Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (2) : 499-523    https://doi.org/10.1007/s11464-020-0863-8
RESEARCH ARTICLE
Convergence, boundedness, and ergodicity of regime-switching diusion processes with infinite memory
Jun LI1,2, Fubao XI1,3()
1. School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
2. Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou 730050, China
3. Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China
 Download: PDF(378 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study a class of diffusion processes, which are determined by solutions X(t) to stochastic functional differential equation with infinite memory and random switching represented by Markov chain Λ(t): Under suitable conditions, we investigate convergence and boundedness of both the solutions X(t) and the functional solutions Xt: We show that two solutions (resp., functional solutions) from different initial data living in the same initial switching regime will be close with high probability as time variable tends to infinity, and that the solutions (resp., functional solutions) are uniformly bounded in the mean square sense. Moreover, we prove existence and uniqueness of the invariant probability measure of two-component Markov-Feller process (Xt,Λ(t)); and establish exponential bounds on the rate of convergence to the invariant probability measure under Wasserstein distance. Finally, we provide a concrete example to illustrate our main results.

Keywords Regime-switching diffusion process      infinite memory      convergence      boundedness      Feller property      invariant measure      Wasserstein distance     
Corresponding Author(s): Fubao XI   
Issue Date: 01 June 2021
 Cite this article:   
Jun LI,Fubao XI. Convergence, boundedness, and ergodicity of regime-switching diusion processes with infinite memory[J]. Front. Math. China, 2021, 16(2): 499-523.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-020-0863-8
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I2/499
1 J Bao, J Shao, C Yuan. Approximation of invariant measures for regime-switching diffusions.Potential Anal, 2016, 44: 707–727
https://doi.org/10.1007/s11118-015-9526-x
2 J Bao, J Shao, C Yuan. Invariant measures for path-dependent random diffusions. arXiv: 1706.05638v1
3 J Bao, F-Y Wang, C Yuan. Ergodicity for neutral type SDEs with infinite length of memory. arXiv: 1805.03431v3
4 J Bao, G, Yin C Yuan. Ergodicity for functional stochastic differential equations and applications. Nonlinear Anal, 2014, 98: 66–82
https://doi.org/10.1016/j.na.2013.12.001
5 J Bardet, H Guérin, F Malrieu. Long time behavior of diffusions with Markov switching. ALEA Lat Am J Probab Math Stat, 2010, 7: 151–170
6 M-F Chen. From Markov Chains to Non-equilibrium Particle Systems.Singapore: World Scientific Publishing Co Pte Ltd, 2004
https://doi.org/10.1142/5513
7 B Cloez, M Hairer. Exponential ergodicity for Markov processes with random switching. Bernoulli, 2015, 21: 505–536
https://doi.org/10.3150/13-BEJ577
8 G Da Prato, J Zabczyk. Ergodicity for Infinite Dimensional Systems.Cambridge: Cambridge Univ Press, 1996
https://doi.org/10.1017/CBO9780511662829
9 M Hairer, J C Mattingly, M Scheutzow. Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations. Probab Theory Related Fields, 2011, 149: 223–259
https://doi.org/10.1007/s00440-009-0250-6
10 J K Hale, S M V Lunel. Introduction to Functional Differential Equations.Berlin: Springer-Verlag, 1993
https://doi.org/10.1007/978-1-4612-4342-7
11 Y Hino, T Naito, S Murakami. Functional Differential Equations with Infinite Delay. Berlin-New York: Springer-Verlag, 1991
https://doi.org/10.1007/BFb0084432
12 F Kappel, W Schappacher. Some considerations to the fundamental theory of infinite delay equation. J Differential Equations, 1980, 37: 141–183
https://doi.org/10.1016/0022-0396(80)90093-5
13 X Ma, F Xi. Large deviations for empirical measures of switching diffusion processes with small parameters. Front Math China, 2015, 10: 949–963
https://doi.org/10.1007/s11464-015-0486-7
14 X Mao. Stochastic Differential Equations and Applications.Chichester: Horwood, 1997
15 X Mao, C Yuan. Stochastic Differential Equations with Markovian Switching. London:Imperial College Press, 2006
https://doi.org/10.1142/p473
16 S-E A Mohammed. Stochastic Functional Differential Equations. Harlow-New York: Longman, 1986
17 B. ksendalStochastic Differential Equations: An Introduction with Applications. 6th ed. Berlin: Springer-Verlag, 2003
https://doi.org/10.1007/978-3-642-14394-6
18 J Shao. Ergodicity of regime-switching diffusions in Wasserstein distances. Stochastic Process Appl, 2015, 125: 739–758
https://doi.org/10.1016/j.spa.2014.10.007
19 J Shao. Invariant measures and Euler-Maruyama's approximations of state-dependent regime-switching diffusions. SIAM J Control Optim, 2018, 56: 3215–3238
https://doi.org/10.1137/18M116678X
20 J Tong, X Jin, Z. ZhangExponential ergodicity for SDEs driven by ff-stable processes with Markovian switching in Wasserstein distances. Potential Anal, 2017, 97: 1–22
https://doi.org/10.1080/00036811.2017.1307966
21 C Villani. Optimal Transport: Old and New. Grundlehren Math Wiss, Vol 338.Berlin- Heidelberg: Springer, 2009
https://doi.org/10.1007/978-3-540-71050-9
22 L Wang, F. WuExistence, uniqueness and asymptotic properties of a class of nonlinear stochastic differential delay equations with Markovian switching. Stoch Dyn, 2009, 9: 253–275
https://doi.org/10.1142/S021949370900266X
23 F, Wu Y Xu. Stochastic Lotka-Volterra population dynamics with infinite delay. SIAM J Appl Math, 2009, 70: 641–657
https://doi.org/10.1137/080719194
24 F Wu, G Yin, H Mei. Stochastic functional differential equations with infinite delay: existence and uniqueness of solutions, solution map, Markov properties, and ergodicity. J Differential Equations, 2017, 262: 1226–1252
https://doi.org/10.1016/j.jde.2016.10.006
25 F Xi. On the stability of jump-diffusions with Markovian switching. J Math Anal Appl, 2008, 341: 588–600
https://doi.org/10.1016/j.jmaa.2007.10.018
26 F Xi. Asymptotic properties of jump-diffusion processes with state-dependent switching. Stochastic Process Appl, 2009, 119: 2198–2221
https://doi.org/10.1016/j.spa.2008.11.001
27 F Xi, C Zhu. On Feller and strong Feller properties and exponential ergodicity of regime-switching jump diffusion processes with countable regimes. SIAM J Control Optim, 2017, 55: 1789–1818
https://doi.org/10.1137/16M1087837
28 G Yin, F Xi. Stability of regime-switching jump diffusions. SIAM J Control Optim, 2010, 48: 4525–4549
https://doi.org/10.1137/080738301
29 G Yin, C. ZhuHybrid Switching Diffusions: Properties and Applications.New York: Springer, 2010
https://doi.org/10.1007/978-1-4419-1105-6
30 C Yuan, J Zou, X Mao. Stability in distribution of stochastic differential delay equations with Markovian switching. Systems Control Lett, 2003, 50: 195–207
https://doi.org/10.1016/S0167-6911(03)00154-3
[1] Shuaibin GAO, Junhao HU, Li TAN, Chenggui YUAN. Strong convergence rate of truncated Euler-Maruyama method for stochastic differential delay equations with Poisson jumps[J]. Front. Math. China, 2021, 16(2): 395-423.
[2] Xing HUANG, Panpan REN, Feng-Yu WANG. Distribution dependent stochastic differential equations[J]. Front. Math. China, 2021, 16(2): 257-301.
[3] Xin WANG, Xingang LIANG, Chunmao HUANG. Convergence of complex martingale for a branching random walk in an independent and identically distributed environment[J]. Front. Math. China, 2021, 16(1): 187-209.
[4] Yanmin NIU, Xiong LI. Dynamical behaviors for generalized pendulum type equations with p-Laplacian[J]. Front. Math. China, 2020, 15(5): 959-984.
[5] Feng LIU, Qingying XUE, K^oz^o YABUTA. Convergence of truncated rough singular integrals supported by subvarieties on Triebel-Lizorkin spaces[J]. Front. Math. China, 2019, 14(3): 591-604.
[6] Yongqiang SUO, Jin TAO, Wei ZHANG. Moderate deviation and central limit theorem for stochastic differential delay equations with polynomial growth[J]. Front. Math. China, 2018, 13(4): 913-933.
[7] Yongguang HE, Huiyun LI, Xinwei LIU. Relaxed inertial proximal Peaceman-Rachford splitting method for separable convex programming[J]. Front. Math. China, 2018, 13(3): 555-578.
[8] Yifen KE, Changfeng MA, Zhiru REN. A new alternating positive semidefinite splitting preconditioner for saddle point problems from time-harmonic eddy current models[J]. Front. Math. China, 2018, 13(2): 313-340.
[9] Liang WEI, Zhiping LI. Fourier-Chebyshev spectral method for cavitation computation in nonlinear elasticity[J]. Front. Math. China, 2018, 13(1): 203-226.
[10] Shaozhen XU, Dunyan YAN. A restriction theorem for oscillatory integral operator with certain polynomial phase[J]. Front. Math. China, 2017, 12(4): 967-980.
[11] Yan LI. Deformation of conic negative Kähler-Einstein manifolds[J]. Front. Math. China, 2017, 12(3): 597-606.
[12] Junping LI,Xiangxiang HUANG,Juan WANG,Lina ZHANG. Recurrence and decay properties of a star-typed queueing model with refusal[J]. Front. Math. China, 2015, 10(4): 917-932.
[13] Yutao MA,Yingzhe WANG. Algebraic convergence of diffusion processes on Rn with radial diffusion and drift coefficients[J]. Front. Math. China, 2015, 10(4): 965-984.
[14] Guangjun SHEN,Xiuwei YIN,Dongjin ZHU. Weak convergence to Rosenblatt sheet[J]. Front. Math. China, 2015, 10(4): 985-1004.
[15] Xinghui WANG,Shuhe HU. Conditional mean convergence theorems of conditionally dependent random variables under conditions of integrability[J]. Front. Math. China, 2015, 10(3): 681-696.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed