Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2017, Vol. 11 Issue (4) : 503-509    https://doi.org/10.1007/s11708-017-0515-1
RESEARCH ARTICLE
Numerical study of a hybrid absorption-compression high temperature heat pump for industrial waste heat recovery
Zhiwei MA, Huashan BAO(), Anthony Paul ROSKILLY
Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
 Download: PDF(339 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The present paper aims at exploring a hybrid absorption-compression heat pump (HAC-HP) to upgrade and recover the industrial waste heat in the temperature range of 60°C–120°C. The new HAC-HP system proposed has a condenser, an evaporator, and one more solution pump, compared to the conventional HAC-HP system, to allow flexible utilization of energy sources of electricity and waste heat. In the system proposed, the pressure of ammonia-water vapor desorbed in the generator can be elevated by two routes; one is via the compression of compressor while the other is via the condenser, the solution pump, and the evaporator. The results show that more ammonia-water vapor flowing through the compressor leads to a substantial higher energy efficiency due to the higher quality of electricity, however, only a slight change on the system exergy efficiency is noticed. The temperature lift increases with the increasing system recirculation flow ratio, however, the system energy and exergy efficiencies drop towards zero. The suitable operation ranges of HAC-HP are recommended for the waste heat at 60°C, 80°C, 100°C, and 120°C. The recirculation flow ratio should be lower than 9, 6, 5, and 4 respectively for these waste heat, while the temperature lifts are in the range of 9.8°C–27.7 °C, 14.9°C–44.1 °C, 24.4°C–64.1°C, and 40.7°C–85.7°C, respectively, and the system energy efficiency are 0.35–0.93, 0.32–0.90, 0.25–0.85, and 0.14–0.76.

Keywords absorption compression      high temperature heat pump      efficiency      industrial waste heat      thermodynamic analysis     
Corresponding Author(s): Huashan BAO   
Just Accepted Date: 30 October 2017   Online First Date: 22 November 2017    Issue Date: 14 December 2017
 Cite this article:   
Zhiwei MA,Huashan BAO,AnthonyPaul ROSKILLY. Numerical study of a hybrid absorption-compression high temperature heat pump for industrial waste heat recovery[J]. Front. Energy, 2017, 11(4): 503-509.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-017-0515-1
https://academic.hep.com.cn/fie/EN/Y2017/V11/I4/503
Fig.1  Schematic diagram of hybridabsorption-compression heat pump
Fig.2  Determination of the poleof rectification
Parameter Value
Twas/°C 60–120
FR 1–20*
Rref 0–1
Rrefl 2
hpump1, hpump2 0.85
hcom 0.75
UA/(W·K1) 1000
wref 0.9995
?ref /(kg·s1) 0.01
Tab.1  Parameters usedin the calculation
Fig.3  Thermodynamic states of theworking fluid at different points at Twas = 80°C and FR= 7
Fig.4  Energy efficiency of HAC-HPat a waste heat temperature of 80°C
Fig.5  Exergy efficiency of HAC-HPat a waste heat temperature of 80°C
Fig.6  Useful heat of HAC-HP ata waste heat temperature of 80°C
Fig.7  Input heat and electricitypower at a waste heat temperature of 80°C
Fig.8  Energy vs temperature liftof HAC-HP at waste heat temperatures of 60°C–120°C
Waste heat temperature/°C Recommended FR Energy efficiency Exergy efficiency Useful heat/kW Temperature lift/°C
60 <9 0.35–0.93 0.55–0.67 7.2–11.7 9.8–27.7
80 <6 0.32–0.90 0.50–0.61 7.3–11.9 14.9–44.1
100 <5 0.25–0.85 0.37–0.56 5.7–11.9 24.4–64.1
120 <4 0.14–0.76 0.21–0.50 3.5–11.2 40.7–85.7
Tab.2  Recommended FR and corresponding performance of HAC-HPsystem at different waste heat temperatures Rref = 0–1
FR Recirculation flow ratio
h Enthalpy/(J·kg?1)
? Mass flow rate/(kg·s1)
P Pressure/Pa
Q? Heat power/W
R Ratio
T Temperature/°C
DTLMTD Logarithmic mean temperature difference/°C
UA Heat exchanger performance/(W·K1)
w Mass fraction
? Electric power/W
h Efficiency
Subscripts
abs Absorption
amb Ambient
bas Basic
com Compressor
en Energy
eva Evaporation
ex Exergy
gen Generator
H High pressure
HE Heat exchanger
l Liquid
L Low pressure
min Minimum
pole Pole
pump Pump
rec Rectifier
ref Refrigerant
refl Reflux
s Isentropic
use Useful
v Vapor
was Waste
  
1 Vélez F, Segovia  J J, Martin  M C, Antolin  G, Chejne F ,  Quijano A . A technical, economical and market review of organic Rankine cycles for the conversion of low grade heat for power generation. Renewable & Sustainable Energy Reviews, 2012, 16(6): 4175–4189
https://doi.org/10.1016/j.rser.2012.03.022
2 Zhai X Q, Qu  M, Li Y ,  Wang R Z . A review for research and new design options of solar absorption cooling systems. Renewable & Sustainable Energy Reviews, 2011, 15(9): 4416–4423
https://doi.org/10.1016/j.rser.2011.06.016
3 Li T X, Wang  R Z, Li  H. Progress in the development of solid-gas sorption refrigeration thermodynamic cycle driven by low-grade thermal energy. Progress in Energy and Combustion Science, 2014, 40: 1–58
https://doi.org/10.1016/j.pecs.2013.09.002
4 Oluleye G, Smith  R, Jobson M . Modelling and screening heat pump options for the exploitation of low grade waste heat in process site. Applied Energy, 2016, 169: 267–286
https://doi.org/10.1016/j.apenergy.2016.02.015
5 Chua K J, Chou  S K, Yang  W M. Advances in heat pump systems: a review. Applied Energy, 2010, 87(12): 3611–3624
https://doi.org/10.1016/j.apenergy.2010.06.014
6 Brunin O, Feidt  M, Hivet B . Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump. International Journal of Refrigeration, 1997, 20(5): 308–318
https://doi.org/10.1016/S0140-7007(97)00025-X
7 Hultén M, Berntsson  T. The compression/absorption cycle—influence of some major parameters on COP and a comparison with the compression cycle. International Journal of Refrigeration, 1999, 22(2): 91–106
https://doi.org/10.1016/S0140-7007(98)00047-4
8 Minea V, Chiriac  F. Hybrid absorption heat pump with ammonia/water mixture—some design guidelines and district heating application. International Journal of Refrigeration, 2006, 29(7): 1080–1091
https://doi.org/10.1016/j.ijrefrig.2006.03.007
9 Kim J, Park  S R, Baik  Y J, Chang  K C, Ra  H S, Kim  M, Kim C . Experimental study of operating characteristics of compression/absorption high-temperature hybrid heat pump using waste heat. Renewable Energy, 2013, 54: 13–19
https://doi.org/10.1016/j.renene.2012.09.032
10 Jensen J K, Markussen  W B, Reinholdt  L, Elmegaard B . On the development of high temperature ammonia-water hybrid absorption-compression heat pumps. International Journal of Refrigeration, 2015, 58: 79–89
https://doi.org/10.1016/j.ijrefrig.2015.06.006
11 Jensen J K, Markussen  W B, Reinholdt  L, Elmegaard B . Exergoeconomic optimization of an ammonia-water hybrid absorption-compression heat pump for heat supply in a spray-drying facility. International Journal of Environmental Engineering, 2015, 6: 195–211
12 Bourouis M, Nogues  M, Boer D ,  Coronas A . Industrial heat recovery by absorption/compression heat pump using TFE-H2O-TEGDME working mixture. Applied Thermal Engineering, 2000, 20(4): 355–369
https://doi.org/10.1016/S1359-4311(99)00023-X
13 El-sayed Y M, Tribus  M. Thermodynamic properties of water-ammonia mixtures theoretical implementation for use in power cycles analysis.  American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication), 1985, 1: 89–95
14 Ziegler B, Trepp  C. Equation of state for ammonia-water mixtures. International Journal of Refrigeration, 1984, 7(2): 101–106
https://doi.org/10.1016/0140-7007(84)90022-7
15 Herold K E, Radermacher  R, Klein S A . Absorption Chillers and Heat Pumps. Boca Raton: CRC Press, 1996
16 Wu W, Wang  B L, Shi  W X, Li  X T. Performance improvement of ammonia/absorbent air source absorption heat pump in cold regions. Building Services Engineering Research and Technology, 2014, 35(5): 451–464
https://doi.org/10.1177/0143624413505750
17 Kandlikar S. A new absorber heat recovery cycle to improve COP of aqua-ammonia absorption refrigeration system. Ashrae Transactions, 1982, 88: 141–158
[1] Xuelin ZHANG, Tong ZHANG, Xiaodai XUE, Yang SI, Xuemin ZHANG, Shengwei MEI. A comparative thermodynamic analysis of Kalina and organic Rankine cycles for hot dry rock: a prospect study in the Gonghe Basin[J]. Front. Energy, 2020, 14(4): 889-900.
[2] Philip Kofi ADOM, Michael Owusu APPIAH, Mawunyo Prosper AGRADI. Does financial development lower energy intensity?[J]. Front. Energy, 2020, 14(3): 620-634.
[3] Buqing YE, Rui ZHANG, Jin CAO, Bingquan SHI, Xun ZHOU, Dong LIU. Thermodynamic and economic analyses of a coal and biomass indirect coupling power generation system[J]. Front. Energy, 2020, 14(3): 590-606.
[4] Liang YIN, Yonglin JU. Review on the design and optimization of hydrogen liquefaction processes[J]. Front. Energy, 2020, 14(3): 530-544.
[5] Pei LI, Guotian CAI, Yuntao ZHANG, Shangjun KE, Peng WANG, Liping GAO. Multi-objective optimal allocation strategy for the energy internet in Huangpu District, Guangzhou, China[J]. Front. Energy, 2020, 14(2): 241-253.
[6] R. LALITHA NARAYANA, V. RAMACHANDRA RAJU. Experimental study on performance of passive and active solar stills in Indian coastal climatic condition[J]. Front. Energy, 2020, 14(1): 105-113.
[7] Jiahui JIN, Lei WANG, Mingkai FU, Xin LI, Yuanwei LU. Thermodynamic assessment of hydrogen production via solar thermochemical cycle based on MoO2/Mo by methane reduction[J]. Front. Energy, 2020, 14(1): 71-80.
[8] Zhixiang WU, Lingen CHEN, Yanlin GE, Fengrui SUN. Optimization of the power, efficiency and ecological function for an air-standard irreversible Dual-Miller cycle[J]. Front. Energy, 2019, 13(3): 579-589.
[9] Dianbo XIN, Shuliang HUANG, Song YIN, Yuping DENG, Wenqiang ZHANG. Experimental investigation on oil-gas separator of air-conditioning systems[J]. Front. Energy, 2019, 13(2): 411-416.
[10] Peng GAO, Liwei WANG, Ruzhu WANG, Yang YU. Simulation and experiments on a solid sorption combined cooling and power system driven by the exhaust waste heat[J]. Front. Energy, 2017, 11(4): 516-526.
[11] Bin HU, Di WU, L.W. WANG, R.Z. WANG. Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression[J]. Front. Energy, 2017, 11(4): 493-502.
[12] Haibin HUANG,Gangyu TIAN,Tao WANG,Chao GAO,Jiren YUAN,Zhihao YUE,Lang ZHOU. Analysis of the double-layer α-Si:H emitter with different doping concentrations for α-Si:H/c-Si heterojunction solar cells[J]. Front. Energy, 2017, 11(1): 92-95.
[13] Fanying MENG,Jinning LIU,Leilei SHEN,Jianhua SHI,Anjun HAN,Liping ZHANG,Yucheng LIU,Jian YU,Junkai ZHANG,Rui ZHOU,Zhengxin LIU. High-quality industrial n-type silicon wafers with an efficiency of over 23% for Si heterojunction solar cells[J]. Front. Energy, 2017, 11(1): 78-84.
[14] S. Hari Charan CHERUKURI,Balasubramaniyan SARAVANAN. An overview of selected topics in smart grids[J]. Front. Energy, 2016, 10(4): 441-458.
[15] R. Senthil KUMAR,M. LOGANATHAN,E. James GUNASEKARAN. Performance, emission and combustion characteristics of CI engine fuelled with diesel and hydrogen[J]. Front. Energy, 2015, 9(4): 486-494.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed