Lα-convergenc," /> Lα-convergenc,"/> Lα-convergenc,"/>
Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (1) : 187-209    https://doi.org/10.1007/s11464-021-0882-0
RESEARCH ARTICLE
Convergence of complex martingale for a branching random walk in an independent and identically distributed environment
Xin WANG1, Xingang LIANG2, Chunmao HUANG3()
1. Department of General Education, Wenzhou Business College, Wenzhou 325035, China
2. School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China
3. Department of Mathematics, Harbin Institute of Technology (Weihai), Weihai 264209, China
 Download: PDF(341 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We consider an d-valued discrete time branching random walk in an independent and identically distributed environment indexed by time n. Let Wn(z)(zd) be the natural complex martingale of the process. We show necessary and sufficient conditions for the Lα-convergence of Wn(z) for α>1, as well as its uniform convergence region.

Keywords Branching random walk      random environment      moments      uniform convergence      complex martingale      Lα-convergenc')" href="#">Lα-convergenc     
Corresponding Author(s): Chunmao HUANG   
Issue Date: 26 March 2021
 Cite this article:   
Xin WANG,Xingang LIANG,Chunmao HUANG. Convergence of complex martingale for a branching random walk in an independent and identically distributed environment[J]. Front. Math. China, 2021, 16(1): 187-209.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0882-0
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I1/187
1 J D Biggins. Martingale convergence in the branching random walk. J Appl Probab, 1977, 14(1): 25–37
https://doi.org/10.2307/3213258
2 J D Biggins. Uniform convergence of martingales in the one-dimensional branching random walk. In: Basawa I V, Taylor R L, eds. Selected Proc of the Sheffield Symp on Applied Probability. IMS Lecture Notes-Monograph Ser, Vol 18. Ann Arbor: Inst Math Stat, 1991, 159–173
https://doi.org/10.1214/lnms/1215459294
3 J D Biggins. Uniform convergence of martingales in the branching random walk. Ann Probab, 1992, 20(1): 137–151
https://doi.org/10.1214/aop/1176989921
4 J D Biggins, A E Kyprianou. Measure change in multitype branching. Adv Appl Probab, 2004, 36(2): 544–581
https://doi.org/10.1239/aap/1086957585
5 Y S Chow, H Teicher. Probability Theory: Independence, Interchangeability and Martingales.New York: Springer-Verlag, 1988
https://doi.org/10.1007/978-1-4684-0504-0
6 Z Gao, Q Liu. Exact convergence rates in central limit theorems for a branching random walk with a random environment in time. Stochastic Process Appl, 2016, 126(9): 2634–2664
https://doi.org/10.1016/j.spa.2016.02.013
7 Z Gao, Q Liu, H Wang. Central limit theorems for a branching random walk with a random environment in time. Acta Math Sci, 2014, 34(2): 501–512
https://doi.org/10.1016/S0252-9602(14)60023-0
8 A K Grincevicjus. On the continuity of the distribution of a sum of dependent variables connected with independent walks on lines. Theory Probab Appl, 1974, 19(1): 163–168
https://doi.org/10.1137/1119015
9 C Huang, X Liang, Q Liu. Branching random walks with random environments in time. Front Math China, 2014, 9(4): 835–842
https://doi.org/10.1007/s11464-014-0407-1
10 C Huang, X Wang, X Q Wang. Large and moderate deviations for a Rd-valued branching random walk with a random environment in time. Stochastics, 2020, 92(6): 944–968
https://doi.org/10.1080/17442508.2019.1679145
11 A Iksanov, K Kolesko, M Meiners. Fluctuations of Biggins' martingales at complex parameters.arXiv: 1806.09943
12 A Iksanov, X Liang, Q Liu. On Lp-convergence of the Biggins martingale with complex parameter. J Math Anal Appl, 2019, 479(2): 1653–1669
https://doi.org/10.1016/j.jmaa.2019.07.017
13 K Kolesko, M Meiners. Convergence of complex martingales in the branching random walk: the boundary. Electron Commun Probab, 2017, 22(18): 1–14
https://doi.org/10.1214/17-ECP50
14 D Kuhlbusch. On weighted branching processes in random environment. Stochastic Process Appl, 2004, 109(1): 113–144
https://doi.org/10.1016/j.spa.2003.09.004
15 Y Li, Q Liu, X Peng. Harmonic moments, large and moderate deviation principles for Mandelbrot's cascade in a random environment. Statist Probab Lett, 2019, 147: 57–65
https://doi.org/10.1016/j.spl.2018.10.002
16 R Lyons. A simple path to Biggins' martingale convergence for branching random walk. In: Athreya K B, Jagers P, eds. Classical and Modern Branching Processes. IMA Vol Math Appl, Vol 84. New York: Springer, 1997, 217–221
https://doi.org/10.1007/978-1-4612-1862-3_17
17 B Mallein, P Miloś. Maximal displacement of a supercritical branching random walk in a time-inhomogeneous random environment. Stochastic Process Appl, 2019, 129(9): 3239–3260
https://doi.org/10.1016/j.spa.2018.09.008
18 M Nakashima. Branching random walks in random environment and super-Brownian motion in random environment. Ann Inst Henri Poincaré Probab Stat, 2015, 51(4): 1251–1289
https://doi.org/10.1214/14-AIHP620
19 X Wang, C Huang. Convergence of martingale and moderate deviations for a branching random walk with a random environment in time. J Theoret Probab, 2017, 30(3): 961–995
https://doi.org/10.1007/s10959-016-0668-6
20 X Wang, C Huang. Convergence of complex martingale for a branching random walk in a time random environment. Electron Commun Probab, 2019, 24(41): 1{14
https://doi.org/10.1214/19-ECP247
21 Y Wang, Z Liu, Q Liu, Y Li. Asymptotic properties of a branching random walk with a random environment in time. Acta Math Sci Ser B Engl Ed, 2019, 39(5): 1345–1362
https://doi.org/10.1007/s10473-019-0513-y
[1] Xiequan FAN, Haijuan HU, Quansheng LIU. Uniform Cramér moderate deviations and Berry-Esseen bounds for a supercritical branching process in a random environment[J]. Front. Math. China, 2020, 15(5): 891-914.
[2] Jingning LIU, Mei ZHANG. Critical survival barrier for branching random walk[J]. Front. Math. China, 2019, 14(6): 1259-1280.
[3] Yuhui ZHANG. Criteria on ergodicity and strong ergodicity of single death processes[J]. Front. Math. China, 2018, 13(5): 1215-1243.
[4] Wenming HONG, Hui YANG. Scaling limit theorem for transient random walk in random environment[J]. Front. Math. China, 2018, 13(5): 1033-1044.
[5] Qi SUN, Mei ZHANG. Harmonic moments and large deviations for supercritical branching processes with immigration[J]. Front. Math. China, 2017, 12(5): 1201-1220.
[6] Zhimin ZHANG,Chaolin LIU. Moments of discounted dividend payments in a risk model with randomized dividend-decision times[J]. Front. Math. China, 2017, 12(2): 493-513.
[7] Wenming HONG,Hui YANG,Ke ZHOU. Scaling limit of local time of Sinai’s random walk[J]. Front. Math. China, 2015, 10(6): 1313-1324.
[8] Fuqing GAO. Laws of iterated logarithm for transient random walks in random environments[J]. Front. Math. China, 2015, 10(4): 857-874.
[9] Yingqiu LI,Quansheng LIU,Zhiqiang GAO,Hesong WANG. Asymptotic properties of supercritical branching processes in random environments[J]. Front. Math. China, 2014, 9(4): 737-751.
[10] Chunmao HUANG,Xingang LIANG,Quansheng LIU. Branching random walks with random environments in time[J]. Front. Math. China, 2014, 9(4): 835-842.
[11] Mu-Fa CHEN,Yuhui ZHANG. Unified representation of formulas for single birth processes[J]. Front. Math. China, 2014, 9(4): 761-796.
[12] Xiaona CUI, Rui WANG, Dunyan YAN. Double Hilbert transform on D(?2)[J]. Front Math Chin, 2013, 8(4): 783-799.
[13] Zhichao SHAN, Dayue CHEN. Voter model in a random environment in ?d[J]. Front Math Chin, 2012, 7(5): 895-905.
[14] Kai ZHAO, Xue CHENG, Jingping YANG. Saddlepoint approximation for moments of random variables[J]. Front Math Chin, 2011, 6(6): 1265-1284.
[15] RUI Hongxing, BI Chunjia. Convergence analysis of an upwind finite volume element method with Crouzeix-Raviart element for non-selfadjoint and indefinite problems[J]. Front. Math. China, 2008, 3(4): 563-579.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed