|
|
Emerging technologies to power next generation
mobile electronic devices using solar energy |
Dewei JIA 1, Yubo DUAN 2, Jing LIU 3, |
1.Department of Biomedical
Engineering, School of Medicine, Tsinghua University, Beijing 100084,
China; 2.Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China; 3.Technical Institute
of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190,
China;Biomedical Engineering
Department, School of Medicine, Tsinghua University, Beijing 100084,
China; |
|
|
Abstract Mobile electronic devices such as MP3, mobile phones, and wearable or implanted medical devices have already or will soon become a necessity in peoples’ lives. However, the further development of these devices is restricted not only by the inconvenient charging process of the power module, but also by the soaring prices of fossil fuel and its downstream chain of electricity manipulation. In view of the huge amount of solar energy fueling the world biochemically and thermally, a carry-on electricity harvester embedded in portable devices is emerging as a most noteworthy research area and engineering practice for a cost efficient solution. Such a parasitic problem is intrinsic in the next generation portable devices. This paper is dedicated to presenting an overview of the photovoltaic strategy in the chain as a reference for researchers and practitioners committed to solving the problem.
|
Keywords
photovoltaic conversion
energy harvesting
solar cell
maximum power point track algorithm
PV electricity storage
mobile/standalone PV application
|
Issue Date: 05 September 2009
|
|
|
Donelan J M, Li Q, Naing V,et al. Biomechanical energy harvesting: Generating electricityduring walking with minimal user effort. Science, 2008, 319(5864): 807―810
doi: 10.1126/science.1149860
|
|
Ramsay M J and Clark W W. Piezoelectric energy harvestingfor bio MEMS applications. Smart Structuresand Materials, 2001, 4332: 429―438
|
|
Ren K, Liu Yiming, Hofmann H,et al. An active energy harvesting scheme with an electroactivepolymer. Applied Physics Letters, 2007, 91(13): 1329
doi: 10.1063/1.2793172
|
|
Beeby S P, Torah R N, Tudor M J, et al. A micro electromagnetic generator for vibrationenergy harvesting. Journal of Micromechanicsand Microengineering, 2007, 17(7): 1257―1265
doi: 10.1088/0960-1317/17/7/007
|
|
Paradiso J A and Starner T. Energy scavenging for mobileand wireless electronics. IEEE PervasiveComputing, 2005, 4(1): 18―27
doi: 10.1109/MPRV.2005.9
|
|
Shenck N S and Paradiso J A. Energy scavenging with shoe-mountedpiezoelectrics. IEEE Micro, 2001, 21(3): 30―42
doi: 10.1109/40.928763
|
|
Huang W S, Tzeng K E, Cheng M C, et al. Design and fabrication of a vibrational micro-generatorfor wearable MEMS. In: Proc EurosensorsXVII Guimaraes. Portugal: IEEE, 2003, 695―697
|
|
Weber J, Potje-Kamloth K, Haase F,et al. Coin-size coiled-up polymer foil thermoelectricpower generator for wearable electronics. Sensors and Actuators A: Physical, 2006, 132(1): 325―330
doi: 10.1016/j.sna.2006.04.054
|
|
Green M A. Photovoltaic principles. Physica E: Low-dimensional Systems and Nanostructures, 2002, 14(1,2): 11―17
|
|
Conibeer G, Green M, Corkish R,et al. Silicon nanostructures for third generation photovoltaicsolar cells. Thin Solid Films, 2006, 511―512: 654―662
doi: 10.1016/j.tsf.2005.12.119
|
|
Green M A. Third generation photovoltaics: solar cells for 2020 and beyond. Physica E: Low-dimensionalSystems and Nanostructures, 2002, 14(1,2): 65―70
|
|
Duran Sahin A, Dincer I and Rosen M A. Thermodynamic analysis of solar photovoltaic cell systems. Solar Energy Materials and Solar Cells, 2007, 91(2,3): 153―159
|
|
Bisquert J, Garcia-Canadas J, Mora-Sero I,et al. Comparative analysis of photovoltaic principlesgoverning dye-sensitized solar cells and p-n junctions.In: Proceedings of SPIE. Bellingham: SPIE, 2003, 49―59
|
|
Bisquert J, Cahen D, Hodes G,et al. Physical chemical principles of photovoltaicconversion with nanoparticulate, mesoporous dye-sensitized solar cells. J Phys Chem B, 2004, 108(24): 8106―8118
doi: 10.1021/jp0359283
|
|
Nelson J. ThePhysics of Solar Cells. London: Imperial College Press, 2003, 356
|
|
Shockley W. Problemsrelated top-n junctions in silicon. CzechoslovakJournal of Physics, 1961, 11(2): 81―121
doi: 10.1007/BF01688613
|
|
King R R, Karam N H, Ermer J H,et al. Next-generation, high-efficiency III-V multijunctionsolar cells. In: Photovoltaic SpecialistsConference, 2000 Conference Record of the Twenty-Eighth IEEE. Anchorage: IEEE, 2000, 998―1001
|
|
Archer M J, Law D C, Mesropian S,et al. GaInP/GaAs dual junction solar cells on Ge/Siepitaxial templates. Applied Physics Letters, 2008, 92(10): 103503-3
doi: 10.1063/1.2887904
|
|
King R, Law D, Edmondson K,et al. 40% efficient metamorphic GaInP/GaInAs/Ge multijunctionsolar cells. Applied Physics Letters, 2007, 90(18): 183516
doi: 10.1063/1.2734507
|
|
Schaller R, Agranovich V and Klimov V. High-efficiency carrier multiplicationthrough direct photogeneration of multi-excitons via virtual single-excitonstates. Nature Physics, 2005, 1(3): 189
doi: 10.1038/nphys151
|
|
Schaller R, Petruska M and Klimov V. Effect of electronic structure on carriermultiplication efficiency: Comparative study of PbSe and CdSe nanocrystals. Applied Physics Letters, 2005, 87(25): 253102
doi: 10.1063/1.2142092
|
|
Murphy J, Beard M, Norman A,et al. PbTe colloidal nanocrystals: synthesis, characterization,and multiple exciton generation. Journalof American Chemistry Society, 2006, 128(10): 3241―3247
doi: 10.1021/ja0574973
|
|
Nozik A. Multipleexciton generation in semiconductor quantum dots. Chemical Physics Letters, 2008, 457(1―3): 3―11
doi: 10.1016/j.cplett.2008.03.094
|
|
Brendel R, Werner J and Queisser H. Thermodynamic efficiency limits for semiconductorsolar cells with carrier multiplication. Solar Energy Materials and Solar Cells, 1996, 72(24): 419―425
doi: 10.1016/0927-0248(95)00125-5
|
|
Hanna M and Nozik A. Solar conversion efficiencyof photovoltaic and photoelectrolysis cells with carrier multiplicationabsorbers. Journal of Applied Physics, 2006, 100(7): 074510
doi: 10.1063/1.2356795
|
|
Werner J, Brendel R and Queisser H. Radiative efficiency limit of terrestrialsolar cells with internal carrier multiplication. Applied Physics Letters, 1995, 67(10): 1028
doi: 10.1063/1.114719
|
|
Beard M C, Knutsen K P, Yu P, et al. Multiple exciton generation in colloidal siliconnanocrystals. Nano Lett, 2007, 7(8): 2506―2512
doi: 10.1021/nl071486l
|
|
Schaller R D, Petruska M A and Klimov V I. Effect of electronic structure on carriermultiplication efficiency: Comparative study of PbSe and CdSe nanocrystals. Applied Physics Letters, 2005, 87(25): 253102-3
doi: 10.1063/1.2142092
|
|
Nair G and Bawendi M. Carrier multiplication yieldsof CdSe and CdTe nanocrystals by transient photoluminescence spectroscopy. Physical Review B, 2007, 76(8): 81304
doi: 10.1103/PhysRevB.76.081304
|
|
Pijpers J H, Hendry E, Milder T W,et al. Carrier multiplication and its reduction by photodopingin colloidal InAs quantum dots. J PhysChem C, 2007, 111(11): 4146―4152
doi: 10.1021/jp066709v
|
|
Trinh M T, Houtepen J, Schins J M,et al. In spite of recent doubts carrier multiplicationdoes occur in PbSe nanocrystals. Nano Lett, 2008, 8(6): 1713―1718
doi: 10.1021/nl0807225
|
|
Wufel P, Brown S, Humphrey T E,et al. Particle conservation in the hot-carrier solarcell. Progress in Photovoltaics: Researchand Applications, 2005, 13(4): 277―285
doi: 10.1002/pip.584
|
|
Hanna M C, Lu Z, Nozik J. Hot carrier solar cells. In: Future Generation Photovoltaic Technologies. Denver, Colorado: AIP, 1997, 309―316
|
|
Green M A. Recent developments in photovoltaics. Solar Energy, 2004, 76(1―3): 3―8
doi: 10.1016/S0038-092X(03)00065-3
|
|
Mart A. Nextgeneration photovoltaics: High efficiency through full spectrum utilization. London: Instof Physics Pub Inc, 2003, 328
|
|
Peumans P, Yakimov A and Forrest S R. Small molecular weight organic thin-filmphotodetectors and solar cells. Journalof Applied Physics, 2003, 93(7): 3693―3723
doi: 10.1063/1.1534621
|
|
Green M. SiliconSolar Cells: Advanced principles and practice. Sydney: Bridge Printery, 1995, 130
|
|
Crabtree G W, Lewis N S. Solar energy conversion. Physics Today, 2007, 60(3): 37―42
doi: 10.1063/1.2718755
|
|
Green M A. The future of crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications, 2000, 8(1): 127―139
doi: 10.1002/(SICI)1099-159X(200001/02)8:1<127::AID-PIP311>3.0.CO;2-D
|
|
Green M A. Crystalline and thin-film silicon solar cells: state of the artand future potential. Solar Energy, 2003, 74(3): 181―192
doi: 10.1016/S0038-092X(03)00187-7
|
|
Klein S, Finger F, Carius R,et al. Intrinsic amorphous and microcrystalline siliconby hot-wire-deposition for thin film solar cell applications. Thin Solid Films, 2001, 395(1,2): 305―309
|
|
Wu X. High-efficiencypolycrystalline CdTe thin-film solar cells. Solar Energy, 2004, 77(6): 803―814
doi: 10.1016/j.solener.2004.06.006
|
|
Dimmler B, Powalla M, Schock H W. CIS-based thin-film photovoltaic modules: Potential andprospects. Progress in Photovoltaics: Researchand Applications, 2002, 10(2): 149―157
doi: 10.1002/pip.413
|
|
Eberspacher C, Fredric C, Pauls K,et al. Thin-film CIS alloy PV materials fabricated usingnon-vacuum, particles-based techniques. Thin Solid Films, 2001, 387(1,2): 18―22
|
|
Ramanathan K, Contreras M, Perkins C,et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSethin-film solar cells. Progress in Photovoltaics:Research and Applications, 2003, 11(4): 225―230
doi: 10.1002/pip.494
|
|
Wennerberg J, Kessler J, Stolt L. Cu (In, Ga) Se2 based thin-film photovoltaic modulesoptimized for long-term performance. SolarEnergy Materials and Solar Cells, 2003, 75(1,2): 47―55
|
|
Stolt L, Hedstrom J, Kessler J,et al. ZnO/CdS/CuInSe2 thin-film solar cells with improvedperformance. Applied Physics Letters, 1993, 62(6): 597―599
doi: 10.1063/1.108867
|
|
Chopra K L, Paulson P D, Dutta V. Thin-film solar cells: An overview. Progress in Photovoltaics: Research and Applications, 2004, 12(2,3): 69―92
|
|
Green M A. Third generation photovoltaics: Ultra-high conversion efficiencyat low cost. Progress in Photovoltaics:Research and Applications, 2001, 9(2): 123―135
doi: 10.1002/pip.360
|
|
Liu J, Tanaka T, Sivula K,et al. Employing end-functional polythiophene to controlthe morphology of banocrystal-polymer composites in hybrid solar cells. Journal of American Chemical Society, 2004, 126(21): 6550―6551
doi: 10.1021/ja0489184
|
|
Green M A, Emery K, Hishikawa Y,et al. Solar cell efficiency tables (version 30). Progress in Photovoltaics: Research and Applications, 2007, 15(1): 425―430
doi: 10.1002/pip.781
|
|
Gratzel M. Conversionof sunlight to electric power by nanocrystalline dye-sensitized solarcells. Journal of Photochemistry &Photobiology, A: Chemistry, 2004, 164(1―3): 3―14
doi: 10.1016/j.jphotochem.2004.02.023
|
|
Gratzel M. Dye-sensitizedsolar cells. Journal of Photochemistryand Photobiology C: Photochemistry Reviews, 2003, 4(2): 145―153
doi: 10.1016/S1389-5567(03)00026-1
|
|
Gratzel M. Appliedphysics: Solar cells to dye for. Nature, 2003, 421(6923): 586―587
doi: 10.1038/421586a
|
|
Cahen D, Hodes G, Gratzel M,et al. Nature of photovoltaic action in dye-sensitizedsolar cells. J Phys Chem B, 2000, 104(9): 2053―2059
doi: 10.1021/jp993187t
|
|
Fan X, Wang F, Chu Z,et al. Conductive mesh based flexible dye-sensitizedsolar cells. Applied Physics Letters, 2007, 90(7): 073501-3
doi: 10.1063/1.2475623
|
|
Fan B, Hany R, Moser J-E,et al. Enhanced cyanine solar cell performance uponoxygen doping. Organic Electronics, 2008, 9(1): 85―94
doi: 10.1016/j.orgel.2007.09.008
|
|
Fan X, Chu Z, Wang F,et al. Wire-shaped flexible dye-sensitized solar cells. Advanced Materials, 2008, 20(3): 592―595
doi: 10.1002/adma.200701249
|
|
Fan X, Chu Z, Chen L,et al. Fibrous flexible solid-type dye-sensitized solarcells without transparent conducting oxide. Applied Physics Letters, 2008, 92(11): 113510-3
doi: 10.1063/1.2891051
|
|
Wrfel P. Photovoltaicprinciples and organic solar cells. CHIMIAInternational Journal for Chemistry, 2007,61(12): 770―774
doi: 10.2533/chimia.2007.770
|
|
Jenekhe S A, Yi S. Efficient photovoltaic cellsfrom semiconducting polymer heterojunctions. Applied Physics Letters, 2000, 77(17): 2635―2637
doi: 10.1063/1.1320022
|
|
Yang F, Shtein M and Forrest S. Controlled growth of a molecular bulkheterojunction photovoltaic cell. NatureMaterials, 2005, 4(1): 37―41
doi: 10.1038/nmat1285
|
|
Li G, Shrotriya V, Huang J,et al. High-efficiency solution processable polymerphotovoltaic cells by self-organization of polymer blends. Nature Materials, 2005, 4(11): 864―868
doi: 10.1038/nmat1500
|
|
Rostalski J, Meissner D. Photocurrent spectroscopyfor the investigation of charge carrier generation and transport mechanismsin organic p/n-junction solar cells. SolarEnergy Materials and Solar Cells, 2000, 63(1): 37―47
doi: 10.1016/S0927-0248(00)00018-0
|
|
Xue J, Uchida S, Rand B,et al. 4.2% efficient organic photovoltaic cells withlow series resistances. Applied PhysicsLetters, 2004, 84(16): 3013―3016
doi: 10.1063/1.1713036
|
|
Robinson R D, Sadtler B, Demchenko D O,et al. Spontaneous superlattice formation in nanorodsthrough partial cation exchange. Science, 2007, 317(5836): 355―358
doi: 10.1126/science.1142593
|
|
Yin Y, Rioux R M, Erdonmez C K,et al. Formation of hollow nanocrystals through thenanoscale kirkendall effect. 2004, 304(5671): 711―714
|
|
Huynh W U, Dittmer J J and Alivisatos a P. Hybrid nanorod-polymer solarcells. Science, 2002, 295(5564): 2425―2427
doi: 10.1126/science.1069156
|
|
Huynh W U, Dittmer J J, Teclemariam N,et al. Charge transport in hybrid nanorod-polymer compositephotovoltaic cells. Physical Review B, 2003, 67(11): 115326
doi: 10.1103/PhysRevB.67.115326
|
|
Huynh W U, Dittmer J J, Libby W C,et al. Controlling the morphology of nanocrystal-polymercomposites for solar cells. Advanced FunctionalMaterials, 2003, 13(1): 73―79
doi: 10.1002/adfm.200390009
|
|
Gur I, Fromer N A, Geier M L,et al. Air-stable all-inorganic nanocrystal solar cellsprocessed from solution. Science, 2005, 310(5747): 462―465
doi: 10.1126/science.1117908
|
|
Ikegami T, Maezono T, Nakanishi F,et al. Estimation of equivalent circuit parameters ofPV module and its application to optimal operation of PV system. Solar Energy Materials and Solar Cells, 2001, 67(1―4): 389―395
doi: 10.1016/S0927-0248(00)00307-X
|
|
Ranuarez J C, Garcia Sanchez FJ, Ortiz-Conde A. Procedure for determiningdiode parameters at very low forward voltage. Solid-State Electronics, 1999, 43(12): 2129―2133
doi: 10.1016/S0038-1101(99)00181-1
|
|
Ortiz-Conde A, Estrada M, Cerdeira A,et al. Modeling real junctions by a series combinationof two ideal diodes with parallel resistance and its parameter extraction. Solid-State Electronics, 2001, 45(2): 223―228
doi: 10.1016/S0038-1101(01)00011-9
|
|
Verschraegen J, Burgelman M, Penndorf J. Temperature dependence of the diode ideality factor inCuInS2-on-Cu-tape solar cells. Thin SolidFilms, 2005, 480―481: 307―311
doi: 10.1016/j.tsf.2004.11.006
|
|
Hamdy M A, Call R L. The effect of the diode idealityfactor on the experimental determination of series resistance of solarcells. Solar Cells, 1987, 20(2): 119―126
doi: 10.1016/0379-6787(87)90036-6
|
|
Haouari-Merbah M, Belhamel M, Tobes I,et al. Extraction and analysis of solar cell parametersfrom the illuminated current-voltage curve. Solar Energy Materials and Solar Cells, 2005, 87(1―4): 225―233
|
|
Ortiz-Conde A, Garc-Sanchez F J, Muci J. New method to extract the model parameters of solar cellsfrom the explicit analytic solutions of their illuminated I-V characteristics. Solar Energy Materials and Solar Cells, 2006, 90(3): 352―361
doi: 10.1016/j.solmat.2005.04.023
|
|
Hussein R, Borchert D, Grabosch G,et al. Dark I-V-T measurements and characteristics of(n) a-Si/(p) c-Si heterojunction solar cells. Solar Energy Materials and Solar Cells, 2001, 69(2): 123―129
doi: 10.1016/S0927-0248(00)00385-8
|
|
Radziemska E. DarkI-U-T measurements of single crystalline silicon solar cells. Energy Conversion and Management, 2005, 46(9-10): 1485―1494
doi: 10.1016/j.enconman.2004.08.004
|
|
Kaminski A, Marchand J J, Laugier A. I-V methods to extract junction parameters with specialemphasis on low series resistance. Solid-StateElectronics, 1999, 43(4): 741―745
doi: 10.1016/S0038-1101(98)00338-4
|
|
Wilson R, Young A. The embodied energy paybackperiod of photovoltaic installations applied to buildings in the U.K. Building and Environment, 1996, 31(4): 299―305
doi: 10.1016/0360-1323(95)00053-4
|
|
Lu L, Yang H X. A study on simulations ofthe power output and practical models for building integrated photovoltaicsystems. Journal of Solar Energy Engineering, 2004, 126(3): 929―935
doi: 10.1115/1.1701883
|
|
Merten J, Andreu J. Clear separation of seasonaleffects on the performance of amorphous silicon solar modules by outdoorI/V-measurements. Solar Energy Materialsand Solar Cells, 1998, 52(1,2): 11―25
|
|
Zhou W, Yang H, Fang Z. A novel model for photovoltaic array performance prediction. Applied Energy, 2007, 84(12): 1187―1198
doi: 10.1016/j.apenergy.2007.04.006
|
|
Bouzidi K, Chegaar M, Bouhemadou A. Solar cells parameters evaluation considering the seriesand shunt resistance. Solar Energy Materialsand Solar Cells, 2007, 91(18): 1647―1651
doi: 10.1016/j.solmat.2007.05.019
|
|
El-Adawi M K, Al-Nuaim I A. A method to determine thesolar cell series resistance from a single I-V.Characteristic curve considering its shunt resistance-new approach. Vacuum, 2001, 64(1): 33―36
doi: 10.1016/S0042-207X(01)00370-0
|
|
De Blas M A, Torres J L, Prieto E,et al. Selecting a suitable model for characterizingphotovoltaic devices. Renewable Energy, 2002, 25(3): 371―380
doi: 10.1016/S0960-1481(01)00056-8
|
|
Araki K, Yamaguchi M. Novel equivalent circuitmodel and statistical analysis in parameters identification. Solar Energy Materials and Solar Cells, 2003, 75(3,4): 457―466
|
|
Bashahu M, Habyarimana A. Review and test of methodsfor determination of the solar cell series resistance. Renewable Energy, 1995, 6(2): 129―138
doi: 10.1016/0960-1481(94)E0021-V
|
|
Chegaar M, Ouennoughi Z, Guechi F. Extracting dc parameters of solar cells under illumination. Vacuum, 2004, 75(4): 367―372
doi: 10.1016/j.vacuum.2004.05.001
|
|
Tazibt W, Mialhe P, Charles J P,et al. A junction characterization for microelectronicdevices quality and reliability. MicroelectronicsReliability, 2008, 48(3): 348―353
doi: 10.1016/j.microrel.2007.06.002
|
|
Jastrzebski C, Strzalkowski I. Reversible and irreversibleinterface trap centres generated at high electric fields in MOS structures. Microelectronics Reliability, 2000, 40(4,5): 755―758
|
|
Zhao Y, Xu M, Tan C. Effect of reverse substrate bias on ultra-thin gate oxiden-MOSFET degradation under different stress modes. Microelectronics and Reliability, 2006, 46(1): 164―168
doi: 10.1016/j.microrel.2005.05.002
|
|
Hjalmarson H P, Pease R L, Hembree C E,et al. Dose-rate dependence of radiation-induced interfacetrap density in silicon bipolar transistors. Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms, 2006, 250(1,2): 269―273
|
|
Gomaa N G. Photon-induced degradation in metal-insulator-semiconductor solarcells. Renewable Energy, 2001, 24(3,4): 529―534
|
|
Trapes C, Goguenheim D, Bravaix A. Experimental extraction of degradation parameters afterconstant voltage stress and substrate hot electron injection on ultrathinoxides. Microelectronics and Reliability, 2005, 45(5,6): 883―886
|
|
Aydin M E, Gullu O, Yildirim N. Temperature dependence of current-voltage characteristicsof Sn/p-Si Schottky contacts. Physica B:Condensed Matter, 2008, 403(1): 131―138
doi: 10.1016/j.physb.2007.08.089
|
|
Kawamura H, Naka K, Yonekura N,et al. Simulation of I-V characteristics of a PV modulewith shaded PV cells. Solar Energy Materialsand Solar Cells, 2003, 75(3,4): 613―621
|
|
Woyte A, Nijs J, Belmans R. Partial shadowing of photovoltaic arrays with differentsystem configurations: literature review and field test results. Solar Energy, 2003, 74(3): 217―233
doi: 10.1016/S0038-092X(03)00155-5
|
|
Karatepe E, Boztepe M, Colak M. Development of a suitable model for characterizing photovoltaicarrays with shaded solar cells. Solar Energy, 2007, 81(8): 977―992
doi: 10.1016/j.solener.2006.12.001
|
|
Grabitz P O, Rau U, Werner J H. A multi-diode model for spatially inhomogeneous solarcells. Thin Solid Films, 2005, 487(1,2): 14―18
|
|
Gow J A, Manning C D. Development of a photovoltaicarray model for use in power-electronics simulation studies. IEE Proceedings on Electric Power Applications, 1999, 146(2): 193―200
doi: 10.1049/ip-epa:19990116
|
|
Solodovnik E V, Shengyi L, Dougal R A. Power controller design for maximum power tracking insolar installations. IEEE Transactionson Power Electronics, 2004, 19(5): 1295―1304
doi: 10.1109/TPEL.2004.833457
|
|
Tafticht T, Agbossou K, Doumbia M L,et al. An improved maximum power point tracking methodfor photovoltaic systems. Renewable Energy, 2008, 33(7): 1508―1516
doi: 10.1016/j.renene.2007.08.015
|
|
Merten J, Asensi J M, Voz C,et al. Improved equivalent circuit and analytical modelfor amorphous silicon solar cells and modules. Electron Devices, IEEE Transactions on, 1998, 45(2): 423―429
|
|
Karpov V G. Critical disorder and phase transitions in random diode arrays. Physical Review Letters, 2003, 91(22): 226806
doi: 10.1103/PhysRevLett.91.226806
|
|
Karpov V G, Compaana D, Shvydka D. Effects of nonuniformity in thin-film photovoltaics. Applied Physics Letters, 2002, 80(22): 4256―4258
doi: 10.1063/1.1483118
|
|
Rau U, Grabitz P O, Werner J H. Resistive limitations to spatially inhomogeneous electroniclosses in solar cells. Applied PhysicsLetters, 2004, 85(24): 6010―6012
doi: 10.1063/1.1835536
|
|
Karpov V G, Compaana D, Shvydka D. Random diode arrays and mesoscale physics of large-areasemiconductor devices. Physical ReviewB, 2004, 69(4): 045325
doi: 10.1103/PhysRevB.69.045325
|
|
Rau U, Schmidt M. Electronic properties ofZnO/CdS/Cu(In,Ga)Se2 solar cells- aspects of heterojunction formation. Thin Solid Films, 2001, 387(1,2): 141-146
|
|
Shrotriya V, Li G, Yao Y, et al. Accurate measurement and characterization of organicsolar cells. Advanced Functional Materials,2006, 16(15): 2016―2023
doi: 10.1002/adfm.200600489
|
|
Schilinsky P, Waldauf C, Hauch J, et al. Simulation of light intensity dependent currentcharacteristics of polymer solar cells. Journal of Applied Physics, 2004, 95(5): 2816―2819
doi: 10.1063/1.1646435
|
|
Han L, Koide N, Chiba Y, et al. Modeling of an equivalent circuit for dye-sensitizedsolar cells. Applied Physics Letters, 2004, 84(13): 2433―2435
doi: 10.1063/1.1690495
|
|
Karatepe E, Boztepe M, Colak M. Neural network based solar cell model. Energy Conversion and Management, 2006, 47(9,10): 1159―1178
|
|
Reddy K S, Ranjan M. Solar resource estimationusing artificial neural networks and comparison with other correlationmodels. Energy Conversion and Management, 2003, 44(15): 2519―2530
doi: 10.1016/S0196-8904(03)00009-8
|
|
Mubiru J. Predictingtotal solar irradiation values using artificial neural networks. Renewable Energy, 2008, 33(10): 2329―2332
doi: 10.1016/j.renene.2008.01.009
|
|
Veerachary M, Senjyu T, Uezato K. Neural-network-based maximum-power-point tracking ofcoupled-inductor interleaved-boost-converter-supplied PV system usingfuzzy controller. IEEE Transactions onIndustrial Electronics, 2003, 50(4): 749―758
doi: 10.1109/TIE.2003.814762
|
|
Al-Amoudi A, Zhang L. Application of radial basisfunction networks for solar-array modelling and maximum power-pointprediction. Generation, Transmission andDistribution, IEE Proceedings-, 2000, 147(5): 310―316
|
|
Park M, Kim B T, Yu I K. A novel simulation method for PV power generation systemsusingreal weather conditions. In: IndustrialElectronics, 2001 Proceedings ISIE 2001 IEEE International Symposiumon. Pusan, Korea: IEEE, 2001, 526―530
|
|
Chung H S H, Tse K K, Hui S Y R, et al. A novel maximum power point tracking techniquefor solar panels using a SEPIC or Cuk converter. IEEE Transactions on Power Electronics, 2003, 18(3): 717―724
doi: 10.1109/TPEL.2003.810841
|
|
Grzesiak W. MPPTsolar charge controller for high voltage thin film PV modules. In:Photovoltaic Energy Conversion, ConferenceRecord of the 2006 IEEE 4th World Conference on. Piscataway: IEEE, 2006, 2264―2267
|
|
Alghuwainem S M. Matching of a DC motor to a photovoltaic generator using a step-upconverter with a current-locked loop. IEEETransactions on Energy Conversion, 1994, 9(1): 192―198
doi: 10.1109/60.282492
|
|
Gow J A, Manning C D. Controller arrangement forboost converter systems sourced from solar photovoltaic arrays orother maximum power sources. IEE Proceedingson Electric Power Applications, 2000, 147(1): 15―20
doi: 10.1049/ip-epa:20000018
|
|
Koutroulis E, Kalaitzakis K, Voulgaris N C. Developmentof a microcontroller-based, photovoltaic maximum power point trackingcontrol system. IEEE Transactions on PowerElectronics, 2001, 16(1): 46―54
doi: 10.1109/63.903988
|
|
Femia N, Petrone G, Spagnuolo G, et al. Optimization of perturb and observe maximum powerpoint tracking method. IEEE Transactionson Power Electronics, 2005, 20(4): 963―973
doi: 10.1109/TPEL.2005.850975
|
|
Chihchiang H, Jongrong L, Chihming S. Implementation of a DSP-controlled photovoltaic systemwith peak power tracking. IEEE Transactionson Industrial Electronics, 1998, 45(1): 99―107
doi: 10.1109/41.661310
|
|
Hohm D P, Ropp M E. Comparative study of maximumpower point tracking algorithms. Progress in Photovoltaics: Research and Applications, 2003, 11(1): 47―62
doi: 10.1002/pip.459
|
|
Masoum M S, Dehbonei H, Fuchs E F. Theoretical and experimental analyses of photovoltaicsystems with voltageand current-based maximum power-point tracking. IEEE Transactions on Energy Conversion, 2002, 17(4): 514―522
doi: 10.1109/TEC.2002.805205
|
|
Appelbaum J. Discussionof "Theoretical and experimental analyses of photovoltaic systemswith voltage and current-based maximum power point tracking". IEEE Transactions on Energy Conversion, 2004, 19(3): 651―652
doi: 10.1109/TEC.2004.832446
|
|
Masoum M S, Dehbonei H, Fuchs E F. Closure on "Theoreticaland experimental analyses of photovoltaic systems with voltage andcurrent-based maximum power point tracking". IEEE Transactions on Energy Conversion, 2004, 19(3): 652―653
doi: 10.1109/TEC.2004.832449
|
|
Noguchi T, Togashi S, Nakamoto R. Short-current pulse-based maximum-power- point trackingmethod for multiple photovoltaic-and-converter module system. IEEE Transactions on Industrial Electronics, 2002, 49(1): 217―223
doi: 10.1109/41.982265
|
|
Lee D Y, Noh H J, Hyun D S, et al. An improved MPPT converter using current compensationmethod for small scaled PV-applications. In: Applied Power Electronics Conference and Exposition, 2003 APEC'03 Eighteenth Annual IEEE. New York: IEEE, 2003, 540―545
|
|
Enslin J H R, Wolf M S, Snyman D B, et al. Integrated photovoltaic maximum power point trackingconverter. IEEE Transactions on IndustrialElectronics, 1997, 44(6): 769―773
doi: 10.1109/41.649937
|
|
Masoum M S, Badejani S M M and Fuchs E F. Microprocessor-controlled new class of optimal batterychargers for photovoltaic applications. IEEE Transactions on Energy Conversion, 2004, 19(3): 599―606
doi: 10.1109/TEC.2004.827716
|
|
Veerachary M, Senjyu T, Uezato K. Voltage-based maximum power point tracking control ofPV system. IEEE Transactions on Aerospaceand Electronic Systems, 2002, 38(1): 262―270
doi: 10.1109/7.993245
|
|
Hussein K H, Muta I, Hoshino T,et al. Maximum photovoltaic power tracking: an algorithmfor rapidly changing atmospheric conditions. Generation, Transmission and Distribution, IEE Proceedings-, 1995, 142(1): 59―64
|
|
Tse K K, Ho B M T, Chung H S H, et al. A comparative study of maximum-power-point trackersfor photovoltaic panels using switching-frequency modulation scheme. IEEE Transactions on Industrial Electronics, 2004, 51(2): 410―418
doi: 10.1109/TIE.2004.825226
|
|
Kuo Y C, Liang T J, Chen J F. Novel maximum-power-point-tracking controller for photovoltaicenergy conversion system. IEEE Transactionson Industrial Electronics, 2001, 48(3): 594―601
doi: 10.1109/41.925586
|
|
Khaehintung N, Pramotung K, Tuvirat B, et al. RISC-microcontroller built-in fuzzy logic controllerof maximum power point tracking for solar-powered light-flasher applications. In: Industrial Electronics Society, 2004 IECON 2004 30th Annual Conference of IEEE. Piscataway: IEEE, 2004, 2673―2678
|
|
Viswanathan K, Oruganti R, Srinivasan D. Nonlinear function controller:asimple alternative to fuzzy logic controller for a power electronicconverter. IEEE Transactions on IndustrialElectronics, 2005, 52(5): 1439―1448
doi: 10.1109/TIE.2005.855652
|
|
Wu T F, Chang C H, Chen Y H. A fuzzy-logic-controlled single-stage converter for PV-poweredlighting system applications. IEEE Transactionson Industrial Electronics, 2000, 47(2): 287―296
doi: 10.1109/41.836344
|
|
Khaehintung N, Sirisuk P. Implementation of maximumpower point tracking using fuzzy logic controller for solar-poweredlight-flasher applications. In: The 200447th Midwest Symposium on Circuits and Systems. New York: IEEE, 2004, 171―174
|
|
Tarascon J M, Armand M. Issues and challenges facingrechargeable lithium batteries. Nature, 2001, 414(6861): 359―367
doi: 10.1038/35104644
|
|
Barbarisi O, Canaletti R, Glielmo L,et al. State of charge estimator for NiMH batteries. In: Proc 41st IEEE Conf Decision and Control. Piscataway: IEEE, 2002, 1739―1744
|
|
Danese G, Leporati F, Lombardi R,et al. An instrument for the characterization of voltageand temperature profile in NiCd and NiMH batteries. In: EUROMICRO 97 'New Frontiers of Information Technology' Short Contributions,Proceedings of the 23rd Euromicro Conference. Piscataway: IEEE, 1997, 178―183
|
|
Boico F, Lehman B, Shujaee K. Solar battery chargers for NiMH batteries. IEEE Transactions on Power Electronics, 2007, 22(5): 1600―1609
doi: 10.1109/TPEL.2007.904164
|
|
Nobuyoshi M, Takayoshi I. A control method to chargeseries-connected ultraelectric Double-Layer capacitors suitable forphotovoltaic generation systems combining MPPT control method. Industrial Electronics, IEEE Transactions on, 2007, 54(1): 374―383
|
|
Isaacson M J, Hollandsworth RP, Giampaoli P J,et al. Advanced lithiumion battery charger. In: Battery Conferenceon Applications and Advances, 2000The Fifteenth Annual. Long Beach. CA, USA: IEEE, 2000, 193―198
|
|
Min C, Rincon-Mora G A. Accurate, compact, and power-efficientLi-Ion battery chargercircuit. Circuitsand Systems II: Express Briefs, IEEE Transactions on, 2006, 53(11): 1180―1184
|
|
Potanin V, Potanin V Y. Li-Ion battery charger withthree-parameter regulation loop. In: PowerElectronics Specialists, 2005 IEEE 36th Conference on. Piscataway:IEEE, 2005, 2836―2840
|
|
Dearborn S. ChargingLi-ion batteries for maximum run times. Power Electronics Technology Magazine, 2005, (4): 40―49
|
|
Jia D. Developmentof human kinematic energy based generator. Dissertation for the Bachelor's Degree. Shanghai: Tongji University, 2008, 92
|
|
Schubert M B, Werner J H. Flexible solar cells forclothing. Materials Today, 2006, 9(6): 42―50
doi: 10.1016/S1369-7021(06)71542-5
|
|
Leichtenstern K, Rukzio E, Chin J,et al. Mobile interaction in smart environments. Advances in Pervasive Computing, 2006, 207(1): 43―48
|
|
Syed A, Kindra T S. Carrying case with solarcharger mounted on top for portable devices. Canada patent, CA 2486877. 2006
|
|
Sun C-H, Jiang P, Jiang B. Broadband moth-eye antireflection coatings on silicon. Applied Physics Letters, 2008, 92(6): 061112―061113
doi: 10.1063/1.2870080
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|