Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2015, Vol. 10 Issue (4) : 901-916    https://doi.org/10.1007/s11464-015-0459-x
RESEARCH ARTICLE
First passage probabilities of one-dimensional diffusion processes
Huijie JI1,2,Jinghai SHAO1,*()
1. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
2. College of Mathematics and Computer Science, Shanxi Normal University, Linfen 041000, China
 Download: PDF(159 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This work is devoted to calculating the first passage probabilities of one-dimensional diffusion processes. For a one-dimensional diffusion process, we construct a sequence of Markov chains so that their absorption probabilities approximate the first passage probability of the given diffusion process. This method is especially useful when dealing with time-dependent boundaries.

Keywords Boundary crossing probability      first passage probability      Markov chain      Skorokhod approximation     
Corresponding Author(s): Jinghai SHAO   
Issue Date: 05 June 2015
 Cite this article:   
Huijie JI,Jinghai SHAO. First passage probabilities of one-dimensional diffusion processes[J]. Front. Math. China, 2015, 10(4): 901-916.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-015-0459-x
https://academic.hep.com.cn/fmc/EN/Y2015/V10/I4/901
1 Anderson T W. A modification of the sequential probability ratio test to reduce the sample size. Ann Math Statist, 1960, 31: 165-197
https://doi.org/10.1214/aoms/1177705996
2 Borovkov K, Novikov A. Explicit bounds for approximation rates of boundary crossing probabilities for the Wiener process. J Appl Probab, 2005, 42: 82-92
https://doi.org/10.1239/jap/1110381372
3 Cai N, Chen N, Wan X. Pricing double-barrier options under a flexible jump diffusion model. Oper Res Lett, 2009, 37: 163-167
https://doi.org/10.1016/j.orl.2009.02.006
4 Chi Y, Lin X S. On the threshold dividend strategy for a generalized jump-diffusion risk model. Insurance Math Econom, 2011, 48(3): 326-337
https://doi.org/10.1016/j.insmatheco.2010.11.006
5 Daniels H E. Approximating the first crossing-time density for a curved boundary. Bernoulli, 1996, 2: 133-143
https://doi.org/10.2307/3318547
6 Downes A N, Borovkov K. First passage densities and boundary crossing probabilities for diffusion processes. Methodol Comput Appl Probab, 2008, 10: 621-644
https://doi.org/10.1007/s11009-008-9070-x
7 Durbin J. The first-passage density of the Brownian motion process to a curved boundary. J Appl Probab, 1992, 29: 291-304
https://doi.org/10.2307/3214567
8 Ferebee B. The tangent approximation to one-sided Brownian exit densities. Z Wahrschein-lichkeitstheor Verwandte Geb, 1982, 61: 309-326
https://doi.org/10.1007/BF00539832
9 Fu J C, Wu T L. Linear and nonlinear boundary crossing probabilities for Brownian motion and related processes. J Appl Probab, 2010, 47: 1058-1071
https://doi.org/10.1239/jap/1294170519
10 Giraudo M T. An approximation formula for the first-crossing-time density of a Wiener process perturbed by random jumps. Statist Probab Lett, 2009, 79: 1559-1567
https://doi.org/10.1016/j.spl.2009.03.019
11 Kou S G, Wang H. First passage times of a jump diffusion process. Adv Appl Probab, 2003, 35: 504-531
https://doi.org/10.1239/aap/1051201658
12 Novikov A, Frishling V, Kordzakhia N. Approximations of boundary crossing probabilities for a Brownian motion. J Appl Probab, 1999, 99: 1019-1030
https://doi.org/10.1239/jap/1032374752
13 Novikov A, Frishling V, Kordzakhia N. Time-dependent barrier options and boundary crossing probabilities. Georgian Math J, 2003, 10: 325-334
14 P?tzelberger K, Wang L. Boundary crossing probability for Brownian motion. J Appl Probab, 2001, 38: 152-164
https://doi.org/10.1239/jap/996986650
15 Siegmund D. Boundary crossing probabilities and statistical applications. Ann Statist, 1986, 14: 361-404
https://doi.org/10.1214/aos/1176349928
16 Skorokhod A V. Studies in the Theory of Random Processes. Boston: Addison-Wesley Publishing Company, INC, 1965
17 Wang L, P?tzelberger K. Boundary crossing probability for Brownian motion and general boundaries. J Appl Probab, 1997, 34: 54-65
https://doi.org/10.2307/3215174
18 Wang L, P?tzelberger K. Crossing probabilities for diffusion processes with piecewise continuous boundaries. Methodol Comput Appl Probab, 2007, 9: 21-40
https://doi.org/10.1007/s11009-006-9002-6
[1] Neng-Yi WANG. Convergence rates of symmetric scan Gibbs sampler[J]. Front. Math. China, 2019, 14(5): 941-955.
[2] Yuanyuan LIU, Yanhong SONG. Integral-type functionals of first hitting times for continuous-time Markov chains[J]. Front. Math. China, 2018, 13(3): 619-632.
[3] Yinghui DONG, Kam Chuen YUEN, Guojing WANG. Valuation of CDS counterparty risk under a reduced-form model with regime-switching shot noise default intensities[J]. Front. Math. China, 2017, 12(5): 1085-1112.
[4] Yuanyuan LIU,Pengfei WANG,Yanmin XIE. Deviation matrix and asymptotic variance for GI/M/1-type Markov chains[J]. Front. Math. China, 2014, 9(4): 863-880.
[5] Jinwen CHEN. Limiting process of absorbing Markov chains[J]. Front. Math. China, 2014, 9(4): 753-759.
[6] Hao CUI, Yong-Hua MAO. Eigentime identity for asymmetric finite Markov chains[J]. Front Math Chin, 2010, 5(4): 623-634.
[7] Mu-Fa Chen. Exponential convergence rate in entropy[J]. Front. Math. China, 2007, 2(3): 329-358.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed