|
|
|
Mixed eigenvalues of p-Laplacian |
Mu-Fa CHEN1,Lingdi WANG1,2,*( ),Yuhui ZHANG1 |
1. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China 2. School of Mathematics and Information Sciences, Henan University, Kaifeng 475004, China |
|
|
|
|
Abstract The mixed principal eigenvalue of p-Laplacian (equivalently, the optimal constant of weighted Hardy inequality in Lp space) is studied in this paper. Several variational formulas for the eigenvalue are presented. As applications of the formulas, a criterion for the positivity of the eigenvalue is obtained. Furthermore, an approximating procedure and some explicit estimates are presented case by case. An example is included to illustrate the power of the results of the paper.
|
| Keywords
p-Laplacian
Hardy inequality in Lp space
mixed boundaries
explicit estimates
eigenvalue
approximating procedure
|
|
Corresponding Author(s):
Lingdi WANG
|
|
Issue Date: 12 February 2015
|
|
| 1 |
Ca?ada A I, Drábek P, Fonda A. Handbook of Differential Equations: Ordinary Differential Equations, Vol 1. North Holland: Elsevier, 2004, 161-357
|
| 2 |
Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. New York: Springer, 2005
|
| 3 |
Chen M F. Speed of stability for birth-death process. Front Math China, 2010, 5(3): 379-516
https://doi.org/10.1007/s11464-010-0068-7
|
| 4 |
Chen M F, Wang L D, Zhang Y H. Mixed principal eigenvalues in dimension one. Front Math China, 2013, 8(2): 317-343
https://doi.org/10.1007/s11464-013-0229-6
|
| 5 |
Chen M F, Wang L D, Zhang Y H. Mixed eigenvalues of discrete p -Laplacian. Front Math China, 2014, 9(6): 1261-1292
https://doi.org/10.1007/s11464-014-0374-6
|
| 6 |
Drábek P, Kufner A. Discreteness and simplicity of the spectrum of a quasilinear Strum-Liouville-type problem on an infinite interval. Proc Amer Math Soc, 2005, 134(1): 235-242
https://doi.org/10.1090/S0002-9939-05-07958-X
|
| 7 |
Jin H Y, Mao Y H. Estimation of the optimal constants in the Lp-Poincaré inequalities on the half line. Acta Math Sinica (Chin Ser), 2012, 55(1): 169-178 (in Chinese)
|
| 8 |
Kufner A, Maligranda L, Persson L. The prehistory of the Hardy inequality. Amer Math Monthly, 2006, 113(8): 715-732
https://doi.org/10.2307/27642033
|
| 9 |
Kufner A, Maligranda L, Persson L. The Hardy Inequality: About Its History and Some Related Results. Plzen: Vydavatelsky Servis Publishing House, 2007
|
| 10 |
Lane J, Edmunds D. Eigenvalues, Embeddings and Generalised Trigonometric Functions. Lecture Notes in Math, Vol 2016. Berlin: Springer, 2011
|
| 11 |
Opic B, Kufner A. Hardy Type Inequalities. Harlow: Longman Scientific and Technical, 1990
|
| 12 |
Pinasco J. Comparison of eignvalues for the p -Laplacian with integral inequalities. Appl Math Comput, 2006, 182: 1399-1404
https://doi.org/10.1016/j.amc.2006.05.027
|
| 13 |
Wa?ewski T. Sur un principe topologique del’examen de l’allure asymptotique des intégrales deséquations différentielles ordinaires. Ann Soc Polon Math, 1947, 20: 279-313
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|