|
|
|
Convergence of complex martingale for a branching random walk in an independent and identically distributed environment |
Xin WANG1, Xingang LIANG2, Chunmao HUANG3( ) |
1. Department of General Education, Wenzhou Business College, Wenzhou 325035, China 2. School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China 3. Department of Mathematics, Harbin Institute of Technology (Weihai), Weihai 264209, China |
|
| 1 |
J D Biggins. Martingale convergence in the branching random walk. J Appl Probab, 1977, 14(1): 25–37
https://doi.org/10.2307/3213258
|
| 2 |
J D Biggins. Uniform convergence of martingales in the one-dimensional branching random walk. In: Basawa I V, Taylor R L, eds. Selected Proc of the Sheffield Symp on Applied Probability. IMS Lecture Notes-Monograph Ser, Vol 18. Ann Arbor: Inst Math Stat, 1991, 159–173
https://doi.org/10.1214/lnms/1215459294
|
| 3 |
J D Biggins. Uniform convergence of martingales in the branching random walk. Ann Probab, 1992, 20(1): 137–151
https://doi.org/10.1214/aop/1176989921
|
| 4 |
J D Biggins, A E Kyprianou. Measure change in multitype branching. Adv Appl Probab, 2004, 36(2): 544–581
https://doi.org/10.1239/aap/1086957585
|
| 5 |
Y S Chow, H Teicher. Probability Theory: Independence, Interchangeability and Martingales.New York: Springer-Verlag, 1988
https://doi.org/10.1007/978-1-4684-0504-0
|
| 6 |
Z Gao, Q Liu. Exact convergence rates in central limit theorems for a branching random walk with a random environment in time. Stochastic Process Appl, 2016, 126(9): 2634–2664
https://doi.org/10.1016/j.spa.2016.02.013
|
| 7 |
Z Gao, Q Liu, H Wang. Central limit theorems for a branching random walk with a random environment in time. Acta Math Sci, 2014, 34(2): 501–512
https://doi.org/10.1016/S0252-9602(14)60023-0
|
| 8 |
A K Grincevicjus. On the continuity of the distribution of a sum of dependent variables connected with independent walks on lines. Theory Probab Appl, 1974, 19(1): 163–168
https://doi.org/10.1137/1119015
|
| 9 |
C Huang, X Liang, Q Liu. Branching random walks with random environments in time. Front Math China, 2014, 9(4): 835–842
https://doi.org/10.1007/s11464-014-0407-1
|
| 10 |
C Huang, X Wang, X Q Wang. Large and moderate deviations for a Rd-valued branching random walk with a random environment in time. Stochastics, 2020, 92(6): 944–968
https://doi.org/10.1080/17442508.2019.1679145
|
| 11 |
A Iksanov, K Kolesko, M Meiners. Fluctuations of Biggins' martingales at complex parameters.arXiv: 1806.09943
|
| 12 |
A Iksanov, X Liang, Q Liu. On Lp-convergence of the Biggins martingale with complex parameter. J Math Anal Appl, 2019, 479(2): 1653–1669
https://doi.org/10.1016/j.jmaa.2019.07.017
|
| 13 |
K Kolesko, M Meiners. Convergence of complex martingales in the branching random walk: the boundary. Electron Commun Probab, 2017, 22(18): 1–14
https://doi.org/10.1214/17-ECP50
|
| 14 |
D Kuhlbusch. On weighted branching processes in random environment. Stochastic Process Appl, 2004, 109(1): 113–144
https://doi.org/10.1016/j.spa.2003.09.004
|
| 15 |
Y Li, Q Liu, X Peng. Harmonic moments, large and moderate deviation principles for Mandelbrot's cascade in a random environment. Statist Probab Lett, 2019, 147: 57–65
https://doi.org/10.1016/j.spl.2018.10.002
|
| 16 |
R Lyons. A simple path to Biggins' martingale convergence for branching random walk. In: Athreya K B, Jagers P, eds. Classical and Modern Branching Processes. IMA Vol Math Appl, Vol 84. New York: Springer, 1997, 217–221
https://doi.org/10.1007/978-1-4612-1862-3_17
|
| 17 |
B Mallein, P Miloś. Maximal displacement of a supercritical branching random walk in a time-inhomogeneous random environment. Stochastic Process Appl, 2019, 129(9): 3239–3260
https://doi.org/10.1016/j.spa.2018.09.008
|
| 18 |
M Nakashima. Branching random walks in random environment and super-Brownian motion in random environment. Ann Inst Henri Poincaré Probab Stat, 2015, 51(4): 1251–1289
https://doi.org/10.1214/14-AIHP620
|
| 19 |
X Wang, C Huang. Convergence of martingale and moderate deviations for a branching random walk with a random environment in time. J Theoret Probab, 2017, 30(3): 961–995
https://doi.org/10.1007/s10959-016-0668-6
|
| 20 |
X Wang, C Huang. Convergence of complex martingale for a branching random walk in a time random environment. Electron Commun Probab, 2019, 24(41): 1{14
https://doi.org/10.1214/19-ECP247
|
| 21 |
Y Wang, Z Liu, Q Liu, Y Li. Asymptotic properties of a branching random walk with a random environment in time. Acta Math Sci Ser B Engl Ed, 2019, 39(5): 1345–1362
https://doi.org/10.1007/s10473-019-0513-y
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|