regeneration. Neurosci Res , 25(2): 101–121 pmid:8829147
|
37 |
Jin Y, Ziemba K S, Smith G M (2008). Axon growth across a lesion site along a preformed guidance pathway in the brain. Exp Neurol , 210(2): 521–530 doi: 10.1016/j.expneurol.2007.11.030 pmid:18261727
|
38 |
Jones L L, Sajed D, Tuszynski M H (2003). Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J Neurosci , 23(28): 9276–9288 pmid:14561854
|
39 |
Kadoya K, Tsukada S, Lu P, Coppola G, Geschwind D, Filbin M T, Blesch A, Tuszynski M H (2009). Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury. Neuron , 64(2): 165–172 doi: 10.1016/j.neuron.2009.09.016 pmid:19874785
|
40 |
Kim G, Choe Y, Park J, Cho S, Kim K (2002). Activation of protein kinase A induces neuronal differentiation of HiB5 hippocampal progenitor cells. Brain Res Mol Brain Res , 109(1-2): 134–145 doi: 10.1016/S0169-328X(02)00550-8 pmid:12531523
|
41 |
Kim J E, Liu B P, Park J H, Strittmatter S M (2004). Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron , 44(3): 439–451 doi: 10.1016/j.neuron.2004.10.015 pmid:15504325
|
42 |
Kobayashi N R, Fan D P, Giehl K M, Bedard A M, Wiegand S J, Tetzlaff W (1997). BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. J Neurosci , 17(24): 9583–9595 pmid:9391013
|
43 |
Kuruvilla R, Zweifel L S, Glebova N O, Lonze B E, Valdez G, Ye H, Ginty D D (2004). A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell , 118(2): 243–255 doi: 10.1016/j.cell.2004.06.021 pmid:15260993
|
44 |
Kusano K, Enomoto M, Hirai T, Tsoulfas P, Sotome S, Shinomiya K, Okawa A (2010). Transplanted neural progenitor cells expressing mutant NT3 promote myelination and partial hindlimb recovery in the chronic phase after spinal cord injury. Biochem Biophys Res Commun , 393(4): 812–817 doi: 10.1016/j.bbrc.2010.02.088 pmid:20171177
|
45 |
Kwon B K, Liu J, Lam C, Plunet W, Oschipok L W, Hauswirth W, Di Polo A, Blesch A, Tetzlaff W (2007). Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury. Spine , 32(11): 1164–1173 doi: 10.1097/BRS.0b013e318053ec35 pmid:17495772
|
46 |
Kwon B K, Liu J, Messerer C, Kobayashi N R, McGraw J, Oschipok L, Tetzlaff W (2002). Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury. Proc Natl Acad Sci USA , 99(5): 3246–3251 doi: 10.1073/pnas.052308899 pmid:11867727
|
47 |
Lee H, McKeon R J, Bellamkonda R V (2010). Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci USA , 107(8): 3340–3345 doi: 10.1073/pnas.0905437106 pmid:19884507
|
48 |
Lehmann H C, H?ke A (2010). Schwann cells as a therapeutic target for peripheral neuropathies. CNS Neurol Disord Drug Targets , 9(6): 801–806 doi: 10.2174/187152710793237412 pmid:20874704
|
49 |
Lessmann V, Gottmann K, Malcangio M (2003). Neurotrophin secretion: current facts and future prospects. Prog Neurobiol , 69(5): 341–374 doi: 10.1016/S0301-0082(03)00019-4 pmid:12787574
|
50 |
Longhi L, Watson D J, Saatman K E, Thompson H J, Zhang C, Fujimoto S, Royo N, Castelbuono D, Raghupathi R, Trojanowski J Q, Lee V M, Wolfe J H, Stocchetti N, McIntosh T K (2004a). Ex vivo gene therapy using targeted engraftment of NGF-expressing human NT2N neurons attenuates cognitive deficits following traumatic brain injury in mice. J Neurotrauma , 21(12): 1723–1736 pmid:15684764
|
51 |
Longhi L, Watson D J, Saatman K E, Thompson H J, Zhang C, Fujimoto S, Royo N, Castelbuono D, Raghupathi R, Trojanowski J Q, Lee V M, Wolfe J H, Stocchetti N, McIntosh T K (2004b). Ex vivo gene therapy using targeted engraftment of NGF-expressing human NT2N neurons attenuates cognitive deficits following traumatic brain injury in mice. J Neurotrauma , 21(12): 1723–1736 pmid:15684764
|
52 |
Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, Pavlova G, Parfyonova Y, Tkachuk V (2011). Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS ONE , 6(3): e17899 doi: 10.1371/journal.pone.0017899 pmid:21423756
|
53 |
Lu B, Pang P T, Woo N H (2005). The yin and yang of neurotrophin action. Nat Rev Neurosci , 6(8): 603–614 doi: 10.1038/nrn1726 pmid:16062169
|
54 |
Lu P, Blesch A, Tuszynski M H (2001). Neurotrophism without neurotropism: BDNF promotes survival but not growth of lesioned corticospinal neurons. J Comp Neurol , 436(4): 456–470 doi: 10.1002/cne.1080 pmid:11447589
|
55 |
Lu P, Jones L L, Snyder E Y, Tuszynski M H (2003). Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol , 181(2): 115–129 doi: 10.1016/S0014-4886(03)00037-2 pmid:12781986
|
56 |
Mahmood A, Lu D, Wang L, Chopp M (2002). Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. J Neurotrauma , 19(12): 1609–1617 doi: 10.1089/089771502762300265 pmid:12542861
|
57 |
Massey J M, Amps J, Viapiano M S, Matthews R T, Wagoner M R, Whitaker C M, Alilain W, Yonkof A L, Khalyfa A, Cooper N G F, Silver J, Onifer S M (2008). Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Exp Neurol , 209(2): 426–445 doi: 10.1016/j.expneurol.2007.03.029 pmid:17540369
|
58 |
Nielson J L, Strong M K, Steward O (2011). A reassessment of whether cortical motor neurons die following spinal cord injury. J Comp Neurol , 519(14): 2852–2869 doi: 10.1002/cne.22661 pmid:21618218
|
59 |
Novikova L N, Novikov L N, Kellerth J O (2000). Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration. Eur J Neurosci , 12(2): 776–780 doi: 10.1046/j.1460-9568.2000.00978.x pmid:10712659
|
60 |
Philips M F, Mattiasson G, Wieloch T, Bj?rklund A, Johansson B B, Tomasevic G, Martínez-Serrano A, Lenzlinger P M, Sinson G, Grady M S, McIntosh T K (2001). Neuroprotective and behavioral efficacy of nerve growth factor-transfected hippocampal progenitor cell transplants after experimental traumatic brain injury. J Neurosurg , 94(5): 765–774 doi: 10.3171/jns.2001.94.5.0765 pmid:11354408
|
61 |
Ramer M S, Priestley J V, McMahon S B (2000). Functional regeneration of sensory axons into the adult spinal cord. Nature , 403(6767): 312–316 doi: 10.1038/35002084 pmid:10659850
|
62 |
Ray S K, Dixon C E, Banik N L (2002). Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol Histopathol , 17(4): 1137–1152 pmid:12371142
|
63 |
Romero M I, Rangappa N, Garry M G, Smith G M (2001). Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy. J Neurosci , 21(21): 8408–8416 pmid:11606629
|
64 |
Romero M I, Smith G M (1998). Adenoviral gene transfer into the normal and injured spinal cord: enhanced transgene stability by combined administration of temperature-sensitive virus and transient immune blockade. Gene Ther , 5(12): 1612–1621 doi: 10.1038/sj.gt.3300774 pmid:10023440
|
65 |
Royo N C, Schouten J W, Fulp C T, Shimizu S, Marklund N, Graham D I, McIntosh T K (2003). From cell death to neuronal regeneration: building a new brain after traumatic brain injury. J Neuropathol Exp Neurol , 62(8): 801–811 pmid:14503636
|
66 |
Sinson G, Voddi M, McIntosh T K (1996). Combined fetal neural transplantation and nerve growth factor infusion: effects on neurological outcome following fluid-percussion brain injury in the rat. J Neurosurg , 84(4): 655–662 doi: 10.3171/jns.1996.84.4.0655 pmid:8613859
|
67 |
Smith GMandOnifer S (2011) Construction of pathways to promote axon growth within the adult central nervous system. Brain Research Bulletin Brain Res Bull . 2011 84(4–5).
|
68 |
Smith G M, Romero M I (1999). Adenoviral-mediated gene transfer to enhance neuronal survival, growth, and regeneration. J Neurosci Res , 55(2): 147–157 doi: 10.1002/(SICI)1097-4547(19990115)55:2<147::AID-JNR2>3.0.CO;2-8 pmid:9972817
|
69 |
Tang X Q, Cai J, Nelson K D, Peng X J, Smith G M (2004a). Functional repair after dorsal root rhizotomy using nerve conduits and neurotrophic molecules. Eur J Neurosci , 20(5): 1211–1218 doi: 10.1111/j.1460-9568.2004.03595.x pmid:15341593
|
70 |
Tang X Q, Tanelian D L, Smith G M (2004b). Semaphorin3A inhibits nerve growth factor-induced sprouting of nociceptive afferents in adult rat spinal cord. J Neurosci , 24(4): 819–827 doi: 10.1523/JNEUROSCI.1263-03.2004 pmid:14749426
|
71 |
Taylor S J, Rosenzweig E S, McDonald J W 3rd, Sakiyama-Elbert S E (2006). Delivery of neurotrophin-3 from fibrin enhances neuronal fiber sprouting after spinal cord injury. J Control Release , 113(3): 226–235 doi: 10.1016/j.jconrel.2006.05.005 pmid:16797770
|
72 |
Tobias C A, Shumsky J S, Shibata M, Tuszynski M H, Fischer I, Tessler A, Murray M (2003). Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol , 184(1): 97–113 doi: 10.1016/S0014-4886(03)00394-7 pmid:14637084
|
73 |
Tonra J R, Curtis R, Wong V, Cliffer K D, Park J S, Timmes A, Nguyen T, Lindsay R M, Acheson A, DiStefano P S (1998). Axotomy upregulates the anterograde transport and expression of brain-derived neurotrophic factor by sensory neurons. J Neurosci , 18(11): 4374–4383 pmid:9592114
|
74 |
Trojanowski J Q, Kleppner S R, Hartley R S, Miyazono M, Fraser N W, Kesari S, Lee V M (1997). Transfectable and transplantable postmitotic human neurons: a potential “platform” for gene therapy of nervous system diseases. Exp Neurol , 144(1): 92–97 doi: 10.1006/exnr.1996.6393 pmid:9126157
|
75 |
Tuszynski M H, Gabriel K, Gage F H, Suhr S, Meyer S, Rosetti A (1996). Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury. Exp Neurol , 137(1): 157–173 doi: 10.1006/exnr.1996.0016 pmid:8566208
|
76 |
Vavrek R, Girgis J, Tetzlaff W, Hiebert G W, Fouad K (2006). BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain , 129(Pt 6): 1534–1545 doi: 10.1093/brain/awl087 pmid:16632552
|
77 |
Wang Z T, Yao W F, Deng Q J, Zhang X H, Zhang J N (2013). Protective effects of BDNF overexpression bone marrow stromal cell transplantation in rat models of traumatic brain injury. J Mol Neurosci , 49(2): 409–416 doi: 10.1007/s12031-012-9908-0 pmid:23143881
|
78 |
Woolley A G, Tait K J, Hurren B J, Fisher L, Sheard P W, Duxson M J (2008). Developmental loss of NT-3 in vivo results in reduced levels of myelin-specific proteins, a reduced extent of myelination and increased apoptosis of Schwann cells. Glia , 56(3): 306–317 doi: 10.1002/glia.20614 pmid:18080292
|
79 |
Xiao J, Wong A, Kilpatrick T, Murray S (2010). BDNF ENHANCES CENTRAL NERVOUS SYSTEM MYELINATION VIA A DIRECT SIGNALLING TO OLIGODENDROGLIAL TrKB RECEPTORS. J Neurochem , 115: 36–36 pmid:20626563
|
80 |
Xiao J H, Kilpatrick T J, Murray S S (2009). The role of neurotrophins in the regulation of myelin development. Neurosignals , 17(4): 265–276 doi: 10.1159/000231893 pmid:19816063
|
81 |
Xu X M, Guénard V, Kleitman N, Aebischer P, Bunge M B (1995). A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol , 134(2): 261–272 doi: 10.1006/exnr.1995.1056 pmid:7556546
|
82 |
Ye J H, Houle J D (1997). Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp Neurol , 143(1): 70–81 doi: 10.1006/exnr.1996.6353 pmid:9000447
|
83 |
Zhou X F, Li W P, Zhou F H, Zhong J H, Mi J X, Wu L L, Xian C J (2005). Differential effects of endogenous brain-derived neurotrophic factor on the survival of axotomized sensory neurons in dorsal root ganglia: a possible role for the p75 neurotrophin receptor. Neuroscience , 132(3): 591–603 doi: 10.1016/j.neuroscience.2004.12.034 pmid:15837121
|
84 |
Zhou Z, Chen H, Zhang K, Yang H, Liu J, Huang Q (2003). Protective effect of nerve growth factor on neurons after traumatic brain injury. J Basic Clin Physiol Pharmacol , 14(3): 217–224 doi: 10.1515/JBCPP.2003.14.3.217 pmid:14964734
|
85 |
Zou L L, Huang L, Hayes R L, Black C, Qiu Y H, Perez-Polo J R, Le W, Clifton G L, Yang K (1999). Liposome-mediated NGF gene transfection following neuronal injury: potential therapeutic applications. Gene Ther , 6(6): 994–1005 doi: 10.1038/sj.gt.3300936 pmid:10455401
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|