Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2016, Vol. 11 Issue (5) : 404-411    https://doi.org/10.1007/s11515-016-1423-1
RESEARCH ARTICLE
Incidence of T315I mutation in BCR/ABL-positive CML and ALL patients
Fatemeh Norozi1,Javad Mohammadi-asl2,Tina Vosoughi1,Mohammad Ali Jalali Far1,Amal Saki Malehi1,Najmaldin Saki1()
1. Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2. Department of Medical Genetics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
 Download: PDF(801 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

OBJECTIVES: Targeted therapy of Philadelphia-positive ALL and CML patients using imatinib (IM) has caused significant changes in treatment course and has increased the survival of patients. A small group of patients show resistance to IM. Acquired mutations in tyrosine kinase domain of BCR-ABL protein are a mechanism for development of resistance. T315I is one of the most common acquired mutations in this domain, which occurs in ATP binding site and inhibits the formation of hydrogen bond with IM. The aim of this study was to evaluate the prevalence of this mutation in BCR/ABL-positive CML and ALL patients.

METHODS: To conduct this study, 60 BCR-ABL-positive patients (including 50 CML and 10 ALL patients) who were subject to treatment with IM were selected. After taking the samples, presence of T315I mutation was assessed using ARMS-PCR on cDNA and its polymorphism was evaluated by sequencing.

RESULTS: The results showed that among 60 patients, only three patients had T315I mutation, which was detected using ARMS technique. The three patients bearing mutation were afflicted with CML and no significant association was found between blood parameters with duration of treatment in presence of mutation.

CONCLUSIONS: The mutation was found in three CML patients, which indicated lower likelihood and diagnostic value of this mutation in ALL patients. Given the negative direct sequencing results in T315I patients, it can be concluded that ARMS-PCR is a more sensitive technique when the number of cancer cells is low in patients during treatment.

Keywords BCR-ABL      T315I mutation      imatinib      CML      ALL     
Corresponding Author(s): Najmaldin Saki   
Online First Date: 08 October 2016    Issue Date: 04 November 2016
 Cite this article:   
Fatemeh Norozi,Javad Mohammadi-asl,Tina Vosoughi, et al. Incidence of T315I mutation in BCR/ABL-positive CML and ALL patients[J]. Front. Biol., 2016, 11(5): 404-411.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-016-1423-1
https://academic.hep.com.cn/fib/EN/Y2016/V11/I5/404
Fig.1  (A) The formation of the Bar-Abl fusion gene. (B) The most common mutations in BCR/ABL tyrosine kinase domain. (A) Depending on the locus where the break occurs in Bcr gene, chimeric Bcr-Abl gene bears two, three or even more exons than normal gene, which results in the formation of chimeric proteins of different sizes. (B) Several mutations occur in Bcr-Abl kinase domain. The most common sites include P-loop (codons 244-256), ATP binding site (codons 315 and F317), catalytic domain (codons 350-363) and activation loop (codons 381-407). T315I mutation occurs in ATP binding site where IM is found, causing resistance to treatment of patients with IM.
CML ALL p-value
Sex Male 48.0% 80.0% -
Female 52.0% 20.0% -
Age 45.19 (16.0-75.0) 17.25 (3.0-50.0) -
WBC1* 42.3 (5.30-220.4) 20.0 (10.20-119.70) 0.82
WBC2** 6.19 (3.35-19.2) 8.3 (3.5-10.3) 0.249
Hb1* 10.65 (8.1-19.1) 10.7 (8.5-13.0) 0.654
Hb2** 11.6 (8.0-16.4) 10.0 (8.4-11.8) 0.019
PLT1* 389.0 (168.0-2166.0) 102.0 (30.0-274.0) 0.0001
PLT2** 189.0 (59.0-1289.0) 111.0 (60.0-297.0) 0.145
Organomegaly No organomegaly 62.0% 55.6% -
Hepatomegaly 0.0% 11.1% -
Splenomegaly 30.0% 11.1% -
Hepato-Splenomegaly 8.0% 22.2% -
Therapy duration >1 year 51.2% 100.0% -
1 year 31.7% 0.0% -
<1 year 17.1% 0.0% -
Therapy response Optimal 52.3% 90.0% -
Failure 40.9% 10.0% -
Warning 6.8% 0.0% -
Tab.1  Clinical characteristics of patients
Group Total
CML ALL
T315I
mutation
Negative (47)
94.0%
(10)
100.0%
(57)
95.4%
Positive (3)
6.0%
(0)
0.0%
(3)
4.6%
Total (50)
100.0%
(10)
100.0%
(60)
100.0%
Tab.2  The T315I mutation rate in BCR/ABL positive patients
T315I????? Total
Negative Positive
Duration >1 year 58.3% 100.0% 60.8%
<1 year 14.6% 0.0% 13.7%
1 year 27.1% 0.0% 25.5%
Total 100.0% 100.0% 100.0%
Chisquare(p-value) 2.056 (0.418)
Tab.3  T315I mutation and during treatment relationship in CML patients
T315I Total
Negative Positive
Response Optimal (37)
58.8%
(2)
66.7%
59.3%
Failure (17)
35.3%
(1)
33.3%
35.2%
Warning (3)
5.9%
(0)
0.0%
5.6%
Total 100.0% 100.0% 100.0%
Chisquare (p-value) 0.209 (1.00)
Tab.4  T315I mutation and responses to treatment relationship in CML patients
Fig.2  Evaluation of T315I mutation by direct sequencing technique in BCR-ABL-positive patients.
Fig.3  Evaluation of T315I mutation by ARMS-PCR techniques in BCR-ABL-positive patients.
Fig.4  Activation of different signaling molecules by BCR-ABL fusion protein. BCR-ABL protein activates several signaling pathways that enhance cell proliferation and genetic instability, inhibit apoptosis and reduce cell adhesion. The most important signaling molecules activated by BCR-ABL fusion protein include Myc, Ras, MAP/ERK, JAK/STAT, NFκB, PI-3kinase and c-Jun. Therefore, BCR-ABL can act as an oncoprotein via activation of these signaling pathways.
1 Apperley J F (2007). Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol, 8(11): 1018–1029
https://doi.org/10.1016/S1470-2045(07)70342-X© pmid: 17976612
2 Bhojwani D, Yang J J, Pui C H (2015). Biology of childhood acute lymphoblastic leukemia. Pediatr Clin North Am, 62(1): 47–60
https://doi.org/10.1016/j.pcl.2014.09.004 pmid: 25435111
3 Branford S, Melo J V, Hughes T P (2009). Selecting optimal second-line tyrosine kinase inhibitor therapy for chronic myeloid leukemia patients after imatinib failure: does the BCR-ABL mutation status really matter? Blood, 114(27): 5426–5435
https://doi.org/10.1182/blood-2009-08-215939 pmid: 19880502
4 Chomel J C, Sorel N, Bonnet M L, Bertrand A, Brizard F, Roy L, Guilhot F, Turhan A G (2010). Extensive analysis of the T315I substitution and detection of additional ABL mutations in progenitors and primitive stem cell compartment in a patient with tyrosine kinase inhibitor-resistant chronic myeloid leukemia. Leuk Lymphoma, 51(11): 2103–2111
https://doi.org/10.3109/10428194.2010.520774© pmid: 20929330
5 Donato N J, Wu J Y, Stapley J, Lin H, Arlinghaus R, Aggarwal B B, Shishodia S, Albitar M, Hayes K, Kantarjian H, Talpaz M (2004). Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res, 64(2): 672–677
https://doi.org/10.1158/0008-5472.CAN-03-1484 pmid: 14744784
6 Druker B J, Guilhot F, O’Brien S G, Gathmann I, Kantarjian H, Gattermann N, Deininger M W, Silver R T, Goldman J M, Stone R M, Cervantes F, Hochhaus A, Powell B L, Gabrilove J L, Rousselot P, Reiffers J, Cornelissen J J, Hughes T, Agis H, Fischer T, Verhoef G, Shepherd J, Saglio G, Gratwohl A, Nielsen J L, Radich J P, Simonsson B, Taylor K, Baccarani M, So C, Letvak L, Larson R A, and the IRIS Investigators (2006). Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med, 355(23): 2408–2417
https://doi.org/10.1056/NEJMoa062867 pmid: 17151364
7 Druker B J, Tamura S, Buchdunger E, Ohno S, Segal G M, Fanning S, Zimmermann J, Lydon N B (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med, 2(5): 561–566
https://doi.org/10.1038/nm0596-561 pmid: 8616716
8 Ernst T, Hoffmann J, Erben P, Hanfstein B, Leitner A, Hehlmann R, Hochhaus A, Müller M C (2008). ABL single nucleotide polymorphisms may masquerade as BCR-ABL mutations associated with resistance to tyrosine kinase inhibitors in patients with chronic myeloid leukemia. Haematologica. 93(9):1389–1393
9 Ernst T, La Rosée P, Müller M C, Hochhaus A (2011). BCR-ABL mutations in chronic myeloid leukemia. Hematol Oncol Clin North Am, 25(5): 997–1008, v–vi
https://doi.org/10.1016/j.hoc.2011.09.005 pmid: 22054731
10 Faderl S, Jeha S, Kantarjian H M (2003). The biology and therapy of adult acute lymphoblastic leukemia. Cancer, 98(7): 1337–1354
https://doi.org/10.1002/cncr.11664 pmid: 14508819
11 Gorre M E, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao P N, Sawyers C L (2001). Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science, 293(5531): 876–880
https://doi.org/10.1126/science.1062538 pmid: 11423618
12 Hochhaus A, Kreil S, Corbin A S, La Rosüe P, Müller M C, Lahaye T, Hanfstein B, Schoch C, Cross N C, Berger U, Gschaidmeier H, Druker B J, Hehlmann R (2002). Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia, 16(11): 2190–2196
https://doi.org/10.1038/sj.leu.2402741 pmid: 12399961
13 Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, Baccarani M, Cortes J, Cross N C, Druker B J, Gabert J, Grimwade D, Hehlmann R, Kamel-Reid S, Lipton J H, Longtine J, Martinelli G, Saglio G, Soverini S, Stock W, Goldman J M (2006). Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood, 108(1): 28–37
https://doi.org/10.1182/blood-2006-01-0092 pmid: 16522812
14 Iacobucci I, Ferrarini A, Sazzini M, Giacomelli E, Lonetti A, Xumerle L, Ferrari A, Papayannidis C, Malerba G, Luiselli D, Boattini A, Garagnani P, Vitale A, Soverini S, Pane F, Baccarani M, Delledonne M, Martinelli G (2012). Application of the whole-transcriptome shotgun sequencing approach to the study of Philadelphia-positive acute lymphoblastic leukemia. Blood Cancer J, 2(3): e61
https://doi.org/10.1038/bcj.2012.6 pmid: 22829256
15 Jabbour E, Kantarjian H, Jones D, Breeden M, Garcia-Manero G, O’Brien S, Ravandi F, Borthakur G, Cortes J (2008). Characteristics and outcomes of patients with chronic myeloid leukemia and T315I mutation following failure of imatinib mesylate therapy. Blood, 112(1): 53–55
https://doi.org/10.1182/blood-2007-11-123950 pmid: 18403620
16 Jabbour E, Soverini S (2009). Understanding the role of mutations in therapeutic decision making for chronic myeloid leukemia. Semin Hematol, 46(suppl 3): s22–26
17 Kagita S, Uppalapati S, Jiwatani S, Linga V G, Gundeti S, Nagesh N, Digumarti R (2014). Incidence of Bcr-Abl kinase domain mutations in imatinib refractory chronic myeloid leukemia patients from South India. Tumour Biol, 35(7): 7187–7193
https://doi.org/10.1007/s13277-014-1926-9 pmid: 24763825
18 Khorashad J S, Kelley T W, Szankasi P, Mason C C, Soverini S, Adrian L T, Eide C A, Zabriskie M S, Lange T, Estrada J C, Pomicter A D, Eiring A M, Kraft I L, Anderson D J, Gu Z, Alikian M, Reid A G, Foroni L, Marin D, Druker B J, O’Hare T, Deininger M W (2013). BCR-ABL1 compound mutations in tyrosine kinase inhibitor-resistant CML: frequency and clonal relationships. Blood, 121(3): 489–498
https://doi.org/10.1182/blood-2012-05-431379 pmid: 23223358
19 Kimura S, Ando T, Kojima K (2014). Ever-advancing chronic myeloid leukemia treatment. Int J Clin Oncol, 19(1): 3–9
https://doi.org/10.1007/s10147-013-0641-7 pmid: 24258348
20 La Rosée P, Deininger M W (2010). Resistance to imatinib: mutations and beyond. Semin Hematol, 47(4): 335–343
21 La Starza R, Testoni N, Lafage-Pochitaloff M, Ruggeri D, Ottaviani E, Perla G, Martelli MF, Marynen P, Mecucci C(2002). Complex variant Philadelphia translocations involving the short arm of chromosome 6 in chronic myeloid leukemia. Haematologica, 87(2):143–147
22 Maru Y (2012). Molecular biology of chronic myeloid leukemia. Cancer Sci, 103(9): 1601–1610
https://doi.org/10.1111/j.1349-7006.2012.02346.x pmid: 22632137
23 Nicolini F E, Mauro M J, Martinelli G, Kim D W, Soverini S, Müller M C, Hochhaus A, Cortes J, Chuah C, Dufva I H, Apperley J F, Yagasaki F, Pearson J D, Peter S, Sanz Rodriguez C, Preudhomme C, Giles F, Goldman J M, Zhou W (2009). Epidemiologic study on survival of chronic myeloid leukemia and Ph(+) acute lymphoblastic leukemia patients with BCR-ABL T315I mutation. Blood, 114(26): 5271–5278
https://doi.org/10.1182/blood-2009-04-219410 pmid: 19843886
24 O’Hare T, Shakespeare W C, Zhu X, Eide C A, Rivera V M, Wang F, Adrian L T, Zhou T, Huang W S, Xu Q, Metcalf C A 3rd, Tyner J W, Loriaux M M, Corbin A S, Wardwell S, Ning Y, Keats J A, Wang Y, Sundaramoorthi R, Thomas M, Zhou D, Snodgrass J, Commodore L, Sawyer T K, Dalgarno D C, Deininger M W, Druker B J, Clackson T (2009). AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell, 16(5): 401–412
https://doi.org/10.1016/j.ccr.2009.09.028 pmid: 19878872
25 Quintás-Cardama A, Cortes J (2008). Therapeutic options against BCR-ABL1 T315I-positive chronic myelogenous leukemia. Clin Cancer Res, 14(14): 4392–4399
https://doi.org/10.1158/1078-0432.CCR-08-0117 pmid: 18628453
26 Roche-Lestienne C, Laï J L, Darré S, Facon T, Preudhomme C(2003). A mutation conferring resistance to imatinib at the time of diagnosis of chronic myelogenous leukemia. N Engl J Med, 348(22): 2265–2266
https://doi.org/10.1056/NEJMc035089 pmid: 12773665
27 Shah N P, Tran C, Lee F Y, Chen P, Norris D, Sawyers C L (2004). Overriding imatinib resistance with a novel ABL kinase inhibitor. Science, 305(5682): 399–401
https://doi.org/10.1126/science.1099480 pmid: 15256671
28 Soverini S, Iacobucci I, Baccarani M, Martinelli G (2007). Targeted therapy and the T315I mutation in Philadelphia-positive leukemias. Haematologica, 92(4): 437–439
https://doi.org/10.3324/haematol.11248 pmid: 17488653
29 Tanaka R, Kimura S, Ashihara E, Yoshimura M, Takahashi N, Wakita H, Itoh K, Nishiwaki K, Suzuki K, Nagao R, Yao H, Hayashi Y, Satake S, Hirai H, Sawada K, Ottmann O G, Melo J V, Maekawa T (2011). Rapid automated detection of ABL kinase domain mutations in imatinib-resistant patients. Cancer Lett, 312(2): 228–234
https://doi.org/10.1016/j.canlet.2011.08.009 pmid: 21890264
30 Weisberg E, Manley P W, Breitenstein W, Brüggen J, Cowan-Jacob S W, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, Kung A L, Mestan J, Daley G Q, Callahan L, Catley L, Cavazza C, Azam M, Neuberg D, Wright R D, Gilliland D G, Griffin J D (2005). Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 7(2): 129–141
https://doi.org/10.1016/j.ccr.2005.01.007 pmid: 15710326
[1] Kobra Shojaei, Hora Motamed, Mojgan Barati. Peak systolic velocity Doppler of middle cerebral artery in small for gestational age (SGA) fetus[J]. Front. Biol., 2018, 13(5): 389-393.
[2] Chunqiang Zhang,Fan Zhang,Ping Zhou,Caiguo Zhang. Functional role of metalloproteins in genome stability[J]. Front. Biol., 2016, 11(2): 119-131.
[3] Behnam Ebrahimi. Chemical-only reprogramming to pluripotency[J]. Front. Biol., 2016, 11(2): 75-84.
[4] Stacy Nguy,Maria Victoria Tejada-Simon. Phenotype analysis and rescue on female FVB.129-Fmr1 knockout mice[J]. Front. Biol., 2016, 11(1): 43-52.
[5] Shuai SHANG,Shang-Yue YANG,Zhi-Min LIU,Xu YANG. Oxidative damage in the kidney and brain of mice induced by different nano-materials[J]. Front. Biol., 2015, 10(1): 91-96.
[6] Leon H. CHEW,Calvin K. YIP. Structural biology of the macroautophagy machinery[J]. Front. Biol., 2014, 9(1): 18-34.
[7] Ann C. KIMBLE-HILL. A review of factors affecting the success of membrane protein crystallization using bicelles[J]. Front Biol, 2013, 8(3): 261-272.
[8] Yingbin GE, Rikka AZUMA, Bethsebah GEKONGE, Alfonso LOPEZ-CORAL, Min XIAO, Gao ZHANG, Xiaowei XU, Luis J. MONTANER, Zhi WEI, Meenhard HERLYN, Tao WANG, Russel E. KAUFMAN. Induction of metallothionein expression during monocyte to melanoma-associated macrophage differentiation[J]. Front Biol, 2012, 7(4): 359-367.
[9] Jiaqing WANG, Lin HOU, Zhenfeng HE, Daizong Li, Lijuan JIANG. Bioinformatic analysis of embryo development related small heat shock protein Hsp26 in Artemia species[J]. Front Biol, 2012, 7(4): 350-358.
[10] Jorge A. LARIOS, Maria-Paz MARZOLO. Novel aspects of the apolipoprotein-E receptor family: regulation and functional role of their proteolytic processing[J]. Front Biol, 2012, 7(2): 113-143.
[11] Tian XIAO, Lei BAO, Hongbin JI. Finding biomarkers for non-small cell lung cancer diagnosis and prognosis[J]. Front Biol, 2012, 7(1): 14-23.
[12] Yasemin G. ISGOR, Belgin S. ISGOR. Kinases and glutathione transferases: selective and sensitive targeting[J]. Front Biol, 2011, 6(2): 156-169.
[13] Yun Ju KIM, Xuemei CHEN. The plant Mediator and its role in noncoding RNA production[J]. Front Biol, 2011, 6(2): 125-132.
[14] Ulrike SCHUMANN, Mick AYLIFFE, Kemal KAZAN, Ming-Bo WANG. RNA silencing in fungi[J]. Front Biol, 2010, 5(6): 478-494.
[15] Peng LIU, Zhipeng FAN, Songlin WANG. Understanding of stem cells in bone biology and translation into clinical applications[J]. Front Biol, 2010, 5(5): 396-406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed