|
|
Incidence of T315I mutation in BCR/ABL-positive CML and ALL patients |
Fatemeh Norozi1,Javad Mohammadi-asl2,Tina Vosoughi1,Mohammad Ali Jalali Far1,Amal Saki Malehi1,Najmaldin Saki1( ) |
1. Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran 2. Department of Medical Genetics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran |
|
|
Abstract OBJECTIVES: Targeted therapy of Philadelphia-positive ALL and CML patients using imatinib (IM) has caused significant changes in treatment course and has increased the survival of patients. A small group of patients show resistance to IM. Acquired mutations in tyrosine kinase domain of BCR-ABL protein are a mechanism for development of resistance. T315I is one of the most common acquired mutations in this domain, which occurs in ATP binding site and inhibits the formation of hydrogen bond with IM. The aim of this study was to evaluate the prevalence of this mutation in BCR/ABL-positive CML and ALL patients. METHODS: To conduct this study, 60 BCR-ABL-positive patients (including 50 CML and 10 ALL patients) who were subject to treatment with IM were selected. After taking the samples, presence of T315I mutation was assessed using ARMS-PCR on cDNA and its polymorphism was evaluated by sequencing. RESULTS: The results showed that among 60 patients, only three patients had T315I mutation, which was detected using ARMS technique. The three patients bearing mutation were afflicted with CML and no significant association was found between blood parameters with duration of treatment in presence of mutation. CONCLUSIONS: The mutation was found in three CML patients, which indicated lower likelihood and diagnostic value of this mutation in ALL patients. Given the negative direct sequencing results in T315I patients, it can be concluded that ARMS-PCR is a more sensitive technique when the number of cancer cells is low in patients during treatment.
|
Keywords
BCR-ABL
T315I mutation
imatinib
CML
ALL
|
Corresponding Author(s):
Najmaldin Saki
|
Online First Date: 08 October 2016
Issue Date: 04 November 2016
|
|
1 |
Apperley J F (2007). Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol, 8(11): 1018–1029
https://doi.org/10.1016/S1470-2045(07)70342-X©
pmid: 17976612
|
2 |
Bhojwani D, Yang J J, Pui C H (2015). Biology of childhood acute lymphoblastic leukemia. Pediatr Clin North Am, 62(1): 47–60
https://doi.org/10.1016/j.pcl.2014.09.004
pmid: 25435111
|
3 |
Branford S, Melo J V, Hughes T P (2009). Selecting optimal second-line tyrosine kinase inhibitor therapy for chronic myeloid leukemia patients after imatinib failure: does the BCR-ABL mutation status really matter? Blood, 114(27): 5426–5435
https://doi.org/10.1182/blood-2009-08-215939
pmid: 19880502
|
4 |
Chomel J C, Sorel N, Bonnet M L, Bertrand A, Brizard F, Roy L, Guilhot F, Turhan A G (2010). Extensive analysis of the T315I substitution and detection of additional ABL mutations in progenitors and primitive stem cell compartment in a patient with tyrosine kinase inhibitor-resistant chronic myeloid leukemia. Leuk Lymphoma, 51(11): 2103–2111
https://doi.org/10.3109/10428194.2010.520774©
pmid: 20929330
|
5 |
Donato N J, Wu J Y, Stapley J, Lin H, Arlinghaus R, Aggarwal B B, Shishodia S, Albitar M, Hayes K, Kantarjian H, Talpaz M (2004). Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res, 64(2): 672–677
https://doi.org/10.1158/0008-5472.CAN-03-1484
pmid: 14744784
|
6 |
Druker B J, Guilhot F, O’Brien S G, Gathmann I, Kantarjian H, Gattermann N, Deininger M W, Silver R T, Goldman J M, Stone R M, Cervantes F, Hochhaus A, Powell B L, Gabrilove J L, Rousselot P, Reiffers J, Cornelissen J J, Hughes T, Agis H, Fischer T, Verhoef G, Shepherd J, Saglio G, Gratwohl A, Nielsen J L, Radich J P, Simonsson B, Taylor K, Baccarani M, So C, Letvak L, Larson R A, and the IRIS Investigators (2006). Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med, 355(23): 2408–2417
https://doi.org/10.1056/NEJMoa062867
pmid: 17151364
|
7 |
Druker B J, Tamura S, Buchdunger E, Ohno S, Segal G M, Fanning S, Zimmermann J, Lydon N B (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med, 2(5): 561–566
https://doi.org/10.1038/nm0596-561
pmid: 8616716
|
8 |
Ernst T, Hoffmann J, Erben P, Hanfstein B, Leitner A, Hehlmann R, Hochhaus A, Müller M C (2008). ABL single nucleotide polymorphisms may masquerade as BCR-ABL mutations associated with resistance to tyrosine kinase inhibitors in patients with chronic myeloid leukemia. Haematologica. 93(9):1389–1393
|
9 |
Ernst T, La Rosée P, Müller M C, Hochhaus A (2011). BCR-ABL mutations in chronic myeloid leukemia. Hematol Oncol Clin North Am, 25(5): 997–1008, v–vi
https://doi.org/10.1016/j.hoc.2011.09.005
pmid: 22054731
|
10 |
Faderl S, Jeha S, Kantarjian H M (2003). The biology and therapy of adult acute lymphoblastic leukemia. Cancer, 98(7): 1337–1354
https://doi.org/10.1002/cncr.11664
pmid: 14508819
|
11 |
Gorre M E, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao P N, Sawyers C L (2001). Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science, 293(5531): 876–880
https://doi.org/10.1126/science.1062538
pmid: 11423618
|
12 |
Hochhaus A, Kreil S, Corbin A S, La Rosüe P, Müller M C, Lahaye T, Hanfstein B, Schoch C, Cross N C, Berger U, Gschaidmeier H, Druker B J, Hehlmann R (2002). Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia, 16(11): 2190–2196
https://doi.org/10.1038/sj.leu.2402741
pmid: 12399961
|
13 |
Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, Baccarani M, Cortes J, Cross N C, Druker B J, Gabert J, Grimwade D, Hehlmann R, Kamel-Reid S, Lipton J H, Longtine J, Martinelli G, Saglio G, Soverini S, Stock W, Goldman J M (2006). Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood, 108(1): 28–37
https://doi.org/10.1182/blood-2006-01-0092
pmid: 16522812
|
14 |
Iacobucci I, Ferrarini A, Sazzini M, Giacomelli E, Lonetti A, Xumerle L, Ferrari A, Papayannidis C, Malerba G, Luiselli D, Boattini A, Garagnani P, Vitale A, Soverini S, Pane F, Baccarani M, Delledonne M, Martinelli G (2012). Application of the whole-transcriptome shotgun sequencing approach to the study of Philadelphia-positive acute lymphoblastic leukemia. Blood Cancer J, 2(3): e61
https://doi.org/10.1038/bcj.2012.6
pmid: 22829256
|
15 |
Jabbour E, Kantarjian H, Jones D, Breeden M, Garcia-Manero G, O’Brien S, Ravandi F, Borthakur G, Cortes J (2008). Characteristics and outcomes of patients with chronic myeloid leukemia and T315I mutation following failure of imatinib mesylate therapy. Blood, 112(1): 53–55
https://doi.org/10.1182/blood-2007-11-123950
pmid: 18403620
|
16 |
Jabbour E, Soverini S (2009). Understanding the role of mutations in therapeutic decision making for chronic myeloid leukemia. Semin Hematol, 46(suppl 3): s22–26
|
17 |
Kagita S, Uppalapati S, Jiwatani S, Linga V G, Gundeti S, Nagesh N, Digumarti R (2014). Incidence of Bcr-Abl kinase domain mutations in imatinib refractory chronic myeloid leukemia patients from South India. Tumour Biol, 35(7): 7187–7193
https://doi.org/10.1007/s13277-014-1926-9
pmid: 24763825
|
18 |
Khorashad J S, Kelley T W, Szankasi P, Mason C C, Soverini S, Adrian L T, Eide C A, Zabriskie M S, Lange T, Estrada J C, Pomicter A D, Eiring A M, Kraft I L, Anderson D J, Gu Z, Alikian M, Reid A G, Foroni L, Marin D, Druker B J, O’Hare T, Deininger M W (2013). BCR-ABL1 compound mutations in tyrosine kinase inhibitor-resistant CML: frequency and clonal relationships. Blood, 121(3): 489–498
https://doi.org/10.1182/blood-2012-05-431379
pmid: 23223358
|
19 |
Kimura S, Ando T, Kojima K (2014). Ever-advancing chronic myeloid leukemia treatment. Int J Clin Oncol, 19(1): 3–9
https://doi.org/10.1007/s10147-013-0641-7
pmid: 24258348
|
20 |
La Rosée P, Deininger M W (2010). Resistance to imatinib: mutations and beyond. Semin Hematol, 47(4): 335–343
|
21 |
La Starza R, Testoni N, Lafage-Pochitaloff M, Ruggeri D, Ottaviani E, Perla G, Martelli MF, Marynen P, Mecucci C(2002). Complex variant Philadelphia translocations involving the short arm of chromosome 6 in chronic myeloid leukemia. Haematologica, 87(2):143–147
|
22 |
Maru Y (2012). Molecular biology of chronic myeloid leukemia. Cancer Sci, 103(9): 1601–1610
https://doi.org/10.1111/j.1349-7006.2012.02346.x
pmid: 22632137
|
23 |
Nicolini F E, Mauro M J, Martinelli G, Kim D W, Soverini S, Müller M C, Hochhaus A, Cortes J, Chuah C, Dufva I H, Apperley J F, Yagasaki F, Pearson J D, Peter S, Sanz Rodriguez C, Preudhomme C, Giles F, Goldman J M, Zhou W (2009). Epidemiologic study on survival of chronic myeloid leukemia and Ph(+) acute lymphoblastic leukemia patients with BCR-ABL T315I mutation. Blood, 114(26): 5271–5278
https://doi.org/10.1182/blood-2009-04-219410
pmid: 19843886
|
24 |
O’Hare T, Shakespeare W C, Zhu X, Eide C A, Rivera V M, Wang F, Adrian L T, Zhou T, Huang W S, Xu Q, Metcalf C A 3rd, Tyner J W, Loriaux M M, Corbin A S, Wardwell S, Ning Y, Keats J A, Wang Y, Sundaramoorthi R, Thomas M, Zhou D, Snodgrass J, Commodore L, Sawyer T K, Dalgarno D C, Deininger M W, Druker B J, Clackson T (2009). AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell, 16(5): 401–412
https://doi.org/10.1016/j.ccr.2009.09.028
pmid: 19878872
|
25 |
Quintás-Cardama A, Cortes J (2008). Therapeutic options against BCR-ABL1 T315I-positive chronic myelogenous leukemia. Clin Cancer Res, 14(14): 4392–4399
https://doi.org/10.1158/1078-0432.CCR-08-0117
pmid: 18628453
|
26 |
Roche-Lestienne C, Laï J L, Darré S, Facon T, Preudhomme C(2003). A mutation conferring resistance to imatinib at the time of diagnosis of chronic myelogenous leukemia. N Engl J Med, 348(22): 2265–2266
https://doi.org/10.1056/NEJMc035089
pmid: 12773665
|
27 |
Shah N P, Tran C, Lee F Y, Chen P, Norris D, Sawyers C L (2004). Overriding imatinib resistance with a novel ABL kinase inhibitor. Science, 305(5682): 399–401
https://doi.org/10.1126/science.1099480
pmid: 15256671
|
28 |
Soverini S, Iacobucci I, Baccarani M, Martinelli G (2007). Targeted therapy and the T315I mutation in Philadelphia-positive leukemias. Haematologica, 92(4): 437–439
https://doi.org/10.3324/haematol.11248
pmid: 17488653
|
29 |
Tanaka R, Kimura S, Ashihara E, Yoshimura M, Takahashi N, Wakita H, Itoh K, Nishiwaki K, Suzuki K, Nagao R, Yao H, Hayashi Y, Satake S, Hirai H, Sawada K, Ottmann O G, Melo J V, Maekawa T (2011). Rapid automated detection of ABL kinase domain mutations in imatinib-resistant patients. Cancer Lett, 312(2): 228–234
https://doi.org/10.1016/j.canlet.2011.08.009
pmid: 21890264
|
30 |
Weisberg E, Manley P W, Breitenstein W, Brüggen J, Cowan-Jacob S W, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, Kung A L, Mestan J, Daley G Q, Callahan L, Catley L, Cavazza C, Azam M, Neuberg D, Wright R D, Gilliland D G, Griffin J D (2005). Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 7(2): 129–141
https://doi.org/10.1016/j.ccr.2005.01.007
pmid: 15710326
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|