Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2017, Vol. 12 Issue (5) : 1085-1112    https://doi.org/10.1007/s11464-017-0656-x
RESEARCH ARTICLE
Valuation of CDS counterparty risk under a reduced-form model with regime-switching shot noise default intensities
Yinghui DONG1(), Kam Chuen YUEN2, Guojing WANG3
1. Department of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China
2. Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong, China
3. Department of Mathematics and Center for Financial Engineering, Soochow University, Suzhou 215006, China
 Download: PDF(445 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the counterparty risk for a credit default swap (CDS) in a regime-switching market driven by an underlying continuous-time Markov chain. We model the default dependence via some correlated Cox processes with regime-switching shot noise intensities containing common shock. Under the proposed model, the general bilateral counterparty risk pricing formula for CDS contracts with the possibility of joint defaults is presented. Based on some expressions for the conditional Laplace transform of the integrated intensity processes, semi-analytical solution for the bilateral credit valuation adjustment (CVA) is derived. When the model parameters satisfy some conditions, explicit formula for the bilateral CVA at time 0 is also given.

Keywords Credit default swap (CDS)      bilateral credit valuation adjustment      Markov chain      common shock      regime-switching shot noise process     
Corresponding Author(s): Yinghui DONG   
Issue Date: 30 September 2017
 Cite this article:   
Yinghui DONG,Kam Chuen YUEN,Guojing WANG. Valuation of CDS counterparty risk under a reduced-form model with regime-switching shot noise default intensities[J]. Front. Math. China, 2017, 12(5): 1085-1112.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-017-0656-x
https://academic.hep.com.cn/fmc/EN/Y2017/V12/I5/1085
1 BieleckiT R, RutkowskiM. Credit Risk: Modeling, Valuation and Hedging.Berlin: Springer, 2004
https://doi.org/10.1007/978-3-662-04821-4
2 BieleckiT, CrépeyS, JeanblancM, ZargariB. Valuation and hedging of CDS counterparty exposure in a Markov copula model.Int J Theor Appl Finance, 2012, 15(1): 1–39
https://doi.org/10.1142/S0219024911006498
3 BrigoD, CapponiA. Bilateral counterparty risk with application to CDSs.Risk, 2010, 23(3): 85–90
4 BuffingtonJ, ElliottR J. American options with regime switching.Int J Theor Appl Finance, 2002, 5: 497–514
https://doi.org/10.1142/S0219024902001523
5 CesariG, AquilinaJ, Niels CharpillonN, FilipovicZ, LeeG, MandaI. Modelling, Pricing, and Hedging Counterparty Credit Exposure: A Technical Guide.Berlin: Springer,2010
6 CoxD R, IshamV. The virtual waiting time and related processes.Adv Appl Probab, 1986, 18: 558–573
https://doi.org/10.1017/S0001867800015883
7 CrépeyS, JeanblancM, ZargariB. Counterparty risk on a CDS in a Markov chain copula model with joint defaults.In: Recent Advances in Financial Engineering 2009. Singapore: World Scientific Publishing, 2010, 91–126
https://doi.org/10.1142/9789814304078_0004
8 DassiosA, JangJ. Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensit y.Finance Stoch,2003, 7(1): 73–95
https://doi.org/10.1007/s007800200079
9 DongY H, YuenK C, WuC F. Unilateral counterparty risk valuation of CDS using a regime-switching intensity model.Statist Probab Lett, 2014, 85: 25–35
https://doi.org/10.1016/j.spl.2013.11.001
10 DuffieD, FilipovicD, SchachermayerW. Affine processes and applications in finance.Ann Appl Probab, 2003, 13(3): 984–1053
https://doi.org/10.1214/aoap/1060202833
11 ElliottR J. New finite dimensional filters and smoothers for noisily observed Markov chains.IEEE Trans Inform Theory, 1993, 39: 265–271
https://doi.org/10.1109/18.179372
12 ElouerkhaouiY. Pricing and hedging in a dynamic credit model.Int J Theor Appl Finance, 2007, 10(4): 703–731
https://doi.org/10.1142/S0219024907004408
13 GieseckeK. A simple exponential model for dependent defaults.J Fixed Income, 2003, 13(3): 74–83
https://doi.org/10.3905/jfi.2003.319362
14 GieseckeK, LongstaffF A, SchaeferS, StrebulaevI. Corporate bond default risk: A 150-year perspective.Journal of Financial Economics, 2011, 102: 233–250
https://doi.org/10.1016/j.jfineco.2011.01.011
15 GregoryJ. Counterparty Credit Risk: The New Challenge for Global Financial Markets.New York: Wiley, 2010
16 GuoX. Information and option pricings.Quant Finance, 2001, 1: 38–44
https://doi.org/10.1080/713665550
17 LindskogF, McNeilA. Common Poisson shock models: applications to insurance and credit risk modelling.Astin Bull, 2003, 33: 209–238
https://doi.org/10.1017/S0515036100013441
18 LiptonA, SeppA. Credit value adjustment for credit default swaps via the structural default model.Journal of Credit Risk, 2009, 5(2): 123–146
https://doi.org/10.21314/JCR.2009.092
19 NaikV. Option valuation and hedging strategies with jumps in the volatility of asset returns.The Journal of Finance, 1993, 48: 1969–1984
https://doi.org/10.1111/j.1540-6261.1993.tb05137.x
20 SiuT K. Bond pricing under a Markovian regime-switching jump-augmented Vasicek model via stochastic flows.Appl Math Comput,2010, 216: 3184–3190
https://doi.org/10.1016/j.amc.2010.04.037
21 ZhouC S. An analysis of default correlation and multiple defaults.The Review of Financial Studies, 2001, 14(2): 555–576
https://doi.org/10.1093/rfs/14.2.555
[1] Neng-Yi WANG. Convergence rates of symmetric scan Gibbs sampler[J]. Front. Math. China, 2019, 14(5): 941-955.
[2] Jie GUO, Guojing WANG. A reduced-form model with default intensities containing contagion and regime-switching Vasicek processes[J]. Front. Math. China, 2018, 13(3): 535-554.
[3] Yuanyuan LIU, Yanhong SONG. Integral-type functionals of first hitting times for continuous-time Markov chains[J]. Front. Math. China, 2018, 13(3): 619-632.
[4] Huijie JI,Jinghai SHAO. First passage probabilities of one-dimensional diffusion processes[J]. Front. Math. China, 2015, 10(4): 901-916.
[5] Yuanyuan LIU,Pengfei WANG,Yanmin XIE. Deviation matrix and asymptotic variance for GI/M/1-type Markov chains[J]. Front. Math. China, 2014, 9(4): 863-880.
[6] Jinwen CHEN. Limiting process of absorbing Markov chains[J]. Front. Math. China, 2014, 9(4): 753-759.
[7] Yinghui DONG, Guojing WANG. A contagion model with Markov regime-switching intensities[J]. Front Math Chin, 2014, 9(1): 45-62.
[8] Hao CUI, Yong-Hua MAO. Eigentime identity for asymmetric finite Markov chains[J]. Front Math Chin, 2010, 5(4): 623-634.
[9] Mu-Fa Chen. Exponential convergence rate in entropy[J]. Front. Math. China, 2007, 2(3): 329-358.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed