Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2022, Vol. 16 Issue (4) : 548-580    https://doi.org/10.1007/s11708-022-0826-8
REVIEW ARTICLE
A review on high performance photovoltaic cells and strategies for improving their efficiency
Muni Raj MAURYA1, John-John CABIBIHAN2(), Kishor Kumar SADASIVUNI3(), Kalim DESHMUKH4
1. Mechanical and Industrial Engineering Department, College of Engineering, Qatar University, Doha 2713, Qatar; Center for Advanced Materials Qatar University, Doha 2713, Qatar
2. Mechanical and Industrial Engineering Department, College of Engineering, Qatar University, Doha 2713, Qatar
3. Center for Advanced Materials, Qatar University, Doha 2713, Qatar
4. New Technologies-Research Center, University of West Bohemia, Plzen 30100, Czech Republic
 Download: PDF(12722 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The introduction of a practical solar cell by Bell Laboratory, which had an efficiency of approximately 6%, signified photovoltaic technology as a potentially viable energy source. Continuous efforts have been made to increase power conversion efficiency (PCE). In the present review, the advances made in solar cells (SCs) are summarized. Material and device engineering are described for achieving enhanced light absorption, electrical properties, stability and higher PCE in SCs. The strategies in materials and coating techniques for large area deposition are further elaborated, which is expected to be helpful for realizing high-efficiency SCs. The methods of light-harvesting in SCs via anti-reflecting coatings, surface texturing, patterned growth of nanostructure, and plasmonics are discussed. Moreover, progress in mechanical methods that are used for sun tracking are elaborated. The assistance of the above two protocols in maximizing the power output of SCs are discussed in detail. Finally, further research efforts needed to overcome roadblocks in commercialization were highlighted and perspectives on the future development of this rapidly advancing field are offered.

Keywords photovoltaic      efficiency      large area deposition      light harvesting      sun tracker     
Corresponding Author(s): John-John CABIBIHAN,Kishor Kumar SADASIVUNI   
Online First Date: 17 May 2022    Issue Date: 21 October 2022
 Cite this article:   
Muni Raj MAURYA,John-John CABIBIHAN,Kishor Kumar SADASIVUNI, et al. A review on high performance photovoltaic cells and strategies for improving their efficiency[J]. Front. Energy, 2022, 16(4): 548-580.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-022-0826-8
https://academic.hep.com.cn/fie/EN/Y2022/V16/I4/548
Fig.1  Photo-absorbing materials-based classification of SC technologies in various generations.
Fig.2  Heterojunctions and interdigitated back contact-based Si SC.
Fig.3  Photovoltaic performance of second generation SCs.
Fig.4  Photovoltaic performance of OSCs.
Fig.5  Photovoltaic performance of the DSSCs.
Fig.6  Nitrogen-doped CNT-based bilayer counter electrode for DSSC.
Fig.7  Photovoltaic performance of PSCs.
Fig.8  Azaacene derivative-based electron transport layer in inverted PSC.
Fig.9  Pseudo-halide anion engineering based α-FAPbI3 PSC.
Material Jsc /(mA·cm–2) Voc /V FF/% Efficiency/% Ref.
m-Si 42.3 0.744 83.8 26.3±0.5 [29]
a-Si 16.36 89.6 69.8 10.22±0.3 [47]
μc-Si 41.14 0.711 79.3 23.2±0.3 [48]
CdTe 31.69 0.887 78.5 22.1±0.5 [53]
ZnS(O,OH)/Cu(In,Ga)Se2 (CIGS thin-film) 35.4 0.683 76.1 18.4 [72]
CIGS (thin film) 39.4 0.721 78 22.3 [73]
CIGS (Cd-free) with Zn(O,S,OH)x/Zn0.8Mg0.2O buffer layer 39.58 0.73 80.4 23.35±0.5 [74]
OSC (thin film) 17.24 0.8 74.1 10.31 [80]
OSC (thin film) 19.8 0.78 73 11.7 [81]
OSC (thin film) 17.4 0.94 68 11.20±29 [82]
OSC (thin film) 19.3 0.93 69 12.4±0.4 [83]
OSC (thin film) 12.8 0.86 77 14 [84]
OSC (thin film) 13.3 1.65 68 14.9 [85]
OSC (thin film) 14.32 1.636 72 17.36 [86]
DSSC 17.16 0.65 55 16.7 [97]
DSSC 16.4 0.76 66.8 8.3 [98]
DSSC (TNPWs/ZrO2/HfO2) 20 0.73 68 9.93 [99]
DSSC 17.38 0.77 76.6 10.3 [100]
DSSC 17.66 0.93 74 12.3 [101]
FTO/graphene/TiO2/CH3NH3PbI3–xClx/spiro-OMeTAD/Au 21.9 1.04 73 15.6 [123]
FTO/TiO2/CH3NH3Pb1–xZnxI3–yCly/ spiro-OMeTAD/Ag 21.98 1.06 70 16.3 [137]
FTO/dTiO2/mp-TiO2/NBH(FAPbI3)0.95(MAPbBr3)0.05/ P3HT/Au 24.88 1.15 81.4 23.3 [140]
FTO/TiO2/FAPbI3/fluorinated spiro-OMeTAD/Au 26.35 1.16 80.9 24.28 [112]
InGaP/GaAs/InGaAs ? ? ? 44.4±2.6 [148]
GaInP/GaAs/GaInAsP/GaInAs 46±2.2 [149]
AlGaInP/AlGaAs/GaAs/GaInAs ? ? ? 47.1±2.6 [150]
Tab.1  Photovoltaic parameters of high-performance SCs reported in the literature
Fig.10  Device performance of Si-perovskite tandem SC.
Fig.11  Photovoltaic performance of SC fabricated by the spray deposition technique.
Fig.12  Photovoltaic performance of dip coating based SC.
Fig.13  Photovoltaic performance of spin-coating based SCs and modules.
Material Jsc/(mA·cm–2) Voc/V FF/% Efficiency/% Ref.
Spray active layer and HTL 15.83 0.78 65.28 8.06 [166]
Spray deposited CH3NH3PbI3–xClx planar SC 16.8 0.92 72 11.1 [167]
Spray deposited CH3NH3PbI3–xClxSC 20.6 1.03 61.5 12 [168]
Spray coating of CH3NH3PbI3 SC 22.5 0.95 73 15.7 [169]
Spray coating of CH3NH3PbI3 SC 20.27 1.04 75.5 16.03 [170]
Spray deposited MAPbI3–xClx planar hybrid SC (reverse scan) 21.4 1.10 77.6 18.3 [171]
Complete spray deposited SC 16.7 0.87 70 9.9 [172]
Complete spray deposited SC 19.5 0.85 67 9.2 [173]
Dip coating (CH3NH3)PbI3 21.53 0.93 62 12.4 [181]
Dip coating (CH3NH3)PbI3 20.33 0.95 63 12.41 [182]
Dip coating (CH3)3NPbI3–xClx 21.31 1.04 69 15.29 [183]
Spin coating PBDB-TF:BTP-4Cl-12 25.6 0.85 77.6 17 [188]
Spin coating (CH3NH3)PbI3 21.9 1.10 67.1 16.3 [189]
Spin coating (CH3NH3)PbI3–xClx 19.9 0.91 75 13.6 [203]
Slot-die (CH3NH3)PbI3 19.9 0.89 74 13.3 [199]
Slot-die (CH3NH3)PbI3 21.3 1.8 62.3 14.4 [200]
Slot-die (CH3NH3)PbI3 22.1 1.03 74 16.8 [197]
Slot-die (CH3NH3)PbI3 22 1.12 76.3 18.8 [201]
Slot-die (CH3NH3)PbI3 22.4 1.11 69.7 17.31 [202]
Tab.2  Photovoltaic performance of SCs fabricated by scalable wet synthesis methods
Fig.14  Photovoltaic performance of slot-die coating-based SCs modules.
Fig.15  Various surface engineering methods in SCs.
Fig.16  Various strategies for light harvesting in SCs.
1 R Rapier. Fossil fuels still supply 84 percent of world energy—and other eye openers from BP’s annual review. 2020, available at the website of forbes.com
2 J S Shaikh, N S Shaikh, A D Sheikh. et al.. Perovskite solar cells: in pursuit of efficiency and stability. Materials & Design, 2017, 136 : 54– 80
https://doi.org/10.1016/j.matdes.2017.09.037
3 M E Becquerel. On electrod effect under the influence of solar radiation. Proceedings of the Academy of Science, 1839, 9: 561− 567 (in French)
4 T Xu, L Yu. How to design low bandgap polymers for highly efficient organic solar cells. Materials Today, 2014, 17( 1): 11– 15
https://doi.org/10.1016/j.mattod.2013.12.005
5 W Shockley, H J Queisser. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32( 3): 510– 519
https://doi.org/10.1063/1.1736034
6 S Sze K K Ng. Physics of Semiconductor Devices. Wiley Online Books, 2006
7 P Singh, N M Ravindra. Temperature dependence of solar cell performance—an analysis. Solar Energy Materials and Solar Cells, 2012, 101 : 36– 45
https://doi.org/10.1016/j.solmat.2012.02.019
8 B Qi, J Wang. Fill factor in organic solar cells. Physical Chemistry Chemical Physics, 2013, 15( 23): 8972
https://doi.org/10.1039/c3cp51383a
9 X Guo, N Zhou, S J Lou. et al.. Polymer solar cells with enhanced fill factors. Nature Photonics, 2013, 7( 10): 825– 833
https://doi.org/10.1038/nphoton.2013.207
10 J You, L Dou, Z Hong. et al.. Recent trends in polymer tandem solar cells research. Progress in Polymer Science, 2013, 38( 12): 1909– 1928
https://doi.org/10.1016/j.progpolymsci.2013.04.005
11 J You, C Chen, Z Hong. et al.. 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells. Advanced Materials, 2013, 25( 29): 3973– 3978
https://doi.org/10.1002/adma.201300964
12 X Fan, S Guo, G Fang. et al.. An efficient PDPPTPT: PC61BM-based tandem polymer solar cells with a Ca/Ag/MoO3 intermediate layer. Solar Energy Materials and Solar Cells, 2013, 113 : 135– 139
https://doi.org/10.1016/j.solmat.2013.02.008
13 D Zhao, W Tang, L Ke. et al.. Efficient bulk heterojunction solar cells with poly[2, 7-(9, 9-dihexylfluorene)-alt-bithiophene]and 6, 6-phenyl C61 butyric acid methyl ester blends and their application in tandem cells. ACS Applied Materials & Interfaces, 2010, 2( 3): 829– 837
https://doi.org/10.1021/am900823b
14 Z Guo, D Lee, R D Schaller. et al.. Relationship between interchain interaction, exciton delocalization, and charge separation in low-bandgap copolymer blends. Journal of the American Chemical Society, 2014, 136( 28): 10024– 10032
https://doi.org/10.1021/ja503465s
15 J Kim, M H Yun, G H Kim. et al.. Synthesis of PCDTBT-based fluorinated polymers for high open-circuit voltage in organic photovoltaics: towards an understanding of relationships between polymer energy levels engineering and ideal morphology control. ACS Applied Materials & Interfaces, 2014, 6( 10): 7523– 7534
https://doi.org/10.1021/am500891z
16 H Y Chen, S Lin, J Y Sun. et al.. Morphologic improvement of the PBDTTT-C and PC71BM blend film with mixed solvent for high-performance inverted polymer solar cells. Nanotechnology, 2013, 24( 48): 484009
https://doi.org/10.1088/0957-4484/24/48/484009
17 T K An, I Kang, H Yun. et al.. Solvent additive to achieve highly ordered nanostructural semicrystalline DPP copolymers: toward a high charge carrier mobility. Advanced Materials, 2013, 25( 48): 7003– 7009
https://doi.org/10.1002/adma.201301438
18 Z Guan, J Yu, J Huang. et al.. Power efficiency enhancement of solution-processed small-molecule solar cells based on squaraine via thermal annealing and solvent additive methods. Solar Energy Materials and Solar Cells, 2013, 109 : 262– 269
https://doi.org/10.1016/j.solmat.2012.11.017
19 M J Tan, S Zhong, J Li. et al.. Air-stable efficient inverted polymer solar cells using solution-processed nanocrystalline ZnO interfacial layer. ACS Applied Materials & Interfaces, 2013, 5( 11): 4696– 4701
https://doi.org/10.1021/am303004r
20 N K Elumalai, C Vijila, R Jose. et al.. Simultaneous improvements in power conversion efficiency and operational stability of polymer solar cells by interfacial engineering. Physical Chemistry Chemical Physics, 2013, 15( 43): 19057
https://doi.org/10.1039/c3cp53352b
21 Z Tan, S Li, F Wang. et al.. High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Scientific Reports, 2015, 4( 1): 4691
https://doi.org/10.1038/srep04691
22 L Lu, L Yu. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Advanced Materials, 2014, 26( 26): 4413– 4430
https://doi.org/10.1002/adma.201400384
23 J J Wysocki, P Rappaport. Effect of temperature on photovoltaic solar energy conversion. Journal of Applied Physics, 1960, 31( 3): 571– 578
https://doi.org/10.1063/1.1735630
24 J C C Fan. Theoretical temperature dependence of solar cell parameters. Solar Cells, 1986, 17( 2−3): 309– 315
https://doi.org/10.1016/0379-6787(86)90020-7
25 P Singh, S N Singh, M Lal. et al.. Temperature dependence of I–V characteristics and performance parameters of silicon solar cell. Solar Energy Materials and Solar Cells, 2008, 92( 12): 1611– 1616
https://doi.org/10.1016/j.solmat.2008.07.010
26 A Goetzberger, C Hebling. Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells, 2000, 62( 1−2): 1– 19
https://doi.org/10.1016/S0927-0248(99)00131-2
27 M Hosenuzzaman, N A Rahim, J Selvaraj. et al.. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renewable & Sustainable Energy Reviews, 2015, 41 : 284– 297
https://doi.org/10.1016/j.rser.2014.08.046
28 J Subtil Lacerda, J C J M van den Bergh. Diversity in solar photovoltaic energy: implications for innovation and policy. Renewable & Sustainable Energy Reviews, 2016, 54 : 331– 340
https://doi.org/10.1016/j.rser.2015.10.032
29 K Yoshikawa, H Kawasaki, W Yoshida. et al.. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2017, 2( 5): 17032
https://doi.org/10.1038/nenergy.2017.32
30 J Peng, L Lu, H Yang. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable & Sustainable Energy Reviews, 2013, 19 : 255– 274
https://doi.org/10.1016/j.rser.2012.11.035
31 V V Tyagi, N A A Rahim, N A Rahim. et al.. Progress in solar PV technology: research and achievement. Renewable & Sustainable Energy Reviews, 2013, 20 : 443– 461
https://doi.org/10.1016/j.rser.2012.09.028
32 A Goetzberger, C Hebling, H W Schock. Photovoltaic materials, history, status and outlook. Materials Science and Engineering R Reports, 2003, 40( 1): 1– 46
https://doi.org/10.1016/S0927-796X(02)00092-X
33 R W Miles, K M Hynes, I Forbes. Photovoltaic solar cells: an overview of state-of-the-art cell development and environmental issues. Progress in Crystal Growth and Characterization of Materials, 2005, 51( 1−3): 1– 42
https://doi.org/10.1016/j.pcrysgrow.2005.10.002
34 L El Chaar, L A lamont, N El Zein. Review of photovoltaic technologies. Renewable & Sustainable Energy Reviews, 2011, 15( 5): 2165– 2175
https://doi.org/10.1016/j.rser.2011.01.004
35 V Avrutin, N Izyumskaya, H Morkoç. Semiconductor solar cells: recent progress in terrestrial applications. Superlattices and Microstructures, 2011, 49( 4): 337– 364
https://doi.org/10.1016/j.spmi.2010.12.011
36 M A Green, E D Dunlop, J Hohl-Ebinger. et al.. Solar cell efficiency tables (Version 55). Progress in Photovoltaics: Research and Applications, 2020, 28( 1): 3– 15
https://doi.org/10.1002/pip.3228
37 A F B Braga, S P Moreira, P R Zampieri. et al.. New processes for the production of solar-grade polycrystalline silicon: a review. Solar Energy Materials and Solar Cells, 2008, 92( 4): 418– 424
https://doi.org/10.1016/j.solmat.2007.10.003
38 T M Bruton. General trends about photovoltaics based on crystalline silicon. Solar Energy Materials and Solar Cells, 2002, 72( 1-4): 3– 10
https://doi.org/10.1016/S0927-0248(01)00145-3
39 B van der Zwaan, A Rabl. Prospects for PV: a learning curve analysis. Solar Energy, 2003, 74( 1): 19– 31
https://doi.org/10.1016/S0038-092X(03)00112-9
40 W M Keogh, A W Blakers. Accurate measurement, using natural sunlight, of silicon solar cells. Progress in Photovoltaics: Research and Applications, 2004, 12( 1): 1– 19
https://doi.org/10.1002/pip.517
41 J I Hanoka. An overview of silicon ribbon growth technology. Solar Energy Materials and Solar Cells, 2001, 65( 1−4): 231– 237
https://doi.org/10.1016/S0927-0248(00)00154-9
42 K Peng, S T Lee. Silicon nanowires for photovoltaic solar energy conversion. Advanced Materials, 2011, 23( 2): 198– 215
https://doi.org/10.1002/adma.201002410
43 U Gangopadhyay, S Jana, S Das. State of art of solar photovoltaic technology. Conference Papers in Energy, 2013, 2013 : 764132
https://doi.org/10.1155/2013/764132
44 J Mundo-Hernández, Celis Alonso B de, J Hernández-Álvarez. et al.. An overview of solar photovoltaic energy in Mexico and Germany. Renewable & Sustainable Energy Reviews, 2014, 31 : 639– 649
https://doi.org/10.1016/j.rser.2013.12.029
45 M Boutchich, J Alvarez, D Diouf. et al.. Amorphous silicon diamond based heterojunctions with high rectification ratio. Journal of Non-Crystalline Solids, 2012, 358( 17): 2110– 2113
https://doi.org/10.1016/j.jnoncrysol.2011.12.067
46 F E Subhan, A D Khan, F E Hilal. et al.. Efficient broadband light absorption in thin-film a-Si solar cell based on double sided hybrid bi-metallic nanogratings. RSC Advances, 2020, 10( 20): 11836– 11842
https://doi.org/10.1039/C9RA10232A
47 T Matsui, A Bidiville, K Maejima. et al.. High-efficiency amorphous silicon solar cells: impact of deposition rate on metastability. Applied Physics Letters, 2015, 106( 5): 053901
https://doi.org/10.1063/1.4907001
48 H Sai, T Matsui, H Kumagai. et al.. Thin-film microcrystalline silicon solar cells: 11.9% efficiency and beyond. Applied Physics Express, 2018, 11( 2): 022301
https://doi.org/10.7567/APEX.11.022301
49 J Britt, C Ferekides. Thin-film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters, 1993, 62( 22): 2851– 2852
https://doi.org/10.1063/1.109629
50 C Cdte, P Solar, X Wu. et al.. 16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell. Renewable Energy, 2001, 22– 26
51 A G Aberle. Thin-film solar cells. Thin Solid Films, 2009, 517( 17): 4706– 4710
https://doi.org/10.1016/j.tsf.2009.03.056
52 M Powalla, D Bonnet. Thin-film solar cells based on the polycrystalline compound semiconductors CIS and CdTe. Advances in OptoElectronics, 2007, 2007 : 097545
https://doi.org/10.1155/2007/97545
53 D Wang, R Yang, L Wu. et al.. Band alignment of CdTe with MoOx oxide and fabrication of high efficiency CdTe solar cells. Solar Energy, 2018, 162 : 637– 645
https://doi.org/10.1016/j.solener.2018.01.031
54 L L Kazmerski, F R White, G K Morgan. Thin-film CuInSe2/CdS heterojunction solar cells. Applied Physics Letters, 1976, 29( 4): 268– 270
https://doi.org/10.1063/1.89041
55 R A Mickelsen, W S Chen. Development of a 9.4% efficiency thin-film CulnSe2/CdS solar cell. In: Proceeding of Photovoltaic Specialists Conference, Institute of Electronics Engineers, 1981, 800– 804
56 Y C Wang, H P D Shieh. Double-graded bandgap in Cu(In, Ga)Se2 thin film solar cells by low toxicity selenization process. Applied Physics Letters, 2014, 105( 7): 073901
https://doi.org/10.1063/1.4893713
57 X Cui, D Yun, C Zhong. et al.. A facile route for synthesis of CuInxGa1−xSe2 nanocrystals with tunable composition for photovoltaic application. Journal of Sol-Gel Science and Technology, 2015, 76( 3): 469– 475
https://doi.org/10.1007/s10971-015-3795-0
58 P Reinhard, F Pianezzi, B Bissig. et al.. Cu(In, Ga)Se2 thin-film solar cells and modules—a boost in efficiency due to potassium. IEEE International Journal of Photovoltaics, 2015, 5( 2): 656– 663
https://doi.org/10.1109/JPHOTOV.2014.2377516
59 J Fischer, J K Larsen, J Guillot. et al.. Composition dependent characterization of copper indium diselenide thin film solar cells synthesized from electrodeposited binary selenide precursor stacks. Solar Energy Materials and Solar Cells, 2014, 126 : 88– 95
https://doi.org/10.1016/j.solmat.2014.03.045
60 S Rampino, N Armani, F Bissoli. et al.. 15% efficient Cu(In, Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition. Applied Physics Letters, 2012, 101( 13): 132107
https://doi.org/10.1063/1.4755772
61 T Nakada. Invited Paper: CIGS-based thin film solar cells and modules: unique material properties. Electronic Materials Letters, 2012, 8( 2): 179– 185
https://doi.org/10.1007/s13391-012-2034-x
62 V Kapur R Kemmerle A Bansal. Manufacturing of ‘ink based’ CIGS solar cells/modules. In: 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 2008
63 A Romeo, M Terheggen, D Abou-Ras. et al.. Development of thin-film Cu(In, Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2004, 12( 23): 93– 111
https://doi.org/10.1002/pip.527
64 K Ramanathan, M A Contreras, C L Perkins. et al.. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Progress in Photovoltaics: Research and Applications, 2003, 11( 4): 225– 230
https://doi.org/10.1002/pip.494
65 J F Guillemoles. The puzzle of Cu(In, Ga)Se2 (CIGS) solar cells stability . Thin Solid Films, 2002, 403− 404: 403− 404
66 N G Dhere. Present status and future prospects of CIGSS thin film solar cells. Solar Energy Materials and Solar Cells, 2006, 90( 15): 2181– 2190
https://doi.org/10.1016/j.solmat.2006.02.018
67 U Rau, H W Schock. Electronic properties of Cu(In, Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. Applied Physics. A, Materials Science & Processing, 1999, 69( 2): 131– 147
https://doi.org/10.1007/s003390050984
68 G Hanna, A Jasenek, U Rau. et al.. Influence of the Ga-content on the bulk defect densities of Cu(In, Ga)Se2. Thin Solid Films, 2001, 387( 1−2): 71– 73
https://doi.org/10.1016/S0040-6090(00)01710-7
69 U P Singh, S P Patra. Progress in polycrystalline thin-film Cu(In, Ga). International Journal of Photoenergy, 2010, 2010 : 468147
https://doi.org/10.1155/2010/468147
70 H Hiroi, Y Iwata, S Adachi. et al.. New world-record efficiency for pure-sulfide Cu(In, Ga)S2 thin-film solar cell with Cd-free buffer layer via KCN-free process. IEEE International Journal of Photovoltaics, 2016, 6( 3): 760– 763
https://doi.org/10.1109/JPHOTOV.2016.2537540
71 M Nakamura Y Kouji Y Chiba. Achievement of 19.7% efficiency with a small-sized Cu(InGa)(SeS)2 solar cells prepared by sulfurization after selenizaion process with Zn-based buffer . In: 2013 IEEE 39th Photovoltaic Specialists Conference. Tampa, FL, USA, 2013
72 T Kobayashi, H Yamaguchi, T Nakada. Effects of combined heat and light soaking on device performance of Cu(In, Ga)Se2solar cells with ZnS(O, OH) buffer layer. Progress in Photovoltaics: Research and Applications, 2014, 22( 1): 115– 121
https://doi.org/10.1002/pip.2339
73 R Kamada T Yagioka S Adachi. New world record Cu(In, Ga)(Se, S)2 thin film solar cell efficiency beyond 22% . In: 2016 IEEE 43rd Photovoltaic Specialists Conference, 2016 IEEE 43rd Photovoltaic Specialists Conference, 2016
74 M Nakamura, K Yamaguchi, Y Kimoto. et al.. Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE International Journal of Photovoltaics, 2019, 9( 6): 1863– 1867
https://doi.org/10.1109/JPHOTOV.2019.2937218
75 W Yin, J Yang, J Kang. et al.. Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3( 17): 8926– 8942
https://doi.org/10.1039/C4TA05033A
76 J Ramanujam, U P Singh. Copper indium gallium selenide based solar cells—a review. Energy & Environmental Science, 2017, 10( 6): 1306– 1319
https://doi.org/10.1039/C7EE00826K
77 G Li, V Shrotriya, J Huang. et al.. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005, 4( 11): 864– 868
https://doi.org/10.1038/nmat1500
78 Y Liang, Y Wu, D Feng. et al.. Development of new semiconducting polymers for high performance solar cells. Journal of the American Chemical Society, 2009, 131( 1): 56– 57
https://doi.org/10.1021/ja808373p
79 L Huo, S Zhang, X Guo. et al.. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angewandte Chemie International Edition, 2011, 50( 41): 9697– 9702
https://doi.org/10.1002/anie.201103313
80 S H Liao, H J Jhuo, P N Yeh. et al.. Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer. Scientific Reports, 2015, 4( 1): 6813
https://doi.org/10.1038/srep06813
81 J Zhao, Y Li, G Yang. et al.. Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy, 2016, 1( 2): 15027
https://doi.org/10.1038/nenergy.2015.27
82 H Bin, L Gao, Z Zhang. et al.. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nature Communications, 2016, 7( 1): 13651
https://doi.org/10.1038/ncomms13651
83 Z Fei, F D Eisner, X Jiao. et al.. An alkylated indacenodithieno[3, 2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses. Advanced Materials, 2018, 30( 8): 1705209
https://doi.org/10.1002/adma.201705209
84 S Zhang, Y Qin, J Zhu. et al.. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Advanced Materials, 2018, 30( 20): 1800868
https://doi.org/10.1002/adma.201800868
85 Y Cui, H Yao, C Yang. et al.. Organic solar cells with an efficiency approaching 15%. Acta Polymerica Sinica, 2018, 1( 2): 223– 230
86 L Meng, Y Zhang, X Wan. et al.. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361( 6407): 1094– 1098
https://doi.org/10.1126/science.aat2612
87 R Xue, J Zhang, Y Li. et al.. Organic solar cell materials toward commercialization. Small, 2018, 14( 41): 1801793
https://doi.org/10.1002/smll.201801793
88 D di Carlo Rasi, R A J Janssen. Advances in solution-processed multijunction organic solar cells. Advanced Materials, 2019, 31( 10): 1806499
https://doi.org/10.1002/adma.201806499
89 C Zhang, G Wang, H Han. et al.. Self-assembled thin-layer glycomaterials with a proper shell thickness for targeted and activatable cell imaging. Frontiers in Chemistry, 2019, 7 : 294
https://doi.org/10.3389/fchem.2019.00294
90 W Chen, Q Zhang. Recent progress in non-fullerene small molecule acceptors in organic solar cells (OSCs). Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5( 6): 1275– 1302
https://doi.org/10.1039/C6TC05066B
91 W Chen, X Yang, G Long. et al.. A perylene diimide (PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic solar cells. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 3( 18): 4698– 4705
https://doi.org/10.1039/C5TC00865D
92 H Sun, X Song, J Xie. et al.. PDI derivative through fine-tuning the molecular structure for fullerene-free organic solar cells. ACS Applied Materials & Interfaces, 2017, 9( 35): 29924– 29931
https://doi.org/10.1021/acsami.7b08282
93 C Li, J Zhou, J Song. et al.. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 2021, 6( 6): 605– 613
https://doi.org/10.1038/s41560-021-00820-x
94 B O’Regan, M Grätzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353( 6346): 737– 740
https://doi.org/10.1038/353737a0
95 M E Yeoh, K Y Chan. Recent advances in photo-anode for dye-sensitized solar cells: a review. International Journal of Energy Research, 2017, 41( 15): 2446– 2467
https://doi.org/10.1002/er.3764
96 U Mehmood, S U Rahman, K Harrabi. et al.. Recent advances in dye sensitized solar cells. Advances in Materials Science and Engineering, 2014, 2014 : 974782
https://doi.org/10.1155/2014/974782
97 A Carella, F Borbone, R Centore. Research progress on photosensitizers for DSSC. Frontiers in Chemistry, 2018, 6 : 481
https://doi.org/10.3389/fchem.2018.00481
98 G Richhariya, A Kumar, P Tekasakul. et al.. Natural dyes for dye sensitized solar cell: a review. Renewable & Sustainable Energy Reviews, 2017, 69 : 705– 718
https://doi.org/10.1016/j.rser.2016.11.198
99 J Wu, Z Lan, J Lin. et al.. Electrolytes in dye-sensitized solar cells. Chemical Reviews, 2015, 115( 5): 2136– 2173
https://doi.org/10.1021/cr400675m
100 H Iftikhar, G G Sonai, S G Hashmi. et al.. Progress on electrolytes development in dye-sensitized solar cells. Materials (Basel), 2019, 12( 12): 1998
https://doi.org/10.3390/ma12121998
101 Y L Zhao, D S Yao, C B Song. et al.. CNT–G–TiO2 layer as a bridge linking TiO2 nanotube arrays and substrates for efficient dye-sensitized solar cells. RSC Advances, 2015, 5( 54): 43805– 43809
https://doi.org/10.1039/C5RA01085C
102 Y Qiu, W Chen, S Yang. Double-layered photoanodes from variable-size anatase TiO2 nanospindles: a candidate for high-efficiency dye-sensitized solar cells. Angewandte Chemie International Edition, 2010, 49( 21): 3675– 3679
https://doi.org/10.1002/anie.200906933
103 D Maheswari, P Venkatachalam. Fabrication of high efficiency dye-sensitised solar cell with zirconia-doped TiO2 nanoparticle and nanowire composite photoanode film. Australian Journal of Chemistry, 2015, 68( 6): 881
https://doi.org/10.1071/CH14364
104 Y Huang, H Wu, Q Yu. et al.. Single-layer TiO2 film composed of mesoporous spheres for high-efficiency and stable dye-sensitized solar cells. ACS Sustainable Chemistry & Engineering, 2018, 6( 3): 3411– 3418
https://doi.org/10.1021/acssuschemeng.7b03626
105 A Yella, H W Lee, H N Tsao. et al.. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334( 6056): 629– 634
https://doi.org/10.1126/science.1209688
106 A K K Kyaw, H Tantang, T Wu. et al.. Dye-sensitized solar cell with a pair of carbon-based electrodes. Journal of Physics. D, Applied Physics, 2012, 45( 16): 165103
https://doi.org/10.1088/0022-3727/45/16/165103
107 A K K Kyaw, H Tantang, T Wu. et al.. Dye-sensitized solar cell with a titanium-oxide-modified carbon nanotube transparent electrode. Applied Physics Letters, 2011, 99( 2): 021107
https://doi.org/10.1063/1.3610488
108 H Tantang, A K K Kyaw, Y Zhao. et al.. Nitrogen-doped carbon nanotube-based bilayer thin film as transparent counter electrode for dye-sensitized solar cells (DSSCs). Chemistry, an Asian Journal, 2012, 7( 3): 541– 545
https://doi.org/10.1002/asia.201100670
109 X Liu, Z Yang, C C Chueh. et al.. Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4( 46): 17939– 17945
https://doi.org/10.1039/C6TA07712A
110 M Saliba, T Matsui, K Domanski. et al.. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354( 6309): 206– 209
https://doi.org/10.1126/science.aah5557
111 A Kojima, K Teshima, Y Shirai. et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131( 17): 6050– 6051
https://doi.org/10.1021/ja809598r
112 M Jeong, I W Choi, E M Go. et al.. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 2020, 369( 6511): 1615– 1620
https://doi.org/10.1126/science.abb7167
113 J H Heo, H J Han, D Kim. et al.. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science, 2015, 8( 5): 1602– 1608
https://doi.org/10.1039/C5EE00120J
114 S S Mali, H Kim, H H Kim. et al.. Nanoporous p-type NiOx electrode for p-i-n inverted perovskite solar cell toward air stability. Materials Today, 2018, 21( 5): 483– 500
https://doi.org/10.1016/j.mattod.2017.12.002
115 S H Chan, M C Wu, K Lee. et al.. Enhancing perovskite solar cell performance and stability by doping Barium in methylammonium lead halide. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5( 34): 18044– 18052
https://doi.org/10.1039/C7TA05720B
116 M C Wu, S H Chan, K Lee. et al.. Enhancing the efficiency of perovskite solar cells using mesoscopic zinc-doped TiO2 as the electron extraction layer through band alignment. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6( 35): 16920– 16931
https://doi.org/10.1039/C8TA05291C
117 S H Chan, Y H Chang, M C Wu. High-performance perovskite solar cells based on low-temperature processed electron extraction layer. Frontiers in Materials, 2019, 6 : 57
https://doi.org/10.3389/fmats.2019.00057
118 A Dubey, N Adhikari, S Mabrouk. et al.. A strategic review on processing routes towards highly efficient perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6( 6): 2406– 2431
https://doi.org/10.1039/C7TA08277K
119 J H Noh, S H Im, J H Heo. et al.. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters, 2013, 13( 4): 1764– 1769
https://doi.org/10.1021/nl400349b
120 J H Im, C R Lee, J W Lee. et al.. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3( 10): 4088
https://doi.org/10.1039/c1nr10867k
121 H S Kim, C R Lee, J H Im. et al.. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2( 1): 591
https://doi.org/10.1038/srep00591
122 M M Lee, J Teuscher, T Miyasaka. et al.. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338( 6107): 643– 647
https://doi.org/10.1126/science.1228604
123 J T W Wang, J M Ball, E M Barea. et al.. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Letters, 2014, 14( 2): 724– 730
https://doi.org/10.1021/nl403997a
124 D Liu, T L Kelly. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 2014, 8( 2): 133– 138
https://doi.org/10.1038/nphoton.2013.342
125 M T Klug, A Osherov, A A Haghighirad. et al.. Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy & Environmental Science, 2017, 10( 1): 236– 246
https://doi.org/10.1039/C6EE03201J
126 A L Abdelhady, M I Saidaminov, B Murali. et al.. Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals. Journal of Physical Chemistry Letters, 2016, 7( 2): 295– 301
https://doi.org/10.1021/acs.jpclett.5b02681
127 Z Wang, M Li, Y Yang. et al.. High efficiency Pb-in binary metal perovskite solar cells. Advanced Materials, 2016, 28( 31): 6695– 6703
https://doi.org/10.1002/adma.201600626
128 J Chang, Z Lin, H Zhu. et al.. Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4( 42): 16546– 16552
https://doi.org/10.1039/C6TA06851K
129 J T W Wang, Z Wang, S Pathak. et al.. Efficient perovskite solar cells by metal ion doping. Energy & Environmental Science, 2016, 9( 9): 2892– 2901
https://doi.org/10.1039/C6EE01969B
130 W van der Stam, J J Geuchies, T Altantzis. et al.. Highly emissive divalent-ion-doped colloidal CsPb1–xMxBr3 perovskite nanocrystals through cation exchange. Journal of the American Chemical Society, 2017, 139( 11): 4087– 4097
https://doi.org/10.1021/jacs.6b13079
131 R Kour, S Arya, S Verma. et al.. Potential substitutes for replacement of lead in perovskite solar cells: a review. Global Challenges (Hoboken, NJ), 2019, 3( 11): 1900050
https://doi.org/10.1002/gch2.201900050
132 F Hao, C C Stoumpos, R P H Chang. et al.. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. Journal of the American Chemical Society, 2014, 136( 22): 8094– 8099
https://doi.org/10.1021/ja5033259
133 F Zuo, S T Williams, P Liang. et al.. Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Advanced Materials, 2014, 26( 37): 6454– 6460
https://doi.org/10.1002/adma.201401641
134 C C Stoumpos, C D Malliakas, M G Kanatzidis. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52( 15): 9019– 9038
https://doi.org/10.1021/ic401215x
135 A Babayigit, D Duy Thanh, A Ethirajan. et al.. Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio. Scientific Reports, 2016, 6( 1): 18721
https://doi.org/10.1038/srep18721
136 M Kooijman, L A Muscarella, R M Williams. Perovskite thin film materials stabilized and enhanced by zinc(II) doping. Applied Sciences (Basel, Switzerland), 2019, 9( 8): 1678
https://doi.org/10.3390/app9081678
137 R Chen, D Hou, C Lu. et al.. Zinc ion as effective film morphology controller in perovskite solar cells. Sustainable Energy & Fuels, 2018, 2( 5): 1093– 1100
https://doi.org/10.1039/C8SE00059J
138 H Zheng, G Liu, X Xu. et al.. Acquiring high-performance and stable mixed-dimensional perovskite solar cells by using a transition-metal-substituted Pb precursor. ChemSusChem, 2018, 11( 18): 3269– 3275
https://doi.org/10.1002/cssc.201801171
139 X Shai, J Wang, P Sun. et al.. Achieving ordered and stable binary metal perovskite via strain engineering. Nano Energy, 2018, 48 : 117– 127
https://doi.org/10.1016/j.nanoen.2018.03.047
140 E H Jung, N J Jeon, E Y Park. et al.. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567( 7749): 511– 515
https://doi.org/10.1038/s41586-019-1036-3
141 A A Said, J Xie, Q Zhang. Recent progress in organic electron transport materials in inverted perovskite solar cells. Small, 2019, 15( 27): 1900854
https://doi.org/10.1002/smll.201900854
142 P Gu, N Wang, A Wu. et al.. An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells. Chemistry, an Asian Journal, 2016, 11( 15): 2135– 2138
https://doi.org/10.1002/asia.201600856
143 P Gu, N Wang, C Wang. et al.. Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5( 16): 7339– 7344
https://doi.org/10.1039/C7TA01764B
144 J Jeong, M Kim, J Seo. et al.. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592( 7854): 381– 385
https://doi.org/10.1038/s41586-021-03406-5
145 L Tsakalakos. Nanotechnology for Photovoltaics. New York: CRC Press, 2010
146 S Guha. Thin film silicon solar cells grown near the edge of amorphous to microcrystalline transition. Solar Energy, 2004, 77( 6): 887– 892
https://doi.org/10.1016/j.solener.2004.06.014
147 M Yamaguchi, K I Nishimura, T Sasaki. et al.. Novel materials for high-efficiency III–V multi-junction solar cells. Solar Energy, 2008, 82( 2): 173– 180
https://doi.org/10.1016/j.solener.2007.06.011
148 T Takamoto H Washio H Juso. Application of InGaP/GaAs/InGaAs triple junction solar cells to space use and concentrator photovoltaic. In: 2014 IEEE 40th Photovoltaic Specialist Conference, Denver, CO, USA, 2014
149 F Dimroth, T N D Tibbits, M Niemeyer. et al.. Four-junction wafer-bonded concentrator solar cells. IEEE International Journal of Photovoltaics, 2016, 6( 1): 343– 349
https://doi.org/10.1109/JPHOTOV.2015.2501729
150 J F Geisz, M A Steiner, N Jain. et al.. Building a six-junction inverted metamorphic concentrator solar cell. IEEE International Journal of Photovoltaics, 2018, 8( 2): 626– 632
https://doi.org/10.1109/JPHOTOV.2017.2778567
151 M Gul, Y Kotak, T Muneer. Review on recent trend of solar photovoltaic technology. Energy Exploration & Exploitation, 2016, 34( 4): 485– 526
https://doi.org/10.1177/0144598716650552
152 V Muteri, M Cellura, D Curto. et al.. Review on life cycle assessment of solar photovoltaic panels. Energies, 2020, 13( 1): 252
https://doi.org/10.3390/en13010252
153 L C Andreani, A Bozzola, P Kowalczewski. et al.. Silicon solar cells: toward the efficiency limits. Advances in Physics: X, 2019, 4( 1): 1548305
https://doi.org/10.1080/23746149.2018.1548305
154 D Yang, X Zhang, Y Hou. et al.. 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell. Nano Energy, 2021, 84 : 105934
https://doi.org/10.1016/j.nanoen.2021.105934
155 A Al-Ashouri, E Köhnen, B Li. et al.. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 2020, 370( 6522): 1300– 1309
https://doi.org/10.1126/science.abd4016
156 J Xu, C C Boyd, Z J Yu. et al.. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science, 2020, 367( 6482): 1097– 1104
https://doi.org/10.1126/science.aaz5074
157 Y Hou, E Aydin, M de Bastiani. et al.. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367( 6482): 1135– 1140
https://doi.org/10.1126/science.aaz3691
158 B Chen, Z J Yu, S Manzoor. et al.. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 2020, 4( 4): 850– 864
https://doi.org/10.1016/j.joule.2020.01.008
159 Z Wang, X Zhu, S Zuo. et al.. 27%-efficiency four-terminal perovskite/silicon tandem solar cells by sandwiched gold nanomesh. Advanced Functional Materials, 2020, 30( 4): 1908298
https://doi.org/10.1002/adfm.201908298
160 S Werner, E Lohmüller, S Maier. et al.. Challenges for lowly-doped phosphorus emitters in silicon solar cells with screen-printed silver contacts. Energy Procedia, 2017, 124 : 936– 946
https://doi.org/10.1016/j.egypro.2017.09.274
161 D Vak, S S Kim, J Jo. et al.. Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation. Applied Physics Letters, 2007, 91( 8): 081102
https://doi.org/10.1063/1.2772766
162 C N Hoth, R Steim, P Schilinsky. et al.. Topographical and morphological aspects of spray coated organic photovoltaics. Organic Electronics, 2009, 10( 4): 587– 593
https://doi.org/10.1016/j.orgel.2009.02.010
163 C Girotto, D Moia, B P Rand. et al.. High-performance organic solar cells with spray-coated hole-transport and active layers. Advanced Functional Materials, 2011, 21( 1): 64– 72
https://doi.org/10.1002/adfm.201001562
164 J W Kang, Y Kang, S Jung. et al.. Fully spray-coated inverted organic solar cells. Solar Energy Materials and Solar Cells, 2012, 103 : 76– 79
https://doi.org/10.1016/j.solmat.2012.04.027
165 T Wang, N W Scarratt, H Yi. et al.. Fabricating high performance, donor-acceptor copolymer solar cells by spray-coating in air. Advanced Energy Materials, 2013, 3( 4): 505– 512
https://doi.org/10.1002/aenm.201200713
166 Y Zhang, J Griffin, N W Scarratt. et al.. High efficiency arrays of polymer solar cells fabricated by spray-coating in air. Progress in Photovoltaics: Research and Applications, 2016, 24( 3): 275– 282
https://doi.org/10.1002/pip.2665
167 A T Barrows, A J Pearson, C K Kwak. et al.. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014, 7( 9): 2944– 2950
https://doi.org/10.1039/C4EE01546K
168 S Das, B Yang, G Gu. et al.. High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photonics, 2015, 2( 6): 680– 686
https://doi.org/10.1021/acsphotonics.5b00119
169 J G Tait, S Manghooli, W Qiu. et al.. Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4( 10): 3792– 3797
https://doi.org/10.1039/C6TA00739B
170 H Huang, J Shi, L Zhu. et al.. Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy, 2016, 27 : 352– 358
https://doi.org/10.1016/j.nanoen.2016.07.026
171 J H Heo, M H Lee, M H Jang. et al.. Highly efficient CH3NH3PbI3–xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4( 45): 17636– 17642
https://doi.org/10.1039/C6TA06718B
172 D K Mohamad, J Griffin, C Bracher. et al.. Spray-cast multilayer organometal perovskite solar cells fabricated in air. Advanced Energy Materials, 2016, 6( 22): 1600994
https://doi.org/10.1002/aenm.201600994
173 J E Bishop, D K Mohamad, M Wong-Stringer. et al.. Spray-cast multilayer perovskite solar cells with an active-area of 1.5 cm2. Scientific Reports, 2017, 7( 1): 7962
https://doi.org/10.1038/s41598-017-08642-2
174 Z Hu, J Zhang, S Xiong. et al.. Performance of polymer solar cells fabricated by dip coating process. Solar Energy Materials and Solar Cells, 2012, 99 : 221– 225
https://doi.org/10.1016/j.solmat.2011.12.002
175 Z Hu, J Zhang, S Xiong. et al.. Annealing-free, air-processed and high-efficiency polymer solar cells fabricated by a dip coating process. Organic Electronics, 2012, 13( 1): 142– 146
https://doi.org/10.1016/j.orgel.2011.09.026
176 W S W Harun, R I M Asri, J Alias. et al.. A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceramics International, 2018, 44( 2): 1250– 1268
https://doi.org/10.1016/j.ceramint.2017.10.162
177 F Aziz, A F Ismail. Spray coating methods for polymer solar cells fabrication: a review. Materials Science in Semiconductor Processing, 2015, 39 : 416– 425
https://doi.org/10.1016/j.mssp.2015.05.019
178 L Li, P Gao, K C Schuermann. et al.. Controllable growth and field-effect property of monolayer to multilayer microstripes of an organic semiconductor. Journal of the American Chemical Society, 2010, 132( 26): 8807– 8809
https://doi.org/10.1021/ja1017267
179 S Roland, C Pellerin, C G Bazuin. et al.. Evolution of small molecule content and morphology with dip-coating rate in supramolecular PS–P4VP thin films. Macromolecules, 2012, 45( 19): 7964– 7972
https://doi.org/10.1021/ma301383v
180 C S Chou F Chou J Y Kang. Preparation of ZnO-coated TiO2 electrodes using dip coating and their applications in dye-sensitized solar cells . Powder Technology, 2012, 215− 216: 215− 216
181 M Adnan, J K Lee. All sequential dip-coating processed perovskite layers from an aqueous lead precursor for high efficiency perovskite solar cells. Scientific Reports, 2018, 8( 1): 2168
https://doi.org/10.1038/s41598-018-20296-2
182 M Adnan, J K Lee. Highly efficient planar heterojunction perovskite solar cells with sequentially dip-coated deposited perovskite layers from a non-halide aqueous lead precursor. RSC Advances, 2020, 10( 9): 5454– 5461
https://doi.org/10.1039/C9RA09607H
183 M Adnan, Z Irshad, J K Lee. Facile all-dip-coating deposition of highly efficient (CH3)3NPbI3–xClx perovskite materials from aqueous non-halide lead precursor. RSC Advances, 2020, 10( 48): 29010– 29017
https://doi.org/10.1039/D0RA06074G
184 T Gao B P Jelle. Nanoelectrochromics for smart windows: materials and methodologies. In: Proceedings of the TechConnect World Innovation Conference 2016, Washington DC: USA, 2016
185 S Razza, S Castro-Hermosa, A di Carlo. et al.. Research update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Materials, 2016, 4( 9): 091508
https://doi.org/10.1063/1.4962478
186 S T Williams, A Rajagopal, C C Chueh. et al.. Current challenges and prospective research for upscaling hybrid perovskite photovoltaics. Journal of Physical Chemistry Letters, 2016, 7( 5): 811– 819
https://doi.org/10.1021/acs.jpclett.5b02651
187 W Chen, Y Wu, Y Yue. et al.. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 2015, 350( 6263): 944– 948
https://doi.org/10.1126/science.aad1015
188 Y Cui, H Yao, L Hong. et al.. Organic photovoltaic cell with 17% efficiency and superior processability. National Science Review, 2020, 7( 7): 1239– 1246
https://doi.org/10.1093/nsr/nwz200
189 M Yang, Y Zhou, Y Zeng. et al.. Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Advanced Materials, 2015, 27( 41): 6363– 6370
https://doi.org/10.1002/adma.201502586
190 W Qiu, T Merckx, M Jaysankar. et al.. Pinhole-free perovskite films for efficient solar modules. Energy & Environmental Science, 2016, 9( 2): 484– 489
https://doi.org/10.1039/C5EE03703D
191 A Agresti, S Pescetelli, A L Palma. et al.. Graphene interface engineering for perovskite solar modules: 12.6% power conversion efficiency over 50 cm2 active area. ACS Energy Letters, 2017, 2( 1): 279– 287
https://doi.org/10.1021/acsenergylett.6b00672
192 R Swartwout, M T Hoerantner, V Bulović. Scalable deposition methods for large-area production of perovskite thin films. Energy & Environmental Materials, 2019, 2( 2): 119– 145
https://doi.org/10.1002/eem2.12043
193 X Ding, J Liu, T A L Harris. A review of the operating limits in slot die coating processes. AIChE Journal, 2016, 62( 7): 2508– 2524
https://doi.org/10.1002/aic.15268
194 M S Carvalho, H S Kheshgi. Low-flow limit in slot coating: theory and experiments. AIChE Journal, 2000, 46( 10): 1907– 1917
https://doi.org/10.1002/aic.690461003
195 R Patidar, D Burkitt, K Hooper. et al.. Slot-die coating of perovskite solar cells: an overview. Materials Today Communications, 2020, 22 : 100808
https://doi.org/10.1016/j.mtcomm.2019.100808
196 K Hwang, Y S Jung, Y J Heo. et al.. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Advanced Materials, 2015, 27( 7): 1241– 1247
https://doi.org/10.1002/adma.201404598
197 F di Giacomo, S Shanmugam, H Fledderus. et al.. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Solar Energy Materials and Solar Cells, 2018, 181 : 53– 59
https://doi.org/10.1016/j.solmat.2017.11.010
198 D Burkitt, J Searle, T Watson. Perovskite solar cells in NIP structure with four slot-die-coated layers. Royal Society Open Science, 2018, 5( 5): 172158
https://doi.org/10.1098/rsos.172158
199 D Lee, Y S Jung, Y J Heo. et al.. Slot-die coated perovskite films using mixed lead precursors for highly reproducible and large-area solar cells. ACS Applied Materials & Interfaces, 2018, 10( 18): 16133– 16139
https://doi.org/10.1021/acsami.8b02549
200 Y J Heo, J E Kim, H Weerasinghe. et al.. Printing-friendly sequential deposition via intra-additive approach for roll-to-roll process of perovskite solar cells. Nano Energy, 2017, 41 : 443– 451
https://doi.org/10.1016/j.nanoen.2017.09.051
201 Y Y Kim, E Y Park, T Y Yang. et al.. Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6( 26): 12447– 12454
https://doi.org/10.1039/C8TA02868K
202 B Dou, J B Whitaker, K Bruening. et al.. Roll-to-roll printing of perovskite solar cells. ACS Energy Letters, 2018, 3( 10): 2558– 2565
https://doi.org/10.1021/acsenergylett.8b01556
203 Z Yang, C C Chueh, F Zuo. et al.. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Advanced Energy Materials, 2015, 5( 13): 1500328
https://doi.org/10.1002/aenm.201500328
204 F Qiao, Y Xie, G He. et al.. Light trapping structures and plasmons synergistically enhance the photovoltaic performance of full-spectrum solar cells. Nanoscale, 2020, 12( 3): 1269– 1280
https://doi.org/10.1039/C9NR08761C
205 J Zhao, M A Green. Optimized antireflection coatings for high-efficiency silicon solar cells. IEEE Transactions on Electron Devices, 1991, 38( 8): 1925– 1934
https://doi.org/10.1109/16.119035
206 J Q Xi, M F Schubert, J K Kim. et al.. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nature Photonics, 2007, 1( 3): 176– 179
https://doi.org/10.1038/nphoton.2007.26
207 S Koynov, M S Brandt, M Stutzmann. Black nonreflecting silicon surfaces for solar cells. Applied Physics Letters, 2006, 88( 20): 203107
https://doi.org/10.1063/1.2204573
208 Y Huang, S Chattopadhyay, Y J Jen. et al.. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature Nanotechnology, 2007, 2( 12): 770– 774
https://doi.org/10.1038/nnano.2007.389
209 J Zhu, Z Yu, G F Burkhard. et al.. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Letters, 2009, 9( 1): 279– 282
https://doi.org/10.1021/nl802886y
210 S Jeong, E C Garnett, S Wang. et al.. Hybrid silicon nanocone-polymer solar cells. Nano Letters, 2012, 12( 6): 2971– 2976
https://doi.org/10.1021/nl300713x
211 L Tsakalakos, J Balch, J Fronheiser. et al.. Silicon nanowire solar cells. Applied Physics Letters, 2007, 91( 23): 233117
https://doi.org/10.1063/1.2821113
212 Z Fan, R Kapadia, P W Leu. et al.. Ordered arrays of dual-diameter nanopillars for maximized optical absorption. Nano Letters, 2010, 10( 10): 3823– 3827
https://doi.org/10.1021/nl1010788
213 O Berger, D Inns, A G Aberle. Commercial white paint as back surface reflector for thin-film solar cells. Solar Energy Materials and Solar Cells, 2007, 91( 13): 1215– 1221
https://doi.org/10.1016/j.solmat.2007.04.008
214 L Ye, Y Zhang, X Zhang. et al.. Sol-gel preparation of SiO2/TiO2/SiO2-TiO2 broadband antireflective coating for solar cell cover glass. Solar Energy Materials and Solar Cells, 2013, 111 : 160– 164
https://doi.org/10.1016/j.solmat.2012.12.037
215 J Chen, S Wang, Q Sun. et al.. Light-manipulation schemes: a facile solution-processed light manipulation structure for organic solar cells. Advanced Optical Materials, 2019, 7( 2): 1970006
https://doi.org/10.1002/adom.201970006
216 W P R Liyanage, M Nath. CdS–CdTe heterojunction nanotube arrays for efficient solar energy conversion. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4( 38): 14637– 14648
https://doi.org/10.1039/C6TA03572H
217 T Zhuang, Y Liu, Y Li. et al.. Integration of semiconducting sulfides for full-spectrum solar energy absorption and efficient charge separation. Angewandte Chemie International Edition, 2016, 55( 22): 6396– 6400
https://doi.org/10.1002/anie.201601865
218 M Jošt, S Albrecht, L Kegelmann. et al.. Efficient light management by textured nanoimprinted layers for perovskite solar cells. ACS Photonics, 2017, 4( 5): 1232– 1239
https://doi.org/10.1021/acsphotonics.7b00138
219 J D Myers, W Cao, V Cassidy. et al.. A universal optical approach to enhancing efficiency of organic-based photovoltaic devices. Energy & Environmental Science, 2012, 5( 5): 6900
https://doi.org/10.1039/c2ee21254d
220 J Chen, T Jin, Y Li. et al.. Recent progress of light manipulation strategies in organic and perovskite solar cells. Nanoscale, 2019, 11( 40): 18517– 18536
https://doi.org/10.1039/C9NR05663G
221 J Day, S Senthilarasu, T K Mallick. Improving spectral modification for applications in solar cells: a review. Renewable Energy, 2019, 132 : 186– 205
https://doi.org/10.1016/j.renene.2018.07.101
222 N M Ali, N H Rafat. Modeling and simulation of nanorods photovoltaic solar cells: a review. Renewable & Sustainable Energy Reviews, 2017, 68 : 212– 220
https://doi.org/10.1016/j.rser.2016.09.114
223 H A Atwater, A Polman. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9( 3): 205– 213
https://doi.org/10.1038/nmat2629
224 P Mandal, S Sharma. Progress in plasmonic solar cell efficiency improvement: a status review. Renewable & Sustainable Energy Reviews, 2016, 65 : 537– 552
https://doi.org/10.1016/j.rser.2016.07.031
225 R A Pala, J White, E Barnard. et al.. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Advanced Materials, 2009, 21( 34): 3504– 3509
https://doi.org/10.1002/adma.200900331
226 Y C Lee, C F Huang, J Y Chang. et al.. Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings. Optics Express, 2008, 16( 11): 7969– 7975
https://doi.org/10.1364/OE.16.007969
227 C C Chao, C M Wang, Y C Chang. et al.. Plasmonic multilayer structure for ultrathin amorphous silicon film photovoltaic cell. Optical Review, 2009, 16( 3): 343– 346
https://doi.org/10.1007/s10043-009-0064-x
228 C Rockstuhl, S Fahr, F Lederer. Absorption enhancement in solar cells by localized plasmon polaritons. Journal of Applied Physics, 2008, 104( 12): 123102
https://doi.org/10.1063/1.3037239
229 W Bai, Q Gan, F Bartoli. et al.. Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells. Optics Letters, 2009, 34( 23): 3725
https://doi.org/10.1364/OL.34.003725
230 V E Ferry, M A Verschuuren, H B T Li. et al.. Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors. Applied Physics Letters, 2009, 95( 18): 183503
https://doi.org/10.1063/1.3256187
231 H Sai, H Fujiwara, M Kondo. Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2009, 93( 6−7): 1087– 1090
https://doi.org/10.1016/j.solmat.2008.12.030
232 S Mokkapati, F J Beck, A Polman. et al.. Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Applied Physics Letters, 2009, 95( 5): 053115
https://doi.org/10.1063/1.3200948
233 M J Mendes, S Morawiec, F Simone. et al.. Colloidal plasmonic back reflectors for light trapping in solar cells. Nanoscale, 2014, 6( 9): 4796– 4805
https://doi.org/10.1039/C3NR06768H
234 K Nakayama, K Tanabe, H A Atwater. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Applied Physics Letters, 2008, 93( 12): 121904
https://doi.org/10.1063/1.2988288
235 S E Skrabalak, J Chen, Y Sun. et al.. Gold nanocages: synthesis, properties, and applications. Accounts of Chemical Research, 2008, 41( 12): 1587– 1595
https://doi.org/10.1021/ar800018v
236 D S Lee, W Kim, B G Cha. et al.. Self-position of Au NPs in perovskite solar cells: optical and electrical contribution. ACS Applied Materials & Interfaces, 2016, 8( 1): 449– 454
https://doi.org/10.1021/acsami.5b09365
237 Z Yuan, Z Wu, S Bai. et al.. Perovskite solar cells: hot-electron injection in a sandwiched TiOx-Au-TiOx structure for high-performance planar perovskite solar cells. Advanced Energy Materials, 2015, 5( 10): 1500038
https://doi.org/10.1002/aenm.201570055
238 P Reineck, D Brick, P Mulvaney. et al.. Plasmonic hot electron solar cells: the effect of nanoparticle size on quantum efficiency. Journal of Physical Chemistry Letters, 2016, 7( 20): 4137– 4141
https://doi.org/10.1021/acs.jpclett.6b01884
239 D M Schaadt, B Feng, E T Yu. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Applied Physics Letters, 2005, 86( 6): 063106
https://doi.org/10.1063/1.1855423
240 Z Xu, Y Lin, M Yin. et al.. Nanotubes: understanding the enhancement mechanisms of surface plasmon-mediated photoelectrochemical electrodes: a case study on Au nanoparticle decorated TiO2 nanotubes. Advanced Materials Interfaces, 2015, 2( 13): 1500169
https://doi.org/10.1002/admi.201500169
241 S Chen, Y Wang, Q Liu. et al.. Broadband enhancement of PbS quantum dot solar cells by the synergistic effect of plasmonic gold nanobipyramids and nanospheres. Advanced Energy Materials, 2018, 8( 8): 1701194
https://doi.org/10.1002/aenm.201701194
242 A Srivastava, D P Samajdar, D Sharma. Plasmonic effect of different nanoarchitectures in the efficiency enhancement of polymer based solar cells: a review. Solar Energy, 2018, 173 : 905– 919
https://doi.org/10.1016/j.solener.2018.08.028
243 I Edinbarough. Experimental study on the optimum harvesting of sunlight for an efficient solar energy system. In: 2013 ASEE Annual Conference & Exposition Proceedings, Atlanta, Georgia, USA, 2013
244 Z Kvasznicza G Elmer. Optimizing solar tracking systems for solar cells. In: Proceeding of 4th Serbian–Hungarian joint Symposium on Intelligent Systems, 2006
245 H Mousazadeh, A Keyhani, A Javadi. et al.. A review of principle and sun-tracking methods for maximizing solar systems output. Renewable & Sustainable Energy Reviews, 2009, 13( 8): 1800– 1818
https://doi.org/10.1016/j.rser.2009.01.022
246 I Luque-Heredia J Moreno P Magalhaes. Inspira’s CPV sun tracking. In: Luque, A L, Andreev V M, eds. Concentrator Photovoltaics. Berlin, Heidelberg: Springer, 2007
247 A García-Segura, A Fernández-García, M J Ariza. et al.. Durability studies of solar reflectors: a review. Renewable & Sustainable Energy Reviews, 2016, 62 : 453– 467
https://doi.org/10.1016/j.rser.2016.04.060
248 F Wiesinger, F Sutter, A Fernández-García. et al.. Sand erosion on solar reflectors: accelerated simulation and comparison with field data. Solar Energy Materials and Solar Cells, 2016, 145 : 303– 313
https://doi.org/10.1016/j.solmat.2015.10.036
249 C E Kennedy, K Terwilliger. Optical durability of candidate solar reflectors. Journal of Solar Energy Engineering, 2005, 127( 2): 262– 269
https://doi.org/10.1115/1.1861926
250 C E Kennedy K Terwilliger G J Jorgensen. Analysis of accelerated exposure testing of thin-glass mirror matrix. In: Proceedings of ASME 2005 International Solar Energy Conference, Orlando, Florida, USA, 2008
251 R Almanza, P Hernández, I Martínez. et al.. Development and mean life of aluminum first-surface mirrors for solar energy applications. Solar Energy Materials and Solar Cells, 2009, 93( 9): 1647– 1651
https://doi.org/10.1016/j.solmat.2009.05.004
252 H Price, E Lu¨pfert, D Kearney. et al.. Advances in parabolic trough solar power technology. Journal of Solar Energy Engineering, 2002, 124( 2): 109– 125
https://doi.org/10.1115/1.1467922
253 W T Xie, Y J Dai, R Z Wang. et al.. Concentrated solar energy applications using Fresnel lenses: a review. Renewable & Sustainable Energy Reviews, 2011, 15( 6): 2588– 2606
https://doi.org/10.1016/j.rser.2011.03.031
254 V Kumar, R L Shrivastava, S P Untawale. Fresnel lens: a promising alternative of reflectors in concentrated solar power. Renewable & Sustainable Energy Reviews, 2015, 44 : 376– 390
https://doi.org/10.1016/j.rser.2014.12.006
255 D C Miller, S R Kurtz. Durability of Fresnel lenses: a review specific to the concentrating photovoltaic application. Solar Energy Materials and Solar Cells, 2011, 95( 8): 2037– 2068
https://doi.org/10.1016/j.solmat.2011.01.031
[1] Zhiliang WANG, Yuang GU, Lianzhou WANG. Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water splitting[J]. Front. Energy, 2021, 15(3): 596-599.
[2] Zekun LIU, Shuang YUAN, Yi YUAN, Guojian LI, Qiang WANG. A thermoelectric generator and water-cooling assisted high conversion efficiency polycrystalline silicon photovoltaic system[J]. Front. Energy, 2021, 15(2): 358-366.
[3] Xueqing LIU, Xiaodong ZHAO, Luyi LU, Jianlan LI. Influence mechanism of dynamic and static liquid bridge forces on particle deposition behaviors in solar photovoltaic mirrors[J]. Front. Energy, 2021, 15(2): 499-512.
[4] Philip Kofi ADOM, Michael Owusu APPIAH, Mawunyo Prosper AGRADI. Does financial development lower energy intensity?[J]. Front. Energy, 2020, 14(3): 620-634.
[5] Shiquan SHAN, Chuyang CHEN, Peter G. LOUTZENHISER, Devesh RANJAN, Zhijun ZHOU, Zhuomin M. ZHANG. Spectral emittance measurements of micro/nanostructures in energy conversion: a review[J]. Front. Energy, 2020, 14(3): 482-509.
[6] Pei LI, Guotian CAI, Yuntao ZHANG, Shangjun KE, Peng WANG, Liping GAO. Multi-objective optimal allocation strategy for the energy internet in Huangpu District, Guangzhou, China[J]. Front. Energy, 2020, 14(2): 241-253.
[7] R. LALITHA NARAYANA, V. RAMACHANDRA RAJU. Experimental study on performance of passive and active solar stills in Indian coastal climatic condition[J]. Front. Energy, 2020, 14(1): 105-113.
[8] Dianbo XIN, Shuliang HUANG, Song YIN, Yuping DENG, Wenqiang ZHANG. Experimental investigation on oil-gas separator of air-conditioning systems[J]. Front. Energy, 2019, 13(2): 411-416.
[9] B. TUDU, K. K. MANDAL, N. CHAKRABORTY. Optimal design and development of PV-wind-battery based nano-grid system: A field-on-laboratory demonstration[J]. Front. Energy, 2019, 13(2): 269-283.
[10] P. PADMAGIRISAN, V. SANKARANARAYANAN. Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle[J]. Front. Energy, 2019, 13(2): 296-306.
[11] Alireza REZVANI, Ali ESMAEILY, Hasan ETAATI, Mohammad MOHAMMADINODOUSHAN. Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and RBFNSM for wind turbine in the grid connected mode[J]. Front. Energy, 2019, 13(1): 131-148.
[12] Xiaojing LV, Yu WENG, Xiaoyi DING, Shilie WENG, Yiwu WENG. Technological development of multi-energy complementary system based on solar PVs and MGT[J]. Front. Energy, 2018, 12(4): 509-517.
[13] Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG. Near-field radiative thermoelectric energy converters: a review[J]. Front. Energy, 2018, 12(1): 5-21.
[14] Qing NI, Hassan ALSHEHRI, Yue YANG, Hong YE, Liping WANG. Plasmonic light trapping for enhanced light absorption in film-coupled ultrathin metamaterial thermophotovoltaic cells[J]. Front. Energy, 2018, 12(1): 185-194.
[15] Zhiwei MA, Huashan BAO, Anthony Paul ROSKILLY. Numerical study of a hybrid absorption-compression high temperature heat pump for industrial waste heat recovery[J]. Front. Energy, 2017, 11(4): 503-509.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed