Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2018, Vol. 13 Issue (2) : 79-90    https://doi.org/10.1007/s11515-018-1489-z
REVIEW
An overview of pyrethroid insecticides
Anudurga Gajendiran, Jayanthi Abraham()
Microbial Biotechnology Laboratory, School of Biosciences and Technology, VIT University, Vellore-632014, Tamil Nadu, India
 Download: PDF(398 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Pesticides are used to control various pests of agricultural crops worldwide. Despite their agricultural benefits, pesticides are often considered a serious threat to the environment because of their persistence. Pyrethroids are synthetic derivates of pyrethrins, which are natural organic insecticides procured from the flowers of Chrysanthemum cinerariaefolium and C. coccineum. Pyrethroids are classified into two groups—class I and class II—based on their toxicity and physical properties. These pyrethroids are now used in many synthetic insecticides and are highly specific against insects; they are generally used against mosquitoes. The prominent site of insecticidal action of pyrethroids is the voltage-sensitive sodium channels.

METHODS and RESULTS: Pyrethroids are found to be stable, and they persist in the environment for a long period. This article provides an overview of the different classes, structure, and insecticidal properties of pyrethroid. Furthermore, the toxicity of pyrethroids is also discussed with emphasis on bioremediation to alleviate pollution.

CONCLUSIONS: The article focuses on various microorganisms used in the degradation of pyrethroids, the molecular basis of degradation, and the role of carboxylesterase enzymes and genes in the detoxification of pyrethroid.

Keywords pyrethrin      carboxylesterase enzyme      mineralization      microbial degradation      toxicity     
Corresponding Author(s): Jayanthi Abraham   
Online First Date: 14 May 2018    Issue Date: 28 May 2018
 Cite this article:   
Anudurga Gajendiran,Jayanthi Abraham. An overview of pyrethroid insecticides[J]. Front. Biol., 2018, 13(2): 79-90.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-018-1489-z
https://academic.hep.com.cn/fib/EN/Y2018/V13/I2/79
Pyrethroid (acronym) Molecular structure Insects
Acrinathrin (ester) Codling moth, oriental fruit moth, leafhoppers, Red Spider Mite, two-spotted mite, and African red mite
Allethrin Flies, mosquitoes, and ants
Bifenthrin Beetles, weevil, houseflies, mosquitoes, lice, bedbugs, aphids, moths, cockroaches, and locust
Cyfluthrin Aphids, cabbage stem flea beetle, houseflies, cockroaches, mosquitoes, and rape winter stem weevil
Cyhalothrin Bedbugs, beetles, houseflies, ked, lice, mosquitoes, moths, and weevils
Cypermethrin Cockroaches, mosquitoes, moths, and flies
Cyphenothrin Flies, mosquitoes, and cockroaches. It is also used to control insects that attack wood and fabrics
Deltamethrin Aphids, beetles, bollworm, budworm, caterpillars, cicadas, coding moths, totrix moths, weevils, whitefly, and winter moths
Fenpropathrin Mites, aphids, beet armyworm, mealybug, potato leafhopper, moths, leafrollers, and lacebugs.
Fenvalerate Beetles, cockroaches, flies, locusts,
Mosquitoes, and moths
Flucythrinate Bollworms, leafworms, sucking insects, whiteflies, and beetles
Fluvalinate Aphids, leafhoppers, moths, spider mites, thrips, and white-flies
Imiprothrin Roaches, waterbugs, ants, silverfish, crickets, and spiders
Permethrin Ants, beetle, bollworm, bud-worm, fleas, flies, lice, moths, mosquitoes, termites, and weevils
Phenothrin Flies, gnats, mosquitoes, cockroaches, and lice
Prallethrin Ants, bees, carpet beetle, clover mite, and cockroaches
Resmethrin Flies, mosquitoes, gnats, fleas, ticks, and black flies
Tefluthrin White grub, southern corn leaf beetle, flea beetle, and chinch bug
Tetramethrin Wasps, hornets, roaches, ants, fleas, and mosquitoes.
Tralomethrin Ants and cockroaches
Transfluthrin Mosquitoes and flies
Halfenprox (ether) Mites
Tab.1  List of pyrethroids usually detected in environmental samples
Pyrethroid mg pyrethroid/kg bodyweight of birds Fish Bees
Allethrin 2030 Toxic -
s-Bioallethrin (Esbiol) 680 Highly toxic -
Resmethrin - Toxic Highly toxic
Bioresmethrin - Highly toxic Highly toxic
Tetramethrin >1000 Toxic toxic
Permethrin >13500 Highly toxic Highly toxic
Fenvalerate 9932 Highly toxic Toxic
d-Phenothrin >2500 Toxic Toxic
Cypermethrin - Extremely toxic Toxic
Esfenvalerate - Highly toxic -
Bifenthrin >2150 Toxic -
Fenpropathrin 1089 Toxic -
Tefluthrin 4190 Highly toxic -
Cyfluthrin 4450 Toxic Toxic
Fluvalinate >5620 Toxic Non-toxic
Tralomethrin 7716 Extremely toxic Highly toxic
Deltamethrin >4640 Toxic Highly toxic
Cyhalothrin >5000 Highly toxic -
Kadethrin - Toxic Toxic
Alphacypermethrin - Toxic Toxic
Lambda- cyhalothrin >3950 Toxic Toxic
Tab.2  Acute effects of pyrethroids and pyrethroid formulations on non-target organisms Mueller-Beilsehmidt
Fig.1  Generalized pathway involved in the metabolism of pyrethroids in mammals by hydrolysis [H], oxidative [O], and conjugation [C] reactions.
Pyrethroid degrading microbe References
Bacillus cereus SM3 Maloney et al. (1993)
Pseudomonas fluorescens Grant et al. (2002)
Pseudomonas sp. Halden et al. (1999)
Cladosporium sp. Chen et al. (2011)
Rhodococcus sp. CDT3 Xu et al. (2007)
Vibrio hollisae Lee et al. (2004)
Burkholderia pickettii Zhai et al. (2012)
Erwinia carotovora Liang et al. (2005)
Ochrobactrum anthropi YZ-1 Wu et al. (2006)
Aspergillus niger ZD11 Guo et al. (2009)
Klebsiella sp. ZD112 Wu et al. (2006)
Sphingobium sp. JZ-2 Maloney et al. (1988)
Achromobacter sp. Sakata et al. (1992)
Bacillus cereus Yu and Fan (2003)
Serratia plymuthica Lee et al. (2004)
Pseudomonas sp. YF05 Saikia and Gopal (2004)
Stenotrophomonas acidaminiphila, Aeromonas sobria Preeti et al. (2008)
Yersinia frederiksenii Zhang et al. (2010)
Trichoderma viride Chen et al. (2011a)
Micrococcus sp. Chen et al. (2011b)
Serratia sp. Chen et al. (2011c)
Streptomyces sp. Maloney et al. (1993)
Ochrobactrum sp. Grant et al. (2002)
Stenotrophomonas sp. Halden et al. (1999)
Tab.3  List of microbes involved in the degradation of pyrethroid residues
1 Abraham J, Silambarasan S (2014). Biomineralization and formulation of endosulfan degrading bacterial and fungal consortiums. Pestic Biochem Physiol, 116: 24–31
https://doi.org/10.1016/j.pestbp.2014.09.006 pmid: 25454517
2 Abraham J, Silambarasan S (2016). Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: A proposal of its metabolic pathway. Pestic Biochem Physiol, 126: 13–21
https://doi.org/10.1016/j.pestbp.2015.07.001 pmid: 26778429
3 Agency for Toxic Substances and Disease Registry (2003). Toxicological Profile for Pyrethrins and Pyrethroids. US Department of Health and Human Services, pp: 238.
4 Ali H Y,Aboul-Enein (2004). Chiral Pollutants. John Wiley and Sons, Chichester, UK
5 Bloomquist J R (1993a). Neuroreceptor mechanisms in pyrethroid mode of action and resistance. Rev Pestic Toxic, 2:184–230
6 Bloomquist J R (1996). Ion channels as targets for insecticides. Annu Rev Entomol, 41(1): 163–190
https://doi.org/10.1146/annurev.en.41.010196.001115 pmid: 8546445
7 Bryant R, Bite M G (2003). Global Insecticide Directory, 3rd ed. Orpington, Kent UK Agranova
8 Casida J E, Quistad G B (1998). Golden age of insecticide research: past, present, or future? Annu Rev Entomol, 43(1): 1–16
https://doi.org/10.1146/annurev.ento.43.1.1 pmid: 9444749
9 Chen S, Hu M, Liu J, Zhong G, Yang L, Rizwan-ul-Haq M, Han H (2011b). Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. J Hazard Mater, 187(1-3): 433–440
https://doi.org/10.1016/j.jhazmat.2011.01.049 pmid: 21282001
10 Chen S, Lai K, Li Y, Hu M, Zhang Y, Zeng Y (2011a). Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol, 90(4): 1471–1483
https://doi.org/10.1007/s00253-011-3136-3 pmid: 21327411
11 Chen S, Lin Q, Xiao Y, Deng Y, Chang C, Zhong G, Hu M, Zhang L H (2013). Monooxygenase, a novel beta-cypermethrin degrading enzyme from Streptomyces sp. PLoS One, 8(9): e75450
https://doi.org/10.1371/journal.pone.0075450 pmid: 24098697
12 Chen S, Yang L, Hu M, Liu J (2011c). Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl Microbiol Biotechnol, 90(2): 755–767
https://doi.org/10.1007/s00253-010-3035-z pmid: 21184062
13 Fishel F M (2005). Pesticide Toxicity Profile: Synthetic Pyrethroid Pesticides. University of Florida, Institute of Food and Agricultural Sciences
14 Gan J, Lee S J, Liu W P, Haver D L, Kabashina J N (2005). Effects On Non-Target Organisms In Terrestrial And Aquatic Environments. In: Leahey JP (Ed.) The Pyrethroid Insecticides, Taylor and Francis, London, UK
15 Garey J, Wolff M S (1998). Estrogenic and antiprogestagenic activities of pyrethroid insecticides. Biochem Biophys Res Commun, 251(3): 855–859
https://doi.org/10.1006/bbrc.1998.9569 pmid: 9790999
16 Glomot R (1982). Toxicity of deltamethrin to higher vertebrates, Deltamethrin (Monograph). Roussel-Uclaf Research Centre, France, 4: 109–136
17 Gosselin R E (1984). Clinic Toxicological of Commercial Products, Williams and Wilkins, Baltimore, MD, USA
18 Grant R J, Daniell T J, Betts W B (2002). Isolation and identification of synthetic pyrethroid-degrading bacteria. J Appl Microbiol, 92(3): 534–540
https://doi.org/10.1046/j.1365-2672.2002.01558.x pmid: 11872130
19 Guo P, Wang B Z, Hang B J, Li L, Ali S W, He J, Li S P (2009). Pyrethroid degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. Int. Biodeter. Biodegr, 63(8): 1107–1112
https://doi.org/10.1016/j.ibiod.2009.09.008
20 Halden R U, Tepp S M, Halden B G, Dwyer D F (1999). Degradation of 3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310(pPOB) and two modified Pseudomonas strains. Appl Environ Microbiol, 65(8): 3354–3359
pmid: 10427019
21 Hosokawa M (2008). Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules, 13(2): 412–431
https://doi.org/10.3390/molecules13020412 pmid: 18305428
22 Kasai S (2004). Role of cytochrome P450 in mechanism of pyrethroid resistance. J Pestic Sci, 29(3): 220–221
https://doi.org/10.1584/jpestics.29.220
23 Katsuda Y (1999). Development of and future prospects for pyrethroid chemistry. Pestic Sci, 55(8): 775–782
https://doi.org/10.1002/(SICI)1096-9063(199908)55:8<775::AID-PS27>3.0.CO;2-N
24 Khambay B P S (2002). Pyrethroid insecticides. Pest Outlook, 13 (2) :49-54
25 Kumar A, Sharma B, Pandey R S (2008). Cypermethrin and lambda-cyhalothrin induced alterations in nucleic acids and protein contents in a freshwater fish, Channa punctatus. Fish Physiol Biochem, 34(4): 331–338
https://doi.org/10.1007/s10695-007-9192-z pmid: 18958590
26 Kurihara N, Mayamoto J (1998). Chirality in Agrochemicals, John Wiley and Sons, Chichester, UK
27 Laskowski D A (2002). Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol, 174: 49–170
https://doi.org/10.1007/978-1-4757-4260-2_3 pmid: 12132343
28 Lawrence L J, Casida J E (1982). Pyrethroid toxicology: mouse intracerebral structure–toxicity relationships. Pestic Biochem Physiol, 18(1): 9–14
https://doi.org/10.1016/0048-3575(82)90082-7
29 Lee S, Gan J, Kim J S, Kabashima J N, Crowley D E (2004). Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environ Toxicol Chem, 23(1): 1–6
https://doi.org/10.1897/03-114 pmid: 14768859
30 Lee S H, Smith T J, Knipple D C, Soderlund D M (1999). Mutations in the house fly Vssc1 sodium channel gene associated with super-kdr resistance abolish the pyrethroid sensitivity of Vssc1/tipE sodium channels expressed in Xenopus oocytes. Insect Biochem Mol Biol, 29(2): 185–194
https://doi.org/10.1016/S0965-1748(98)00122-2 pmid: 10196741
31 Legath J, Neuschl J, Kacmar P, Poracova J, Dudrikova E, Mlynarcikova H, Kovac G, Javorsky P (1992). Clinical signs and mechanism of supermethrin intoxication in sheep. Vet Hum Toxicol, 34(5): 453–455
pmid: 1455618
32 Li G, Wang K, Liu Y H (2008). Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome. Microb Cell Fact, 7(1): 38
https://doi.org/10.1186/1475-2859-7-38 pmid: 19116015
33 Liang W Q, Wang Z Y, Li H, Wu P C, Hu J M, Luo N, Cao L X, Liu Y H (2005). Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. J Agric Food Chem, 53(19): 7415–7420
https://doi.org/10.1021/jf051460k pmid: 16159167
34 Liu W, Gan J, Schlenk D, Jury W A (2005). Enantioselectivity in environmental safety of current chiral insecticides. Proc Natl Acad Sci USA, 102(3): 701–706
https://doi.org/10.1073/pnas.0408847102 pmid: 15632216
35 Lutnicka H, Bogacka T, Wolska L (1999). Degradation of pyrethroids in an aquatic ecosystem model. Water Res, 33(16): 3441–3446
https://doi.org/10.1016/S0043-1354(99)00054-8
36 Maloney S E, Maule A, Smith A R W (1988). Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Appl Environ Microbiol, 54(11): 2874–2876
pmid: 3145715
37 Maloney S E, Maule A, Smith A R W (1993). Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus. Appl Environ Microbiol, 59(7): 2007–2013
pmid: 8357241
38 Mueller-Beilsehmidt D (1990). Toxicology and Environmental fate of synthetic pyrethroids. J Pestic Reform, 10(3): 32–37
39 Narahashi T (1992). Nerve membrane Na+ channels as targets of insecticides. Trends Pharmacol Sci, 13(6): 236–241
pmid: 1321523
40 Narahashi T (1996). Neuronal ion channels as the target sites of insecticides. Pharmacol Toxicol, 79(1): 1–14
https://doi.org/10.1111/j.1600-0773.1996.tb00234.x pmid: 8841090
41 Naumann K (1998). Research into fluorinated pyrethroid alcohols: an episode in the history of pyrethroid discovery. Pestic Sci, 52(1): 3–20
https://doi.org/10.1002/(SICI)1096-9063(199801)52:1<3::AID-PS689>3.0.CO;2-V
42 Ross M K, Borazjani A, Edwards C C, Potter P M (2006). Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases. Biochem Pharmacol, 71(5): 657–669
https://doi.org/10.1016/j.bcp.2005.11.020 pmid: 16387282
43 Ruan Z, Zhai Y, Song J, Shi Y, Li K, Zhao B, Yan Y (2013). Molecular cloning and characterization of a newly isolated pyrethroid-degrading esterase gene from a genomic library of Ochrobactrum anthropi YZ-1. PLoS One, 8(10): e77329
https://doi.org/10.1371/journal.pone.0077329 pmid: 24155944
44 Saha S, Kaviraj A (2008). Acute toxicity of synthetic pyrethroid cypermethrin to some freshwater organisms. Bull Environ Contam Toxicol, 80(1): 49–52
https://doi.org/10.1007/s00128-007-9314-4 pmid: 18058051
45 Saikia N, Gopal M (2004). Biodegradation of beta-cyfluthrin by fungi. J Agric Food Chem, 52(5): 1220–1223
https://doi.org/10.1021/jf0349580 pmid: 14995124
46 Sakata S, Mikami N, Yamada H (1992). Degradation of pyrethroid optical isomers by soil microorganisms. J Pestic Sci, 17(3): 181–189
https://doi.org/10.1584/jpestics.17.3_181
47 Shukla Y, Yadav A, Arora A (2002). Carcinogenic and cocarcinogenic potential of cypermethrin on mouse skin. Cancer Lett, 182(1): 33–41
https://doi.org/10.1016/S0304-3835(02)00077-0 pmid: 12175521
48 Soderlun D M, Lee S H (2001). Point mutations in homology domain II modify the sensitivity of rat Nav1.8 sodium channels to the pyrethroid insecticide cismethrin. Neurotoxicology, 22(6): 755–765
https://doi.org/10.1016/S0161-813X(01)00065-1 pmid: 11829409
49 Soderlund D M (1997). Molecular mechanisms of insecticide resistance. In: Sjut, V. (Ed.), Molecular Mechanisms of Resistance to Agrochemicals. Springer, Berlin 21–56
50 Soderlund D M, Bloomquist J R (1989). Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol, 34(1): 77–96
https://doi.org/10.1146/annurev.en.34.010189.000453 pmid: 2539040
51 Soderlund D M, Clark J M, Sheets L P, Mullin L S, Piccirillo V J, Sargent D, Stevens J T, Weiner M L (2002). Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology, 171(1): 3–59
https://doi.org/10.1016/S0300-483X(01)00569-8 pmid: 11812616
52 Soderlund D M, Knipple D C (1999). Knockdown resistance to DDT and pyrethroids in the house fly (Diptera: Muscidae): from genetic trait to molecular mechanism. Ann Entomol Soc Am, 92(6): 909–915
https://doi.org/10.1093/aesa/92.6.909
53 Sogorb M A, Vilanova E (2002). Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett, 128(1-3): 215–228
https://doi.org/10.1016/S0378-4274(01)00543-4 pmid: 11869832
54 Stok J E, Huang H, Jones P D, Wheelock C E, Morisseau C, Hammock B D (2004). Identification, expression, and purification of a pyrethroid-hydrolyzing carboxylesterase from mouse liver microsomes. J Biol Chem, 279(28): 29863–29869
https://doi.org/10.1074/jbc.M403673200 pmid: 15123619
55 Tallur P N, Megadi V B, Ninnekar H Z (2008). Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation, 19(1): 77–82
https://doi.org/10.1007/s10532-007-9116-8 pmid: 17431802
56 Valentine W M (1990). Toxicology of selected pesticides, drugs, and chemicals. Pyrethrin and pyrethroid insecticides. Vet Clin North Am Small Anim Pract, 20(2): 375–382
https://doi.org/10.1016/S0195-5616(90)50031-5 pmid: 2180183
57 Valles S M, Dong K, Brenner R J (2000). Mechanism responsible for cypermethrin resistance in a strain of German cockroach germanica. Pestic Biochem Physiol, 66(3): 195–205
https://doi.org/10.1006/pest.1999.2462
58 Vijverberg H P M, van den Bercken J (1990). Neurotoxicological effects and the mode of action of pyrethroid insecticides. Crit Rev Toxicol, 21(2): 105–126
https://doi.org/10.3109/10408449009089875 pmid: 1964560
59 Wang B Z, Guo P, Hang B J, Li L, He J, Li S P (2009). Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Appl Environ Microbiol, 75(17): 5496–5500
https://doi.org/10.1128/AEM.01298-09 pmid: 19581484
60 WHO (1989). Task Group on Environmental Health Criteria for Cypermethrin. Environmental Health Criteria 82. Geneva,WHO
61 WHO (1990). Permethrin. In: Environmental Health Criteria, vol. 94. WHO, Geneva
62 Wu P C, Liu Y H, Wang Z Y, Zhang X Y, Li H, Liang W Q, Luo N, Hu J M, Lu J Q, Luan T G, Cao L X (2006). Molecular cloning, purification, and biochemical characterization of a novel pyrethroid-hydrolyzing esterase from Klebsiella sp. strain ZD112. J Agric Food Chem, 54(3): 836–842
https://doi.org/10.1021/jf052691u pmid: 16448191
63 Xu Y X, Sun J Q, Li X H, Li S P, Chen Y (2007). [Study on cooperating degradation of cypermethrin and 3-phenoxybenzoic acid by two bacteria strains]. Wei Sheng Wu Xue Bao, 47(5): 834–837
pmid: 18062258
64 Yang Z H, Mishimura M, Nishimura K, Kuroda S, Fujita T (1987). Quantitative structure–activity studies of pyrethroids. Ch.12: physicochemical substituent effects of meta-phenoxybenzyl disubstituted acetates on insecticidal activity. Pestic Biochem Physiol, 29(3): 217–232
https://doi.org/10.1016/0048-3575(87)90152-0
65 Yu F B, Shan S D, Luo L P, Guan L B, Qin H (2013). Isolation and characterization of a Sphingomonas sp. strain F-7 degrading fenvalerate and its use in bioremediation of contaminated soil. J Environ Sci Health B, 48(3): 198–207
https://doi.org/10.1080/03601234.2013.730299 pmid: 23356341
66 Yu Y, Fan D (2003). Preliminary study of an enzyme extracted from Alcaligenes sp. strain YF11 capable of degrading pesticides. Bull Environ Contam Toxicol, 70(2): 367–371
https://doi.org/10.1007/s00128-002-0200-9 pmid: 12545372
67 Zerba E N (1999). Susceptibility and resistance to insecticides of Chagas disease vectors. Medicina (B Aires), 59(Suppl 2): 41–46
pmid: 10668241
68 Zhai Y, Li K, Song J, Shi Y, Yan Y (2012). Molecular cloning, purification and biochemical characterization of a novel pyrethroid-hydrolyzing carboxylesterase gene from Ochrobactrum anthropi YZ-1. J Hazard Mater, 221-222: 206–212
https://doi.org/10.1016/j.jhazmat.2012.04.031 pmid: 22579404
69 Zhang C, Jia L, Wang S, Qu J, Li K, Xu L, Shi Y, Yan Y (2010). Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity. Bioresour Technol, 101(10): 3423–3429
https://doi.org/10.1016/j.biortech.2009.12.083 pmid: 20116237
[1] Kimberly D. Girling,Yu Tian Wang. Neuroprotective strategies for NMDAR-mediated excitotoxicity in Huntington’s Disease[J]. Front. Biol., 2016, 11(6): 439-458.
[2] Lijun WANG, Marit NILSEN-HAMILTON. Biomineralization proteins: from vertebrates to bacteria[J]. Front Biol, 2013, 8(2): 234-246.
[3] Jeffrey P. CANTLE, Xiao-Hong LU, Xiaofeng GU, X. William YANG. Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease[J]. Front Biol, 2012, 7(5): 459-476.
[4] Tong LUO, Wei-Hua WU, Bo-Shiun CHEN. NMDA receptor signaling: death or survival?[J]. Front Biol, 2011, 6(6): 468-476.
[5] MA Yonggang, YU Hong, WANG Jinzhong, CHEN Qimin, GENG Yunqi. Membrane-spanning domain of bovine foamy virus transmembrane protein having cytotoxicity[J]. Front. Biol., 2006, 1(4): 353-356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed