Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (2) : 249-274    https://doi.org/10.1007/s11464-015-0375-0
RESEARCH ARTICLE
Mixed eigenvalues of p-Laplacian
Mu-Fa CHEN1,Lingdi WANG1,2,*(),Yuhui ZHANG1
1. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
2. School of Mathematics and Information Sciences, Henan University, Kaifeng 475004, China
 Download: PDF(232 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The mixed principal eigenvalue of p-Laplacian (equivalently, the optimal constant of weighted Hardy inequality in Lp space) is studied in this paper. Several variational formulas for the eigenvalue are presented. As applications of the formulas, a criterion for the positivity of the eigenvalue is obtained. Furthermore, an approximating procedure and some explicit estimates are presented case by case. An example is included to illustrate the power of the results of the paper.

Keywords p-Laplacian      Hardy inequality in Lp space      mixed boundaries      explicit estimates      eigenvalue      approximating procedure     
Corresponding Author(s): Lingdi WANG   
Issue Date: 12 February 2015
 Cite this article:   
Mu-Fa CHEN,Lingdi WANG,Yuhui ZHANG. Mixed eigenvalues of p-Laplacian[J]. Front. Math. China, 2015, 10(2): 249-274.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0375-0
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I2/249
1 Ca?ada A I, Drábek P, Fonda A. Handbook of Differential Equations: Ordinary Differential Equations, Vol 1. North Holland: Elsevier, 2004, 161-357
2 Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. New York: Springer, 2005
3 Chen M F. Speed of stability for birth-death process. Front Math China, 2010, 5(3): 379-516
https://doi.org/10.1007/s11464-010-0068-7
4 Chen M F, Wang L D, Zhang Y H. Mixed principal eigenvalues in dimension one. Front Math China, 2013, 8(2): 317-343
https://doi.org/10.1007/s11464-013-0229-6
5 Chen M F, Wang L D, Zhang Y H. Mixed eigenvalues of discrete p -Laplacian. Front Math China, 2014, 9(6): 1261-1292
https://doi.org/10.1007/s11464-014-0374-6
6 Drábek P, Kufner A. Discreteness and simplicity of the spectrum of a quasilinear Strum-Liouville-type problem on an infinite interval. Proc Amer Math Soc, 2005, 134(1): 235-242
https://doi.org/10.1090/S0002-9939-05-07958-X
7 Jin H Y, Mao Y H. Estimation of the optimal constants in the Lp-Poincaré inequalities on the half line. Acta Math Sinica (Chin Ser), 2012, 55(1): 169-178 (in Chinese)
8 Kufner A, Maligranda L, Persson L. The prehistory of the Hardy inequality. Amer Math Monthly, 2006, 113(8): 715-732
https://doi.org/10.2307/27642033
9 Kufner A, Maligranda L, Persson L. The Hardy Inequality: About Its History and Some Related Results. Plzen: Vydavatelsky Servis Publishing House, 2007
10 Lane J, Edmunds D. Eigenvalues, Embeddings and Generalised Trigonometric Functions. Lecture Notes in Math, Vol 2016. Berlin: Springer, 2011
11 Opic B, Kufner A. Hardy Type Inequalities. Harlow: Longman Scientific and Technical, 1990
12 Pinasco J. Comparison of eignvalues for the p -Laplacian with integral inequalities. Appl Math Comput, 2006, 182: 1399-1404
https://doi.org/10.1016/j.amc.2006.05.027
13 Wa?ewski T. Sur un principe topologique del’examen de l’allure asymptotique des intégrales deséquations différentielles ordinaires. Ann Soc Polon Math, 1947, 20: 279-313
[1] Yanmin NIU, Xiong LI. Dynamical behaviors for generalized pendulum type equations with p-Laplacian[J]. Front. Math. China, 2020, 15(5): 959-984.
[2] Yizheng FAN, Zhu ZHU, Yi WANG. Least H-eigenvalue of adjacency tensor of hypergraphs with cut vertices[J]. Front. Math. China, 2020, 15(3): 451-465.
[3] Hongmei YAO, Li MA, Chunmeng LIU, Changjiang BU. Brualdi-type inclusion sets of Z-eigenvalues and lk,s-singular values for tensors[J]. Front. Math. China, 2020, 15(3): 601-612.
[4] Haibin CHEN, Yiju WANG, Guanglu ZHOU. High-order sum-of-squares structured tensors: theory and applications[J]. Front. Math. China, 2020, 15(2): 255-284.
[5] Xin LI, Jiming GUO, Zhiwen WANG. Minimal least eigenvalue of connected graphs of order n and size m = n + k (5≤k≤8)[J]. Front. Math. China, 2019, 14(6): 1213-1230.
[6] Kinkar Chandra DAS, Huiqiu LIN, Jiming GUO. Distance signless Laplacian eigenvalues of graphs[J]. Front. Math. China, 2019, 14(4): 693-713.
[7] Jiahao XU, Xin ZHAO. Absence of eigenvalues for quasiperiodic Schrödinger type operators[J]. Front. Math. China, 2019, 14(3): 645-659.
[8] Changli LIU, Ren-Cang LI. Structured backward error for palindromic polynomial eigenvalue problems, II: Approximate eigentriplets[J]. Front. Math. China, 2018, 13(6): 1397-1426.
[9] Yueshuang LI. Approximation theorem for principle eigenvalue of discrete p-Laplacian[J]. Front. Math. China, 2018, 13(5): 1045-1061.
[10] Mu-Fa CHEN. Efficient algorithm for principal eigenpair of discrete p-Laplacian[J]. Front. Math. China, 2018, 13(3): 509-524.
[11] Haibin CHEN, Liqun QI, Yisheng SONG. Column sufficient tensors and tensor complementarity problems[J]. Front. Math. China, 2018, 13(2): 255-276.
[12] Yuan HOU, An CHANG, Lei ZHANG. Largest H-eigenvalue of uniform s-hypertrees[J]. Front. Math. China, 2018, 13(2): 301-312.
[13] Lu YE, Zhongming CHEN. Further results on B-tensors with application to location of real eigenvalues[J]. Front. Math. China, 2017, 12(6): 1375-1392.
[14] Haibin CHEN, Yiju WANG. On computing minimal H-eigenvalue of sign-structured tensors[J]. Front. Math. China, 2017, 12(6): 1289-1302.
[15] Changjiang BU,Yamin FAN,Jiang ZHOU. Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs[J]. Front. Math. China, 2016, 11(3): 511-520.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed