Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    0, Vol. Issue () : 330-339    https://doi.org/10.1007/s11708-010-0121-y
RESEARCH ARTICLE
Biomass to dimethyl ether by gasification/synthesis technologyan alternative biofuel production route
Tiejun WANG, Yuping LI, Longlong MA, Chuangzhi WU()
Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
 Download: PDF(333 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Technical and economic analysis was done for the biomass to dimethyl ether (DME) technology to promote the gasification/synthesis route for biofuel production and its application as a fossil fuel substitute. The technology of biomass gasification/synthesis has obvious advantages, including production flexibility, environmental friendliness, economic feasibility, and application versatility. Biomass gasification/synthesis technology integrates bio-DME synthesis, fertilizer production, electricity generation, and waste heat utilization to convert waste biomass residues to DME for use as liquid petroleum gas, transportation fuel substitute, and chemical intermediates, which has been proven to be one of the most effective and clean biomass utilization routes. The 1000 t/a-scale demonstration plant has a bio-DME production rate of 6 to 7tbiomass/tDME, biomass gasification efficiency of≥82%, once-through CO conversion of ≥70%, DME selectivity (DME/DME+other organic products) of ≥90%, and a total system efficiency of ≥38%. The demonstration plant also has self-sufficient steam and electricity supply. The 10,000tons/a-scale bio-DME production cost with or without feedstock subsidy is estimated to be 1968 Yuan/t and 2868 Yuan/t, respectively in China. Because of the limitation in biomass feedstock collection cost, massive and disperse commercial plants with a capacity of 10000 t/a bio-DME are more suitable for rural areas.

Keywords technical and economic analysis      biomass      dimethyl ether      gasification/synthesis     
Corresponding Author(s): WU Chuangzhi,Email:wucz@ms.giec.ac.cn   
Issue Date: 05 September 2011
 Cite this article:   
Tiejun WANG,Yuping LI,Longlong MA, et al. Biomass to dimethyl ether by gasification/synthesis technologyan alternative biofuel production route[J]. Front Energ, 0, (): 330-339.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-010-0121-y
https://academic.hep.com.cn/fie/EN/Y0/V/I/330
Fig.1  1—corncob inlet; 2—pyrolyzer; 3—gasifier; 4—heat exchanger; 5—bag filter; 6—PSA unit; 7—cooler; 8—roots blower; 9—syngas flowmeter; 10—gas tank
Schematic diagram of bio-syngas production using two-stage gasification
Fig.2  1—bio-syngas inlet; 2—compressor; 3,4,5—CO removal system; 6—absorber I; 7—absorber II; 8—synthesis reactor; 9—cooler; 10—gas liquid separator; 11—soft water tank; 12—absorb tower; 13—intermediate products tank; 14—rectifier; 15—cooler; 16—calculation tank; 17—heater; 18—storage tank; 19,20—heating oil
100 t/a-scale DME synthesis system from bio-syngas
flow rate/(m3·h-1)Composition of gases (mole fraction)/%
H2COCO2N2CH4C2~DMECH3OH
compressor outlet43.0026.5923.9832.5714.062.80<0.03--
24.0028.6328.1928.7512.042.39<0.03--
synthesis reactor inlet34.0335.1531.8711.4218.193.37<0.03--
18.2437.6035.398.5415.652.82<0.03--
synthesis reactor outlet26.7525.5711.5626.3323.621.910.1510.410.45
13.0423.659.0427.8124.681.830.1312.740.12
Tab.1  Main results under typical conditions
Fig.3  Flow sheet of bio-DME production by gasification/synthesis technology
Fig.4  Schematic diagram of bio-syngas production system in the 1000 t/a-scale demonstration plant
Fig.5  Photographs of the 1000 t/a-scale bio-DME demonstration plant
propertiesDMELPG
molecular weight/(kg·kmol-1)4644-46
Vapor pressure (60°C)/mpa1.351.92
low heat value (LHV)/(MJ·kg-1)28.445.76
lower explosive limit (%)3.51.7
stoichiometric air/fuel ratio/(m3·kg-1)7.4612.02
low heat value of premixed air/fuel gas/(MJ·m-3)4.223.91
theoretical combustion temperature/°C22502055
Tab.2  Comparison of DME and LPG
ItemsEuro III dieselDME engine
HC(hydrocarbons)0.600.2
CO2.02.17
NOx5.03.85
PM(particulate matter)0.10.05
* based on the ECE R49 certification test
Tab.3  DME engine emissions compared with Euro III diesel
ItemsULEV dieselDME engine
NMHC(non-methane hydrocarbons)1.30.21
CO7.23.2
NOx+HC2.52.4
PM(particulate matter)0.050.033
HCHO0.250.22
* based on the ECE R49 certification test
Tab.4  DME engine emissions compared with ULEV
itemscosts (bio-DME) /(Yuan·t-1)
biomass feedstock (6 t X 300 Yuan/t)1800
catalyst78
electricity100
personnel160
maintenance &management130
equipment depreciation400
other utilities200
production cost2868
biomass subsidy (6 t X 150 Yuan/t)-900
actual production cost1968
Tab.5  Production cost in RMB Yuan per ton bio-DME in the 10000 t/a-scale plant
itemscosts/104 Yuan
3000 t/a10000 t/a
gasification570865
DME synthesis and purification14603120
fuel supply155290
gas cooling, shift, and cleaning75170
waste water treatment110245
water supply55155
boiler, power, electricity305450
process control95150
auxiliary utilities and offsites120350
civil and building100200
interest, management, commission and startup6001280
contingencies80220
grand total investment37257495
Tab.6  Investment cost in commercial scale bio-DME production plant
年umberitemstechnical indexeconomic indexcalculation method
[1]bio-DME plant capacity/(t·a-1)300010000
[2]operation time/(h·a-1)60006000
[3]biomass consumption rate/(kg·kg-1)66
[4]biomass consumption/(104 t·a-1)1.86[1]×[3]/10000
[5]biomass price/(Yuan·t-1)300300
[6]catalyst consumption/(t·a-1)26
[7]catalyst price/(104 Yuan·t-1)1313
[8]biomass feedstock/(104 Yuan·t-1)5401800[4]×[5]
[9]personnel/(104 Yuan·a-1)16016020000 Yuan/(a×person) ×80 person
[10]catalyst/(104 Yuan·a-1)2678[6]×[7]
[11]electricity/(104 Yuan·a-1)30100100 Yuan/t
[12]maintenance/(104 Yuan·a-1)5080
[13]management/(104 Yuan·a-1)3050
[14]fuel, water/(104 Yuan·a-1)60200100 Yuan/t
[15]Equipment depreciation/(104 Yuan·a-1)20040015 years depreciation
[16]grand total operation cost/(104 Yuan·a-1)10962868[8]+ [9]+ … + [15]
[17]biomass subsidy/(104 Yuan·a-1)270900150 Yuan /t
[18]actual operation cost/(104 Yuan·a-1)8261968[16]-[17]
[19]DME production cost/(Yuan·t-1)27531968[16]/[1] × 10000
[20]DME wholesale price/(Yuan·t-1)40004000
[21]sales income/(104 Yuan·a-1)12004000[1]×[19]/10000
[22]profit and tax/(104 Yuan·a-1)3742032[21] - [18]
[23]business tax/(104 Yuan·a-1)00
[24]income tax/(104 Yuan·a-1)00tax exemption policy
[25]profit/(104 Yuan·a-1)3742032[22] - [23] - [24]
[26]grand total investment/(106 Yuan·a-1)37.2574.95
[27]rate of return on investment/%10.0427.11[23]/ [26] × 100
Tab.7  Economic benefit analysis of bio-DME production by gasification/synthesis technology
itemsbio-DME production capacity/(t·a-1)
3000500010000
biomass price/(Yuan·t-1)300300300
bio-DME wholesale price/(Yuan·t-1)400040004000
rate of return on investment/%10.014.527.1
Tab.8  Effect of bio-DME production capacity on rate of return on investment
itemsraw biomass price/(Yuan·t-1)
200300400500
bio-DME production scale/(t·a-1)10000100001000010000
bio-DME wholesale price/(Yuan·t-1)4000400040004000
rate of return on investment/%35.127.119.111.1
Tab.9  Effect of biomass feedstock price on rate of return on investment
itemsbio-DME wholesale price/(Yuan·t-1)
3000400050006000
bio-DME production scale/(t·a-1)10000100001000010000
biomass price/(Yuan·t-1)300300300300
rate of return on investment/%13.827.140.453.8
Tab.10  Effect of bio-DME wholesale price on rate of return on investment
1 Demirbas A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers. Manage , 2008, 49(8): 2106–2116
doi: 10.1016/j.enconman.2008.02.020
2 Hamelinck CN, Faaij APC. Outlook for advanced biofuels. Energy Policy , 2006, 34(17): 3268–3283
doi: 10.1016/j.enpol.2005.06.012
3 Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews , 2006, 106(9): 4044–4098
doi: 10.1021/cr068360d
4 Semelsberger T A, Borup R L, Greene H L. Dimethyl ether (DME) as an alternative fuel. Journal of Power Sources , 2006, 156(2): 497–511
doi: 10.1016/j.jpowsour.2005.05.082
5 Mao D, Yang W, Xia J, Zhang B, Lu G. The direct synthesis of dimethyl ether from syngas over hybrid catalysts with sulfate-modified [gamma]-alumina as methanol dehydration components. Journal of Molecular Catalysis A-Chemical , 2006, 250(1,2): 138–144
6 Fleisch T H, Basu A, Gradassi M J, Masin J G. Dimethyl ether: A fuel for the 21st century. Studies in Surface Science and Catalysis , 1997, 107: 117–125
doi: 10.1016/S0167-2991(97)80323-0
7 Lee S G, Sardesai A. Liquid phase methanol and dimethyl ether synthesis from syngas. Topics in Catalysis , 2005, 32(3,4): 197–207
8 The Bio-DME Consortium. The Bio-DME Roject (Phase I). Report to Swedish National Energy Administration . Sweden, 2002, http://www.atrax.se/pdf/Final_report_DME.pdf
9 Wang T, Chang J, Cui X, Zhang Q, Fu Y. Reforming of raw fuel gas from biomass gasification to syngas over highly stable nickel-magnesium solid solution catalysts. Fuel Process. Technol . 2006, 87(5): 421–428
doi: 10.1016/j.fuproc.2005.10.006
10 Dong Y, Steinberg M. Hynol-An economical process for methanol production from biomass and natural gas with reduced CO2 emission. International Journal of Hydrogen Energy , 1997, 22(10,11): 971–977
11 Adachi Y, Komoto M, Watanabe I, Ohno Y, Fujimoto K. Effective utilization of remote coal through dimethyl ether synthesis. Fuel , 2000, 79: 229–234
12 Jiang T, Liu C-J, Rao M-F, Yao C-D, Fan G-L. A novel synthesis of diesel fuel additives from dimethyl ether using dielectric barrier discharges. Fuel Processing Technology , 2001: 73(2): 143–152
doi: 10.1016/S0378-3820(01)00198-9
13 Li Y, Wang T, Yin X, Wu C, Ma L, Li H, Sun L. Design and operation of integrated pilot-scale dimethyl ether synthesis system via pyrolysis/gasification of corncob. Fuel , 2009; 88(11): 2181–2187
[1] Zhongyang Luo, Wanchen Zhu, Feiting Miao, Jinsong Zhou. Catalytic hydrodeoxygenation of pyrolysis bio-oil to jet fuel: A review[J]. Front. Energy, 2024, 18(5): 550-582.
[2] Hui LI, Changlan HOU, Yunbo ZHAI, Mengjiao TAN, Zhongliang HUANG, Zhiwei WANG, Lijian LENG, Peng LIU, Tingzhou LEI, Changzhu LI. Selective preparation for biofuels and high value chemicals based on biochar catalysts[J]. Front. Energy, 2023, 17(5): 635-653.
[3] Maria Carolina ANDRADE, Caio de Oliveira GORGULHO SILVA, Leonora Rios de SOUZA MOREIRA, Edivaldo Ximenes FERREIRA FILHO. Crop residues: applications of lignocellulosic biomass in the context of a biorefinery[J]. Front. Energy, 2022, 16(2): 224-245.
[4] Peiyuan PAN, Yunyun WU, Heng CHEN. Performance evaluation of an improved biomass-fired cogeneration system simultaneously using extraction steam, cooling water, and feedwater for heating[J]. Front. Energy, 2022, 16(2): 321-335.
[5] Xiaojun XUE, Yuting WANG, Heng CHEN, Gang XU. A coal-fired power plant integrated with biomass co-firing and CO2 capture for zero carbon emission[J]. Front. Energy, 2022, 16(2): 307-320.
[6] Yishu XU, Xiaowei LIU, Jiuxin QI, Tianpeng ZHANG, Minghou XU, Fangfang FEI, Dingqing LI. Compositional and structural study of ash deposits spatially distributed in superheaters of a large biomass-fired CFB boiler[J]. Front. Energy, 2021, 15(2): 449-459.
[7] Md Tanvir ALAM, Baiqian DAI, Xiaojiang WU, Andrew HOADLEY, Lian ZHANG. A critical review of ash slagging mechanisms and viscosity measurement for low-rank coal and bio-slags[J]. Front. Energy, 2021, 15(1): 46-67.
[8] Ru Shien TAN, Tuan Amran TUAN ABDULLAH, Anwar JOHARI, Khairuddin MD ISA. Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: a review[J]. Front. Energy, 2020, 14(3): 545-569.
[9] Buqing YE, Rui ZHANG, Jin CAO, Bingquan SHI, Xun ZHOU, Dong LIU. Thermodynamic and economic analyses of a coal and biomass indirect coupling power generation system[J]. Front. Energy, 2020, 14(3): 590-606.
[10] Tongbin ZHAO, Jiabo ZHANG, Dehao JU, Zhen HUANG, Dong HAN. Exergy losses in premixed flames of dimethyl ether and hydrogen blends[J]. Front. Energy, 2019, 13(4): 658-666.
[11] Nitipong SOPONPONGPIPAT,Dussadeeporn SITTIKUL,Unchana SAE-UENG. Higher heating value prediction of torrefaction char produced from non-woody biomass[J]. Front. Energy, 2015, 9(4): 461-471.
[12] Bayu PRABOWO,Herri SUSANTO,Kentaro UMEKI,Mi YAN,Kunio YOSHIKAWA. Pilot scale autothermal gasification of coconut shell with CO2-O2 mixture[J]. Front. Energy, 2015, 9(3): 362-370.
[13] Ashok Jayawant Rao KECHE, Gaddale AMBA PRASAD RAO. Experimental evaluation of a 35 kVA downdraft gasifier[J]. Front Energ, 2013, 7(3): 300-306.
[14] Xiangsong HOU, Shi YANG, Junfu LU, Hai ZHANG, Guangxi YUE. Effect of circulating ash from CFB boilers on NO and N2O emission[J]. Front Energ Power Eng Chin, 2009, 3(2): 241-246.
[15] Zhen HUANG , Xinqi QIAO , Wugao ZHANG , Junhua WU , Junjun ZHANG , . Dimethyl ether as alternative fuel for CI engine and vehicle[J]. Front. Energy, 2009, 3(1): 99-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed