Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    0, Vol. Issue () : 43-48    https://doi.org/10.1007/s11708-010-0135-5
RESEARCH ARTICLE
Causality relationship between the photovoltaic market and its manufacturing in China, Germany, the US, and Japan
Molin HUO1(), Xiliang ZHANG1, Jiankun HE2
1. Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China; 2. Institute of Low Carbon Economy, Tsinghua University, Beijing 100084, China
 Download: PDF(109 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper aims to investigate the Granger causality relationships between the photovoltaic (PV) market scale and PV manufacturing development in China, Germany, the US, and Japan, and consequently provide recommendations for strategic investment and industrial policy making. The empirical results show that the growth of the market scale caused the increase in innovation scale in the four countries except China. Moreover, there were bidirectional causalities between them in Germany and in the US, respectively, suggesting that the strategic perspective and the formation of a virtuous circle could make PV industry policies cost effective. Only in China did the growth of the market scale cause the increase in production scale, implying significant market risk for the manufacturing sector. The empirical result shows that the manufacturing sector can affect the dynamics of the market scale.

Keywords photovoltaic      innovation      demand pull      scale economies      granger causality     
Corresponding Author(s): HUO Molin,Email:molin.huo@gmail.com   
Issue Date: 05 March 2011
 Cite this article:   
Molin HUO,Xiliang ZHANG,Jiankun HE. Causality relationship between the photovoltaic market and its manufacturing in China, Germany, the US, and Japan[J]. Front Energ, 0, (): 43-48.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-010-0135-5
https://academic.hep.com.cn/fie/EN/Y0/V/I/43
Fig.1  Analytic framework
Sta.Critical value (5%)C,T,K
lnCM-4.218*-3.791,1,3ADFI(0)
lnCP-3.695-1.970,0,0ADFI(2)
lnCR-5.203-3.081,0,0ADFI(1)
lnGM-5.432-3.761,1,1ADFI(1)
lnGP-9.255-3.931,1,1ADFI(0)
lnGR-4.355-1.970,0,0ADFI(1)
lnJM-2.620*-1.971,0,0ERSI(1)
lnJP-2.299*-1.971,0,0ERSI(1)
lnJR-3.925-1.970,0,0ADFI(1)
lnUM-4.673*-3.761,1,0ADFI(1)
lnUP-1.994*-1.971,0,0ERSI(1)
lnUR-2.143*-1.971,0,0ERSI(1)
lnCRC-3.981*-3.761,1,0ADFI(1)
lnGRC-4.065*-3.881,1,3ADFI(1)
lnJRC-2.304*-1.971,0,0ERSI(1)
lnURC-4.922-3.831,1,2ADFI(1)
Tab.1  Results of the unit root tests
Sta.[Critical (5%)](C,T,K){}
lnCMlnCP-2.670[-2.01]*(0,0,1){0}
lnGMlnGR-2.989[-1.96](0,0,0){0}
lnUMlnUP-2.788[-1.97](0,0,3){0}
lnUMlnUR-2.924[-1.97](0,0,1){0}
lnUMlnURC-2.089[-1.97]*(0,0,0){0}
lnJMlnJP-1.814[-1.97]**(0,0,2){1}
lnJMlnJR-2.630[-1.97]*(0,0,0){0}
Tab.2  Results of the E-G cointegration tests
Null hypothesis lnX≠>lnYShort-runLong-runLag
Sta.[Prob.]Sta.[Prob.]
lnGM≠>lnGR4.22[0.077]*2.77[0.157]3
lnJM≠>lnJP1.91[0.217]2.85[0.135]2
lnJM≠>lnJR2.29[0.220]37.99[0.004]*3
lnUM≠>lnUP0.00[0.961]1.90[0.199]1
lnUM≠>lnUR11.35[0.006]*4.52[0.071]*2
lnCM≠>lnCP13241[0.006]*8260[0.007]*2
lnJP≠>lnJM2.97[0.108]0.00[0.961]2
lnUP≠>lnUM6.62[0.020]*0.01[0.909]2
lnCP≠>lnCM1.05[0.568]1.70[0.417]2
lnURC≠>lnUM4.50[0.049]*0.67[0.437]2
Tab.3  Wald F-test statistics from VEC estimation
Null hypothesisSta.[Prob.]Lag
lnCM≠>lnCR0.43[0.521]1
lnGM≠>lnGP0.93[0.452]2
lnGP≠>lnGM10.43[0.012]*1
lnCRC≠>lnCM1.01[0.334]1
lnGRC≠>lnGM4.27[0.062]*3
lnJRC≠>lnJM0.59[0.577]2
Tab.4  Wald F-test statistics from VAR estimation
Market scale
ChinaGermanyUnited StatesJapan
Manufacturing sectorInnovation scale↙[S](3)- +↙[S,L](2) +↙[L](3) +
Knowledge stock↗[V](3) + -↗[S](2) +
Production scale↙[S,L](2) +↗[V](1) + -↗[S](2)- +
Tab.5  All the causalities in the four countries
1 Stijn T A, Jeroen C J M. Multilevel assessment of diversity, innovation and selection in the solar photovoltaic industry. Structural Change and Economic Dynamics , 2009, 20(1): 50-60
doi: 10.1016/j.strueco.2008.10.001
2 Strategies Unlimited. Photovoltaic Five-Year Market Forecast 2002-2007. Mountain View, CA , 2003
3 Ragwitz M, Miola A. Evidence from RD&D spending for renewable energy sources in the EU. Renewable Energy , 2005, 30(11): 1635-1647
doi: 10.1016/j.renene.2004.12.001
4 Kazmerski L L. Photovoltaics R&D in the United States: positioning for our future. In: The 29th IEEE PV Specialists Conference, New Orleans, Louisiana , 2002
5 Watanabe C, Wakabayashi K, Miyazawa T. Industrial dynamism and the creation of a “virtuous cycle” between R&D, market growth and price reduction: the case of photovoltaic power generation (PV) development in Japan. Technovation , 2000, 20(6): 299-312
doi: 10.1016/S0166-4972(99)00146-7
6 Hoffmann W. PV solar electricity industry: market growth and perspective. Solar Energy Materials and Solar Cells , 2006, 90(18-19): 3285-3311
doi: 10.1016/j.solmat.2005.09.022
7 Cabraal A, Cosgrove-Davies M, Schaeffer L. Accelerating sustainable photovoltaic market development. Progress in Photovoltaics: Research and Applications , 1998, 6(5): 297-306
doi: 10.1002/(SICI)1099-159X(1998090)6:5<297::AID-PIP226>3.0.CO;2-C
8 Duke R, Williams R, Payne A. Accelerating residential PV expansion: demand analysis for competitive electricity markets. Energy Policy , 2005, 33(15): 1912-1929
doi: 10.1016/j.enpol.2004.03.005
9 Grubb M. Technology innovation and climate change policy: an overview of issues and options. Keio Economic Studies , 2004, 41(2): 103-132
10 Mowery D, Rosenberg N. The influence of market demand upon innovation: a critical review of some recent empirical studies. Research Policy , 1979, 8(2): 102-153
doi: 10.1016/0048-7333(79)90019-2
11 Gon?alves P, Hines J, Sterman J. The impact of endogenous demand on push-pull production systems. System Dynamics Review , 2005, 21(3): 187-216
doi: 10.1002/sdr.318
12 Klaassen G, Miketa A, Larsen K, Sundqvist T.The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom. Ecological Economics , 2005, 54(2,3): 227-240
13 Moore F T. Economies of scale: Some statistical evidence. Quarterly Journal of Economics , 1959, 73(2): 232-245
doi: 10.2307/1883722
14 Granger C W J. Investigating causal relations by econometric models and cross-spectral models. Econometrica , 1969, 37(3): 424-438
doi: 10.2307/1912791
15 Sims C A. Money, income, and causality. American Economic Review , 1972, 62(4): 540-552
16 Engle R, Granger C. Cointegration and error correction: representation, estimation, and testing. Econometrica , 1987, 55(2): 251-276
doi: 10.2307/1913236
17 Wang W J, Zhao Y W, Wang S C. Chinese Photovoltaic Industry Development. National Development and Reform Commission, Global Environment Fund and World Bank, Beijing , 2004
18 Li J F, Wang S C, Zhang M J, Ma L J. China Solar Photovoltaic Report 2007.Beijing: China Environmental Science Press, 2007
19 European Photovoltaic Industry Association. Global Market Outlook for Photovoltaics until 2014. EPIA , 2010
20 Bundesverband Solarwirtschaft German Solar Industry Association. Statistics for the German solar power industry.2009, http://en.solarwirtschaft.de/fileadmin/content_files/Faktenblatt_PV_EN_sep09.pdf
21 US Energy Information Administration. Renewable Energy Annual 2007. Washington DC: US Department of Energy , 2009
22 Ikki O, Matsubara K. National Survey Report of PV Power Applications in Japan 2007. IEA , 2008
[1] Xiangwan DU. Thoughts on strategies and paths to achieve carbon peaking and carbon neutrality in China[J]. Front. Energy, 2023, 17(3): 324-331.
[2] Muni Raj MAURYA, John-John CABIBIHAN, Kishor Kumar SADASIVUNI, Kalim DESHMUKH. A review on high performance photovoltaic cells and strategies for improving their efficiency[J]. Front. Energy, 2022, 16(4): 548-580.
[3] Zhiliang WANG, Yuang GU, Lianzhou WANG. Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water splitting[J]. Front. Energy, 2021, 15(3): 596-599.
[4] Xueqing LIU, Xiaodong ZHAO, Luyi LU, Jianlan LI. Influence mechanism of dynamic and static liquid bridge forces on particle deposition behaviors in solar photovoltaic mirrors[J]. Front. Energy, 2021, 15(2): 499-512.
[5] Zekun LIU, Shuang YUAN, Yi YUAN, Guojian LI, Qiang WANG. A thermoelectric generator and water-cooling assisted high conversion efficiency polycrystalline silicon photovoltaic system[J]. Front. Energy, 2021, 15(2): 358-366.
[6] Alireza HEIDARI, Ali ESMAEEL NEZHAD, Ahmad TAVAKOLI, Navid REZAEI, Foad H. GANDOMAN, Mohammad Reza MIVEH, Abdollah AHMADI, Majid MALEKPOUR. A comprehensive review of renewable energy resources for electricity generation in Australia[J]. Front. Energy, 2020, 14(3): 510-529.
[7] Shiquan SHAN, Chuyang CHEN, Peter G. LOUTZENHISER, Devesh RANJAN, Zhijun ZHOU, Zhuomin M. ZHANG. Spectral emittance measurements of micro/nanostructures in energy conversion: a review[J]. Front. Energy, 2020, 14(3): 482-509.
[8] B. TUDU, K. K. MANDAL, N. CHAKRABORTY. Optimal design and development of PV-wind-battery based nano-grid system: A field-on-laboratory demonstration[J]. Front. Energy, 2019, 13(2): 269-283.
[9] P. PADMAGIRISAN, V. SANKARANARAYANAN. Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle[J]. Front. Energy, 2019, 13(2): 296-306.
[10] Alireza REZVANI, Ali ESMAEILY, Hasan ETAATI, Mohammad MOHAMMADINODOUSHAN. Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and RBFNSM for wind turbine in the grid connected mode[J]. Front. Energy, 2019, 13(1): 131-148.
[11] Xiaojing LV, Yu WENG, Xiaoyi DING, Shilie WENG, Yiwu WENG. Technological development of multi-energy complementary system based on solar PVs and MGT[J]. Front. Energy, 2018, 12(4): 509-517.
[12] Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG. Near-field radiative thermoelectric energy converters: a review[J]. Front. Energy, 2018, 12(1): 5-21.
[13] Qing NI, Hassan ALSHEHRI, Yue YANG, Hong YE, Liping WANG. Plasmonic light trapping for enhanced light absorption in film-coupled ultrathin metamaterial thermophotovoltaic cells[J]. Front. Energy, 2018, 12(1): 185-194.
[14] Nitesh Ganesh BHAT, B. Rajanarayan PRUSTY, Debashisha JENA. Cumulant-based correlated probabilistic load flow considering photovoltaic generation and electric vehicle charging demand[J]. Front. Energy, 2017, 11(2): 184-196.
[15] Przemyslaw JANIK, Grzegorz KOSOBUDZKI, Harald SCHWARZ. Influence of increasing numbers of RE-inverters on the power quality in the distribution grids: A PQ case study of a representative wind turbine and photovoltaic system[J]. Front. Energy, 2017, 11(2): 155-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed