Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (2) : 198-215    https://doi.org/10.1007/s11515-012-1212-4
REVIEW
The adaptive value of increasing pulse repetition rate during hunting by echolocating bats
Philip H.-S. JEN()
Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
 Download: PDF(525 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

During hunting, bats of suborder Microchiropetra emit intense ultrasonic pulses and analyze the weak returning echoes with their highly developed auditory system to extract the information about insects or obstacles. These bats progressively shorten the duration, lower the frequency, decrease the intensity and increase the repetition rate of emitted pulses as they search, approach, and finally intercept insects or negotiate obstacles. This dynamic variation in multiple parameters of emitted pulses predicts that analysis of an echo parameter by the bat would be inevitably affected by other co-varying echo parameters. The progressive increase in the pulse repetition rate throughout the entire course of hunting would presumably enable the bat to extract maximal information from the increasing number of echoes about the rapid changes in the target or obstacle position for successful hunting. However, the increase in pulse repetition rate may make it difficult to produce intense short pulse at high repetition rate at the end of long-held breath. The increase in pulse repetition rate may also make it difficult to produce high frequency pulse due to the inability of the bat laryngeal muscles to reach its full extent of each contraction and relaxation cycle at a high repetition rate. In addition, the increase in pulse repetition rate increases the minimum threshold (i.e. decrease auditory sensitivity) and the response latency of auditory neurons. In spite of these seemingly physiological disadvantages in pulse emission and auditory sensitivity, these bats do progressively increase pulse repetition rate throughout a target approaching sequence. Then, what is the adaptive value of increasing pulse repetition rate during echolocation? What are the underlying mechanisms for obtaining maximal information about the target features during increasing pulse repetition rate? This article reviews the electrophysiological studies of the effect of pulse repetition rate on multiple-parametric selectivity of neurons in the central nucleus of the inferior colliculus of the big brown bat, Eptesicus fuscus using single repetitive sound pulses and temporally patterned trains of sound pulses. These studies show that increasing pulse repetition rate improves multiple-parametric selectivity of inferior collicular neurons. Conceivably, this improvement of multiple-parametric selectivity of collicular neurons with increasing pulse repetition rate may serve as the underlying mechanisms for obtaining maximal information about the prey features for successful hunting by bats.

Keywords bat      echolocation      inferior colliculus      multiple-parametric selectivity      pulse repetition rate     
Corresponding Author(s): JEN Philip H.-S.,Email:jenp@missouri.edu   
Issue Date: 01 April 2013
 Cite this article:   
Philip H.-S. JEN. The adaptive value of increasing pulse repetition rate during hunting by echolocating bats[J]. Front Biol, 2013, 8(2): 198-215.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1212-4
https://academic.hep.com.cn/fib/EN/Y2013/V8/I2/198
Fig.1  A: Rate-intensity functions of one monotonic (Ab) and two non-monotonic (Aa, Ac) inferior collicular neurons showing variation in the number of impulses with stimulus intensity. B: Latency-intensity functions of three inferior collicular neurons showing variation in latency (ms) with stimulus intensity ().
Fig.2  A, B: The latency-pulse repetition rate (PRR) curves of inferior collicular neurons showing the variation of latency with PRR. The latency of one type of collicular neurons increased with PRR (A1a, b) and that of the second type either hardly changed (B1b) or fluctuated within 3 ms (B1a) with PRR. The mean latency shift at each PRR for these two types of collicular neurons are shown in A2 and B2. The vertical bar at each point represents one standard deviation. The number () of data points averaged at each PRR (pps) is shown at the far right of each panel. significance level from one-way ANOVA ().
Fig.3  A, B: The minimum threshold-PRR curves of inferior collicular neurons showing the variation of minimum threshold with PRR. The minimum threshold of one type of collicular neurons increased with PRR (A1a, b) and that of the second type fluctuated within 5 dB (B1a, b) with PRR. The mean minimum threshold variation at each PRR for these two types of neurons is shown in A2 and B2. (see Fig. 1 for legends, from ).
Fig.4  Three 300 ms temporally patterned trains of sound pulses at different PRRs used to study the multiple-parametric selectivity of inferior collicular neurons. The number of pulses is shown within each pulse train. The pulse duration (PD) inter-pulse gap (IPG), inter-pulse interval (IPI) and pulse repetition rate (PRR) are shown at the bottom of the three pulse trains.
Fig.5  A: Peri-stimulus-time (PST) histograms showing the discharge pattern of a collicular obtained with 300 ms pulse trains containing 9 sound pulses of 4 ms before (Aa) and during (Ab) bicuculline application. The position of sequentially presented pulses is shown at the bottom and the neuron’s number of impulses in response to 32 presentations of each pulse is shown within each PST histogram. B: The average number of impulses discharged to sequentially presented sound pulses before (unfilled circles) and during (filled circles) bicuculline application. Bicuculline application produced significant increase in the number of impulses in response to each sound pulse (filled circles vs. unfilled circles, paired t-test, ***<0.001 and **<0.01). Note that the average number of impulses significantly decreased with sequentially presented sound pulses only before (unfilled circles) but not during (filled circles) bicuculline application (one-way ANOVA, <0.0001 vs.>0.05). C: The average percent increase in the number of impulses in response to each sound pulse during bicuculline application. Note that the percent change progressively increased with sequentially presented sound pulses (one-way ANOVA, <0.0001). The , , and represent the number of collicular neurons studied, correlation coefficient, slope and significance level for each linear regression line ().
Fig.6  A: PST histograms showing the discharge pattern of a collicular neuron obtained with 300 ms pulse trains before (Aa) and during (Ab) GABA application. B: The average number of impulses discharged to sequentially presented sound pulses before (unfilled circles) and during (filled circles) GABA application. GABA application significant decreased the number of impulses elicited by each sound pulse (filled circles vs. unfilled circles, paired t-test, ***<0.001, **<0.01 and *<0.05). Note that the average number of impulses significantly decreased with sequentially presented sound pulses only before (unfilled circles) but not during (filled circles) GABA application (one-way ANOVA, <0.0001 vs.>0.05). C: The average percent decrease in the number of impulses elicited by each sound pulse during GABA application. Note that the percent change in the number of impulses progressively decreased with sequentially presented sound pulses (one-way ANOVA, <0.0001 (Fig. 5 for legends, from ).
Fig.7  A-D: Directional selectivity curves of four collicular neurons plotted with the number of impulses obtained with three temporally patterned pulse trains of different PRRs (i.e. Fig. 4). Each horizontal dashed line indicates the 50% maximal response. Directional selectivity curves of two neurons (A,B) were not affected by the PRR while that of other two neurons (C,D) changed from one type to another. Note that the best azimuth of one neuron moved toward the midline as the PRR of the pulse train increased from 10 pps to 30 pps (B arrow). E, F: Distribution of the best azimuth of individual collicular neurons determined with pulse trains of different PRRs. The best azimuths of most collicular neurons were not affected by PRR of the pulse train (shown as filled circles within unfilled circles, or filled triangles within unfilled circles). However, best azimuths of 16%-21% neurons shifted with increasing PRR of the pulse train (filled and unfilled arrows). The best azimuth of all but one neuron shifted toward the midline with increasing PRR of the pulse trains (filled arrows in A, B) (from Zhou and Jen, 2002).
Fig.8  A, B: Directional sensitivity curves of two collicular neurons plotted with three temporally patterned pulse trains of different PRRs before and during bicuculline application. The nAR determined before and during bicuculline application and the percentage change (%?) of nAR are shown within each plot. Note that the directional selectivity curve of neuron A changed from directional to non-directional during bicuculline application so that the nAR is not available during drug application (see text for details, from Zhou and Jen, 2002).
Fig.9  A, B, C: The threshold-frequency tuning curve (FTC) of a collicular neuron measured with three temporally patterned pulse trains of different PRRs before (A-1, B-1, C-1) and during (A-2,B-2,C-2) bicuculline application. The sharpness of each FTC was expressed by Q values. D, E, F: Isolevel-FTC of a collicular neuron measured with three pulse trainsat three PRRs before (D-1, E-1,F-1) and during (D-2, E-2, F-2) bicuculline application. The sharpness of each FTC was expressed by the bandwidths at 90, 75 and 50% of maximal response (from ).
Fig.10  Rate-intensity functions of two collicular neurons determined with three temporally patterned pulse trains of different PRRs. The dynamic range (DR) of each rate-intensity function was the intensity range corresponding to the number of impulses that was 10% below the maximum and 10% above the minimum (A1, indicated by dotted lines). The slope (%/dB) of the rate-intensity function was obtained by dividing the percent change in the number of impulses within the DR by the DR (from ).
Fig.11  Duration tuning curves of four collicular neurons. Left and right ordinates represent the number of impulses per 32 presentations of pulse trains and normalized response. The abscissa represents pulse duration (ms). Duration tuning properties of these neurons are (A) band-pass, (B) short-pass, (C) long-pass and (D) all-pass. Each horizontal dashed line indicates the 50% maximal response. Duration selectivity of each curve is expressed with a best duration (BD) and a normalized duration width (nDW). The BD (ms) of the band-, short- and long-pass duration tuning curves is indicated with an arrow. An nDW (impulses/ ms) is obtained by dividing the maximum by the duration width (DW indicated with a double arrow-headed bar) of a duration tuning curve at 75% maximum (from Wu and Jen, 2006).
Fig.12  A, B, C: Peri-stimulus-time (PST) histograms showing the discharge patterns of a collicular neuron obtained with three temporally patterned pulse trains containing pulses of different durations (shown at far right) before (predrug) and during bicuculline application. D,E,F: The neuron’s duration tuning curves plotted with the total number of impulses (shown at the right of each histogram) before (unfilled circles) and during (filled circles) bicuculline application. The type, BD (ms) and nDW (impulses/ms) of the duration tuning curve are shown within each plot. NA indicates that a BD is not available (from Wu and Jen, 2006).
Fig.13  A, B, C: Peri-stimulus-time (PST) histograms showing the discharge patterns of a collicular neuron obtained with three temporally patterned pulse trains containing pulses of different durations (shown at far right) before (predrug) and during bicuculline application. D,E,F: The neuron’s duration tuning curves obtained before (unfilled circles) and during (filled circles) GABA application (Fig. 12 for legends, from Wu and Jen, 2006).
1 Bormann J (1988). Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci , 11(3): 112–116
doi: 10.1016/0166-2236(88)90156-7 pmid:2465608
2 Bormann J (2000). The ‘ABC’ of GABA receptors. Trends Pharmacol Sci , 21(1): 16–19
doi: 10.1016/S0165-6147(99)01413-3 pmid:10637650
3 Brand A, Urban R, Grothe B (2000). Duration tuning in the mouse auditory midbrain. J Neurophysiol , 84(4): 1790–1799
pmid:11024071
4 Brosch M, Schreiner C E (1997). Time course of forward masking tuning curves in cat primary auditory cortex. J Neurophysiol , 77(2): 923–943
pmid:9065859
5 Calford M B, Semple M N (1995). Monaural inhibition in cat auditory cortex. J Neurophysiol , 73(5): 1876–1891
pmid:7623087
6 Casseday J H, Covey E (1995). Mechanisms for analysis of auditory temporal patterns in the brainstem of echolocating bats. In: Covey E, Hawkins HL, Port RF (eds). Neural representation of temporal patterns. Plenum, New York , pp 25–51
7 Casseday J H, Ehrlich D, Covey E (1994). Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science , 264(5160): 847–850
doi: 8171341" target="_blank">10.1126/science. pmid:8171341 pmid:8171341
8 Casseday J H, Ehrlich D, Covey E (2000). Neural measurement of sound duration: control by excitatory-inhibitory interactions in the inferior colliculus. J Neurophysiol , 84(3): 1475–1487
pmid:10980020
9 Chen G D (1998). Effects of stimulus duration on responses of neurons in the chinchilla inferior colliculus. Hear Res , 122(1-2): 142–150
doi: 10.1016/S0378-5955(98)00103-8 pmid:9714582
10 Chen Q C, Jen P H S (1994). Pulse repetition rate increases the minimum threshold and latency of auditory neurons. Brain Res , 654(1): 155–158
doi: 10.1016/0006-8993(94)91582-2 pmid:7982089
11 Condon C J, White K R, Feng A S (1994). Processing of amplitude-modulated signals that mimic echoes from fluttering targets in the inferior colliculus of the little brown bat, Myotis lucifugus. J Neurophysiol , 71(2): 768–784
pmid:8176439
12 Cooper J R, Bloom F E, Roth R H (1982). The Biomedical Basis of Neuropharmacology, New York: Oxford University Press
13 Covey E, Casseday J H (1995). The lower brainstem auditory pathways. In: Popper A N, Fay R R (Eds.), Springer handbook of Auditory Research V5 Hearing by Bats. New York: Springer , pp 235–295
14 Covey E, Casseday J H (1999). Timing in the auditory system of the bat. Annu Rev Physiol , 61(1): 457–476
doi: 10.1146/annurev.physiol.61.1.457 pmid:10099697
15 de Ribaupierre F, Goldstein M H Jr, Yeni-Komshian G (1972). Cortical coding of repetitive acoustic pulses. Brain Res , 48: 205–225
doi: 10.1016/0006-8993(72)90179-5 pmid:4645205
16 Ehrlich D, Casseday J H, Covey E (1997). Neural tuning to sound duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Neurophysiol , 77(5): 2360–2372
pmid:9163363
17 Faingold C L, Boersma Anderson C A, Caspary D M (1991). Involvement of GABA in acoustically-evoked inhibition in inferior colliculus neurons. Hear Res , 52(1): 201–216
doi: 10.1016/0378-5955(91)90200-S pmid:2061208
18 Faure P A, Fremouw T, Casseday J H, Covey E (2003). Temporal masking reveals properties of sound-evoked inhibition in duration-tuned neurons of the inferior colliculus. J Neurosci , 23(7): 3052–3065
pmid:12684492
19 Feng A S, Condon C J, White K R (1994). Stroboscopic hearing as a mechanism for prey discrimination in frequency-modulated bats? J Acoust Soc Am , 95(5): 2736–2744
doi: 10.1121/1.409842 pmid:8207145
20 Feng A S, Hall J C, Gooler D M (1990). Neural basis of sound pattern recognition in anurans. Prog Neurobiol , 34(4): 313–329
doi: 10.1016/0301-0082(90)90008-5 pmid:2185497
21 Freyman R L, Clifton R K, Litovsky R Y (1991). Dynamic processes in the precedence effect. J Acoust Soc Am , 90(2): 874–884
doi: 10.1121/1.401955 pmid:1939892
22 Fubara B M, Casseday J H, Covey E, Schwartz-Bloom R D (1996). Distribution of GABAA, GABAB, and glycine receptors in the central auditory system of the big brown bat, Eptesicus fuscus. J Comp Neurol , 369(1): 83–92
doi: 10.1002/(SICI)1096-9861(19960520)369:1&lt;83::AID-CNE6&gt;3.0.CO;2-G pmid:8723704
23 Fuzessery Z M, Hall J C (1996). Role of GABA in shaping frequency tuning and creating FM sweep selectivity in the inferior colliculus. J Neurophysiol , 76(2): 1059–1073
pmid:8871220
24 Fuzessery Z M, Hall J C (1999). Sound duration selectivity in the pallid bat inferior colliculus. Hear Res , 137(1-2): 137–154
doi: 10.1016/S0378-5955(99)00133-1 pmid:10545641
25 Fuzessery Z M, Pollak G D (1985). Determinants of sound location selectivity in bat inferior colliculus: a combined dichotic and free-field stimulation study. J Neurophysiol , 54(4): 757–781
pmid:4067623
26 Galarreta M, Hestrin S (1998). Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nat Neurosci , 1(7): 587–594
doi: 10.1038/2882 pmid:10196566
27 Galazyuk A V, Feng A S (1997). Encoding of sound duration by neurons in the auditory cortex of the little brown bat, Myotis lucifugus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 180(4): 301–311
doi: 10.1007/s003590050050 pmid:9106994
28 Galazyuk A V, Llano D, Feng A S (2000). Temporal dynamics of acoustic stimuli enhance amplitude tuning of inferior colliculus neurons. J Neurophysiol , 83(1): 128–138
pmid:10634859
29 Glendenning K K, Baker B N, Hutson K A, Masterton R B (1992). Acoustic chiasm V: inhibition and excitation in the ipsilateral and contralateral projections of LSO. J Comp Neurol , 319(1): 100–122
doi: 10.1002/cne.903190110 pmid:1317390
30 Gooler D M, Feng A S (1992). Temporal coding in the frog auditory midbrain: the influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli. J Neurophysiol , 67(1): 1–22
pmid:1552312
31 Griffin D R (1958) Listening in the Dark. Yale University Press, New Haven, CT (reprinted by Comstock, Ithaca, 1986
32 Grinnell A D (1963). The neurophysiology of audition in bats: directional localization and binaural. J Physiol, (Lond) 167: 97–113
33 Grinnell A D, Grinnell V S (1965). Neural correlates of vertical localization by echolocating bats. J Physiol, (Lond) 181:830–851
34 Grothe B, Covey E, Casseday J H (1996). Spatial tuning of neurons in the inferior colliculus of the big brown bat: effects of sound level, stimulus type and multiple sound sources. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 179(1): 89–102
doi: 10.1007/BF00193437 pmid:8965261
35 Harnischfeger G, Neuweiler G, Schlegel P (1985). Interaural time and intensity coding in superior olivary complex and inferior colliculus of the echolocating bat Molossus ater. J Neurophysiol , 53(1): 89–109
pmid:3973664
36 Hartley D J (1992a). Stabilization of perceived echo amplitudes in echolocating bats. I. Echo detection and automatic gain control in the big brown bat, Eptesicus fuscus, and the fishing bat, Noctilio leporinus. J Acoust Soc Am , 91(2): 1120–1132
doi: 10.1121/1.402639 pmid:1313464
37 Hartley D J (1992b). Stabilization of perceived echo amplitudes in echolocating bats. II. The acoustic behavior of the big brown bat, Eptesicus fuscus, when tracking moving prey. J Acoust Soc Am , 91(2): 1133–1149
doi: 10.1121/1.402640 pmid:1556313
38 He J F, Hashikawa T, Ojima H, Kinouchi Y (1997). Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J Neurosci , 17(7): 2615–2625
pmid:9065521
39 Henson O W Jr (1965). The Activity and Function of the Middle Ear Muscles in Eecholocating Bats. J Physiol, (London) 180: 871–887
40 Henson O W Jr (1970). The ear and audition. In: Biology of bats, Vol. II (ed. W.A. Wimsatt) ,pp. 181–264 . New York: Academic Press
41 Hiryu S, Hagino T, Riquimaroux H, Watanabe Y (2007). Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone. J Acoust Soc Am , 121(3): 1749–1757
doi: 10.1121/1.2431337 pmid:17407911
42 Hocherman S, Gilat E (1981). Dependence of auditory cortex evoked unit activity on interstimulus interval in the cat. J Neurophysiol , 45(6): 987–997
pmid:7252536
43 Hou T T, Wu M, Jen P H S (1992). Pulse repetition rate and duration affect the responses of bat auditory cortical neurons. Chin J Physiol , 35(4): 259–278
pmid:1308731
44 Jen P H S (1980). Coding of directional information by single neurones in the S-segment of the FM bat, Myotis lucifugus. J Exp Biol , 87: 203–216
pmid:7420015
45 Jen P H S, Chen Q C (1998). The effect of pulse repetition rate, pulse intensity, and bicuculline on the minimum threshold and latency of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 182(4): 455–465
doi: 10.1007/s003590050193 pmid:9530836
46 Jen P H S, Feng R, Chen B (2003). GABAergic inhibition and the effect of sound direction on rate-intensity functions of inferior collicular neurons of the big brown Bat, Eptesicus fuscus. Chin J Physiol , 46(2): 83–90
pmid:12974299
47 Jen P H S, Feng R B (1999). Bicuculline application affects discharge pattern and pulse-duration tuning characteristics of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 184(2): 185–194
doi: 10.1007/s003590050317 pmid:10192952
48 Jen P H S, Hou T T, Wu M (1993). Neurons in the inferior colliculus, auditory cortex and pontine nuclei of the FM bat, Eptesicus fucus respond to pulse repetition rate differently. Brain Res , 613(1): 152–155
doi: 10.1016/0006-8993(93)90466-Z pmid:8348298
49 Jen P H S, Kamada T (1982). Analysis of orientation signals emitted by the CF-FM bat, Pteronotus parnellii parnellii and the FM bat, Eptesicus fuscus during avoidance of moving and stationary obstacles. J Comp Physiol , 148(3): 389–398
doi: 10.1007/BF00679023
50 Jen P H S, Ostwald J, Suga N (1978). Electrophysiological properties of the acoustic middle ear and laryngeal muscles reflexes in the awake echolocating FM bats, Myotis lucifugus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 124(1): 61–73
doi: 10.1007/BF00656392
51 Jen P H S, Schlegel P (1982). Auditory physiological properties of the neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Comp Physiol , 147(3): 351–363
doi: 10.1007/BF00609669
52 Jen P H S, Suga N (1976). Coordinated activities of middle-ear and laryngeal muscles in echolocating bats. Science , 191(4230): 950–952
doi: 1251206" target="_blank">10.1126/science. pmid:1251206 pmid:1251206
53 Jen P H S, Sun X D (1984). Pinna orientation determines the maximal directional sensitivity of bat auditory neurons. Brain Res , 301(1): 157–161
doi: 10.1016/0006-8993(84)90415-3 pmid:6733486
54 Jen P H S, Sun X D, Chen D M, Teng H B (1987). Auditory space representation in the inferior colliculus of the FM bat, Eptesicus fuscus. Brain Res , 419(1-2): 7–18
doi: 10.1016/0006-8993(87)90563-4 pmid:3676742
55 Jen P H S, Sun X D, Lin P J (1989). Frequency and space representation in the primary auditory cortex of the FM bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 165: 1–14
doi: 10.1007/BF00613794
56 Jen P H S, Wu C H (2005). The role of GABAergic inhibition in shaping the response size and duration selectivity of bat inferior collicular neurons to sound pulses in rapid sequences. Hear Res , 202(1-2): 222–234
doi: 10.1016/j.heares.2004.11.008 pmid:15811714
57 Jen P H S, Wu C H, Luan R H, Zhou X M (2002). GABAergic inhibition contributes to pulse repetition rate-dependent frequency selectivity in the inferior colliculus of the big brown bat, Eptesicus fuscus. Brain Res , 948(1-2): 159–164
doi: 10.1016/S0006-8993(02)03056-1 pmid:12383969
58 Jen P H S, Wu M (1993). Directional sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus, to sounds delivered from selected horizontal and vertical angles. Chin J Physiol , 36(1): 7–18
pmid:8275800
59 Jen P H S, Zhang J (2000). The role of GABAergic inhibition on direction-dependent sharpening of frequency tuning in bat inferior collicular neurons. Brain Res , 862(1-2): 127–137
doi: 10.1016/S0006-8993(00)02098-9 pmid:10799677
60 Jen P H S, Zhou X M (1999). Temporally patterned pulse trains affect duration tuning characteristics of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 185(5): 471–478
doi: 10.1007/s003590050408 pmid:10573869
61 Jen P H S, Zhou X M, Wu C H (2001). Temporally patterned pulse trains affect frequency tuning and intensity coding of inferior collicular neurons of the big brown bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 187: 605–616
doi: 10.1007/s003590100233
62 Kick S A, Simmons J A (1984). Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. J Neurosci , 4(11): 2725–2737
pmid:6502201
63 Klug A, Park T J, Pollak G D (1995). Glycine and GABA influence binaural processing in the inferior colliculus of the mustache bat. J Neurophysiol , 74(4): 1701–1713
pmid:8989406
64 Kobler J B, Wilson B S, Henson O W Jr, Bishop A L (1985). Echo intensity compensation by echolocating bats. Hear Res , 20(2): 99–108
doi: 10.1016/0378-5955(85)90161-3 pmid:4086383
65 Koch U, Grothe B (1998). GABAergic and glycinergic inhibition sharpens tuning for frequency modulations in the inferior colliculus of the big brown bat. J Neurophysiol , 80(1): 71–82
pmid:9658029
66 Lawrence B D, Simmons J A (1982). Echolocation in bats: the external ear and perception of the vertical positions of targets. Science , 218(4571): 481–483
doi: 7123247" target="_blank">10.1126/science. pmid:7123247 pmid:7123247
67 Le Beau F E, Rees A, Malmierca M S (1996). Contribution of GABA- and glycine-mediated inhibition to the monaural temporal response properties of neurons in the inferior colliculus. J Neurophysiol , 75(2): 902–919
pmid:8714663
68 LeBeau F E, Malmierca M S, Rees A (2001). Iontophoresis in vivo demonstrates a key role for GABA(A) and glycinergic inhibition in shaping frequency response areas in the inferior colliculus of guinea pig. J Neurosci , 21(18): 7303–7312
pmid:11549740
69 Litovsky R Y, Yin T C (1998). Physiological studies of the precedence effect in the inferior colliculus of the cat. II. Neural mechanisms. J Neurophysiol , 80(3): 1302–1316
pmid:9744940
70 Lu Y, Jen P H S (2001). GABAergic and glycinergic neural inhibition in excitatory frequency tuning of bat inferior collicular neurons. Exp Brain Res , 141(3): 331–339
doi: 10.1007/s002210100885 pmid:11715077
71 Lu Y, Jen P H S (2002). Interaction of excitation and inhibition in inferior collicular neurons of the big brown bat, Eptesicus fuscus. Hear Res , 169(1-2): 140–150
doi: 10.1016/S0378-5955(02)00457-4 pmid:12121747
72 Lu Y, Jen P H S, Wu M (1998). GABAergic disinhibition affects responses of bat inferior collicular neurons to temporally patterned sound pulses. J Neurophysiol , 79(5): 2303–2315
pmid:9582206
73 Lu Y, Jen P H S, Zheng Q Y (1997). GABAergic disinhibition changes the recovery cycle of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 181(4): 331–341
doi: 10.1007/s003590050119 pmid:9342856
74 Malmierca M S, Leergaard T B, Bajo V M, Bjaalie J G, Merchan M A (1998). Anatomic evidence of a 3-D mosaic pattern of tonotopic organization in the ventral complex of the lateral lemniscus in cat. J Neurosci , 18: 10603–10618
pmid:9852596
75 Masters W M, Moffat A J M, Simmons J A (1985). Sonar tracking of horizontally moving targets by the big brown bat Eptesicus fuscus. Science , 228(4705): 1331–1333
doi: 4001947" target="_blank">10.1126/science. pmid:4001947 pmid:4001947
76 McAlpine D, Palmer A R (2002). Blocking GABAergic inhibition increases sensitivity to sound motion cues in the inferior colliculus. J Neurosci , 22(4): 1443–1453
pmid:11850471
77 Moriyama T, Hou T T, Wu M, Jen P H S (1994). Responses of inferior collicular neurons of the FM bat, Eptesicus fuscus, to pulse trains with varied pulse amplitudes. Hear Res , 79(1–2): 105–114
doi: 10.1016/0378-5955(94)90132-5 pmid:7806473
78 Moriyama T, Wu M I, Jen P H S (1997). Responses of bat inferior collicular neurons to recorded echolocation pulse trains. Chin J Physiol , 40(1): 9–17
pmid:9170550
79 Narins P M, Capranica R R (1980). Neural adaptation for processing the two-tone call of the Puerto Rican tree frog, Eleuthereodactylus coqui. Brain Behav Evol , 18(1): 48–66
doi: 10.1159/000121790
80 Novick A (1971). Echolocation in bats: some aspects of pulse design. Am Sci , 59(2): 198–209
pmid:5154847
81 Novick A, Griffin D R (1961). Laryngeal mechanisms in bats for the production of orientation sounds. J Exp Zool , 148(2): 125–145
doi: 10.1002/jez.1401480203 pmid:14480574
82 Oliver D L, Shneiderman A (1991). The anatomy of the inferior colliculus: a cellular basis for integration of monaural and binaural information. In: Altschuler R A, Bobbin R P, Clopton B M, Hoffmann D W (Eds), Neurobiology of Hearing pp195–222 , New York: Raven
83 Oliver D L, Winer J A, Beckius G E, Saint Marie R L (1994). Morphology of GABAergic neurons in the inferior colliculus of the cat. J Comp Neurol , 340(1): 27–42
doi: 10.1002/cne.903400104 pmid:7909821
84 Park T J, Pollak G D (1993). GABA shapes sensitivity to interaural intensity disparities in the mustache bat’s inferior colliculus: implications for encoding sound location. J Neurosci , 13(5): 2050–2067
pmid:8478690
85 Park T J, Pollak G D (1994). Azimuthal receptive fields are shaped by GABAergic inhibition in the inferior colliculus of the mustache bat. J Neurophysiol , 72(3): 1080–1102
pmid:7807197
86 Pérez-González D, Malmierca M S, Moore J M, Hernández O, Covey E (2006). Duration selective neurons in the inferior colliculus of the rat: topographic distribution and relation of duration sensitivity to other response properties. J Neurophysiol , 95(2): 823–836
doi: 10.1152/jn.00741.2005 pmid:16192332
87 Perkins K L, Wong R K (1997). The depolarizing GABA response. Can J Physiol Pharmacol , 75(5): 516–519
doi: 10.1139/y97-065 pmid:9250386
88 Phillips D P, Hall S E, Hollett J L (1989). Repetition rate and signal level effects on neuronal responses to brief tone pulses in cat auditory cortex. J Acoust Soc Am , 85(6): 2537–2549
doi: 10.1121/1.397748 pmid:2745878
89 Pinheiro A D, Wu M, Jen P H S (1991). Encoding repetition rate and duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 169(1): 69–85
doi: 10.1007/BF00198174 pmid:1941720
90 Popper A N, Fay R R (1995). Hearing by bats. New York: Springer
91 Rabow L E, Russek S J, Farb D H (1995). From ion currents to genomic analysis: recent advances in GABA-R research. Synapse , 21(3): 174–189
doi: 10.1002/syn.890210302
92 Roberts R C, Ribak C E (1987a). An electron microscopic study of GABAergic neurons and terminals in the central nucleus of the inferior colliculus of the rat. J Neurocytol , 16(3): 333–345
doi: 10.1007/BF01611345 pmid:3302119
93 Roberts R C, Ribak C E (1987b). GABAergic neurons and axon terminals in the brainstem auditory nuclei of the gerbil. J Comp Neurol , 258(2): 267–280
doi: 10.1002/cne.902580207 pmid:3584540
94 Roverud R C (1989). A gating mechanism for sound pattern recognition is correlated with the temporal structure of echolocation sound in the rufous horseshoe bat. J Comp Physiol , 166(2): 243–249
doi: 10.1007/BF00193468
95 Roverud R C, Grinnell A D (1985). Discrimination performance and echolocation signal integration requirements for target detection and distance discrimination in the CF/FM bat, Noctilio albiventris. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 156(4): 447–456
doi: 10.1007/BF00613969
96 Saint Marie R L, Morest D K, Brandon C J (1989). The form and distribution of GABAergic synapses on the principal cell types of the ventral cochlear nucleus of the cat. Hear Res , 42(1): 97–112
doi: 10.1016/0378-5955(89)90120-2 pmid:2584161
97 Schlegel P A (1977). Directional coding by binaural brainstem units of the CF-FM bat Rhinolophus ferrumequinum. J Comp Physiol , 118(3): 327–352
doi: 10.1007/BF00614354
98 Schlegel P A, Jen P H S, Singh S (1988). Auditory spatial sensitivity of inferior collicular neurons of echolocating bats. Brain Res , 456(1): 127–138
doi: 10.1016/0006-8993(88)90354-X pmid:3409031
99 Schnitzler H U, Grinnell A D (1977). Directional sensitivity of echolocation in the horseshoe bat Rhinolophus ferrumequinum I. Directionality of sound emission. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 116(1): 51–61
doi: 10.1007/BF00605516
100 Schnitzler H U, Henson O W (1980). Performance of airborne animal sonar systems. I. Microchiroptera. In: Busnel R-G, Fish JF (eds) Animal sonar systems. Plenum Press, New York ,pp 109–182
101 Shannon R V, Zeng F G, Kamath V, Wygonski J, Ekelid M (1995). Speech recognition with primary temporal cues. Science (USA) , 270: 303–304
102 Shimozawa T, Suga N, Hendler P, Schuetze S (1974). Directional sensitivity of echolocation system in bats producing frequency-modulated signals. J Exp Biol , 60(1): 53–69
pmid:4819566
103 Simmons J A, Fenton M B, O’Farrell M J (1979). Echolocation and pursuit of prey by bats. Science , 203(4375): 16–21
doi: 758674" target="_blank">10.1126/science. pmid:758674 pmid:758674
104 Simmons J A, Kick S A, Lawrence B D, Hale C, Bard C, Escudie B (1983). Acuity of horizontal angle discrimination by the echolocatingbat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 153: 321–330
doi: 10.1007/BF00612586
105 Simmons J A, Moffat A J, Masters W M (1992). Sonar gain control and echo detection thresholds in the echolocating bat, Eptesicus fuscus. J Acoust Soc Am , 91(2): 1150–1163
doi: 10.1121/1.402641 pmid:1556314
106 Smalling J M, Galazyuk A V, Feng A S (2001). Stimulation rate influences frequency tuning characteristics of inferior colliculus neurons in the little brown bat, Myotis lucifugus. Neuroreport , 12(16): 3539–3542
doi: 10.1097/00001756-200111160-00033 pmid:11733707
107 Smotherman M, Metzner W (2003). Effects of echo intensity on Doppler-shift compensation behavior in horseshoe bats. J Neurophysiol , 89(2): 814–821
doi: 10.1152/jn.00246.2002 pmid:12574459
108 Suga N (1964) Single unit activity in cochlear nucleus and inferior colliculus of echolocating bats. J Physiol, (Lond) 172:449–474
109 Suga N (1997) Parallel-hierarchical processing of complex sounds for specialized auditory function. In: Crocker MJ (Ed) Encyclopedia of Acoustics, New York, John Wiley &amp; Sons, Inc . pp 1409–1418
110 Suga N, Jen P H S (1975). Peripheral control of acoustic signals in the auditory system of echolocating bats. J Exp Biol , 62(2): 277–311
pmid:1206335
111 Suga N, Schlegel P (1972). Neural attenuation of responses to emitted sounds in echolocating bat. Science (USA) , 177: 82–84
112 Suga N, Shimozawa T (1974). Site of neural attenuation of responses to self-vocalized sounds in echolocating bats. Science , 183(130): 1211–1213 (USA)
doi: 10.1126/science.183.4130.1211 pmid:4812353
113 Suga N, Yan J, Zhang Y F (1998) The processing of species-specific complex sounds by the ascending and descending auditory systems. In Poon P, Bruggie J (Eds), Central Auditory Processing and Neural Modeling. New York: Plenum Press , pp 55–70
114 Sun X D, Jen P H S (1987). Pinna position affects the auditory space representation in the inferior colliculus of the FM bat, Eptesicus fuscus. Hear Res , 27(3): 207–219
doi: 10.1016/0378-5955(87)90002-5 pmid:3610849
115 Surlykke A, Moss C F (2000). Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. J Acoust Soc Am , 108(5): 2419–2429
doi: 10.1121/1.1315295 pmid:11108382
116 Vater M, Habbicht H, K?ssl M, Grothe B (1992). The functional role of GABA and glycine in monaural and binaural processing in the inferior colliculus of horseshoe bats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 171(4): 541–553
doi: 10.1007/BF00194587 pmid:1469669
117 Wallach H, Newman E B, Rosenzweig M R (1949). The precedence effect in sound localization. Am J Psychol , 62(3): 315–336
doi: 10.2307/1418275 pmid:18134356
118 Wu C H, Jen P H S (2006a). GABA-mediated echo duration selectivity of inferior collicular neurons of Eptesicus fuscus, determined with single pulses and pulse-echo pairs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 192(9): 985–1002
doi: 10.1007/s00359-006-0133-6 pmid:16738883
119 Wu C H, Jen P H S (2006b). The role of GABAergic inhibition in shaping duration selectivity of bat inferior collicular neurons determined with temporally patterned sound trains. Hear Res , 215(1–2): 56–66
doi: 10.1016/j.heares.2006.03.001 pmid:16644156
120 Wu C H, Jen P H S (2008). Echo frequency selectivity of duration-tuned inferior collicular neurons of the big brown bat, Eptesicus fuscus, determined with pulse-echo pairs. Neuroscience , 156(4): 1028–1038
doi: 10.1016/j.neuroscience.2008.08.039 pmid:18804149
121 Wu L G, Betz W J (1998). Kinetics of synaptic depression and vesicle recycling after tetanic stimulation of frog motor nerve terminals. Biophys J , 74(6): 3003–3009
doi: 10.1016/S0006-3495(98)78007-5 pmid:9635754
122 Wu M, Hou E T T, Jen P H S (1996). Responses of bat inferior collicular and auditory cortical neurons to pulsatile amplitude modulated sound pulses. Chin J Physiol , 39(3): 1–7
pmid:8902298
123 Wu M, Jen P H S (1991). Encoding of acoustic stimulus intensity by inferior collicular neurons of the big brown bat, Eptesicus fuscus. Chin J Physiol , 34: 145–155
124 Wu M, Jen P H S (1995b). Directional sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus, determined with temporally varied sound pulses. Le Rhinolophe , 11: 75–81
125 Wu M, Jen P H S (1996). Temporally patterned sound pulses affect directional sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 179(3): 385–393
doi: 10.1007/BF00194992
126 Wu M I, Jen P H S (1995a). Responses of pontine neurons of the big brown bat, Eptesicus fuscus, to temporally patterned sound pulses. Hear Res , 85(1-2): 155–168
doi: 10.1016/0378-5955(95)00042-3 pmid:7559171
127 Yang L, Pollak G D, Resler C (1992). GABAergic circuits sharpen tuning curves and modify response properties in the mustache bat inferior colliculus. J Neurophysiol , 68(5): 1760–1774
pmid:1479443
128 Yost W A, Guzman S J (1996). Auditory processing of sound sources: Is there an echo in here? Curr Dir Psychol Sci , 5(4): 125–131
doi: 10.1111/1467-8721.ep11452783
129 Yost W A, Soderquist D R (1984). The precedence effect: revisited. J Acoust Soc Am , 76(5): 1377–1383
doi: 10.1121/1.391454 pmid:6512100
130 Zhang H, Xu J, Feng A S (1999). Effects of GABA-mediated inhibition on direction-dependent frequency tuning in the frog inferior colliculus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 184(1): 85–98
doi: 10.1007/s003590050308 pmid:10077865
131 Zhou X M, Jen P H S (2000). Neural inhibition sharpens auditory spatial sensitivity of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 186(4): 389–398
doi: 10.1007/s003590050438
132 Zhou X M, Jen P H S (2001). The effect of sound intensity on duration-tuning characteristics of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 187(1): 63–73
doi: 10.1007/s003590000179 pmid:11318379
133 Zhou X M, Jen P H S (2002a). The effect of sound duration on rate-amplitude functions of inferior collicular neurons in the big brown bat, Eptesicus fuscus. Hear Res , 166(1-2): 124–135
doi: 10.1016/S0378-5955(02)00306-4 pmid:12062764
134 Zhou X M, Jen P H S (2002b). The role of GABAergic inhibition in shaping directional selectivity of bat inferior collicular neurons determined with temporally patterned pulse trains. J Comp Physiol A Neuroethol Sens Neural Behav Physiol , 188(10): 815–826
doi: 10.1007/s00359-002-0367-x pmid:12466957
135 Zhou X M, Jen P H S (2003). The effect of bicuculline application on azimuth-dependent recovery cycle of inferior collicular neurons of the big brown bat, Eptesicus fuscus. Brain Res , 973(1): 131–141
doi: 10.1016/S0006-8993(03)02575-7 pmid:12729962
136 Zhou X M, Jen P H S (2004). Azimuth-dependent recovery cycle affects directional selectivity of bat inferior collicular neurons determined with sound pulses within a pulse train. Brain Res , 1019(1–2): 281–288
doi: 10.1016/j.brainres.2004.06.004 pmid:15306265
137 Zhou X M, Jen P H S (2006). Duration selectivity of bat inferior collicular neurons improves with increasing pulse repetition rate. Chin J Physiol , 49(1): 46–55
pmid:16900705
138 Zucker R S (1989). Short-term synaptic plasticity. Annu Rev Neurosci , 12(1): 13–31
doi: 10.1146/annurev.ne.12.030189.000305 pmid:2648947
139 Zurek P M (1980). The precedence effect and its possible role in the avoidance of interaural ambiguities. J Acoust Soc Am , 67(3): 953–964
doi: 10.1121/1.383974 pmid:7358920
[1] Zhuo Wu,Jingquan Li,Ping Ma,Baizhan Li,Yang Xu. Long-term dermal exposure to diisononyl phthalate exacerbates atopic dermatitis through oxidative stress in an FITC-induced mouse model[J]. Front. Biol., 2015, 10(6): 537-545.
[2] Wei HUANG, Ting BI, Weining SUN. Comparative analysis of panicle proteomes of two upland rice varieties upon hyper-osmotic stress[J]. Front Biol, 2010, 5(6): 546-555.
[3] Philip H.-S. Jen, . Adaptive mechanisms underlying the bat biosonar behavior[J]. Front. Biol., 2010, 5(2): 128-155.
[4] Huixian MEI, Qicai CHEN, . Neural modulation in inferior colliculus and central auditory plasticity[J]. Front. Biol., 2010, 5(2): 123-127.
[5] SUN Keping, FENG Jiang, LIU Ying, JIN Longru, JIANG Yunlei. Identification of sympatric bat species by the echolocation calls[J]. Front. Biol., 2008, 3(2): 227-231.
[6] MEI Huixian, WU Feijian, CHEN Qicai, GUO Yuping. Masking effect of different durations of forward masker sound on acoustical responses of mouse inferior collicular neurons to probe sound[J]. Front. Biol., 2006, 1(3): 285-289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed