Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (4) : 1117-1161    https://doi.org/10.1007/s11464-021-0958-x
RESEARCH ARTICLE
Large and moderate deviation principles for susceptible-infected-removed epidemic in a random environment
Xiaofeng XUE(), Yumeng SHEN
School of Science, Beijing Jiaotong University, Beijing 100044, China
 Download: PDF(445 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We are concerned with SIR epidemics in a random environment on complete graphs, where edges are assigned with i.i.d. weights. Our main results give large and moderate deviation principles of sample paths of this model. Our results generalize large and moderate deviation principles of the classic SIR models given by E. Pardoux and B. Samegni-Kepgnou [J. Appl. Probab., 2017, 54: 905-920] and X. F. Xue [Stochastic Process. Appl., 2019, 140: 49-80].

Keywords large deviation      moderate deviation      susceptible-infected-removed (SIR)      epidemic      random environment     
Corresponding Author(s): Xiaofeng XUE   
Issue Date: 11 October 2021
 Cite this article:   
Xiaofeng XUE,Yumeng SHEN. Large and moderate deviation principles for susceptible-infected-removed epidemic in a random environment[J]. Front. Math. China, 2021, 16(4): 1117-1161.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0958-x
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I4/1117
1 A Agazzi, A Dembo, J P Eckmann. Large deviations theory for Markov jump models of chemical reaction networks. Ann Appl Probab, 2018, 28: 1821–1855
https://doi.org/10.1214/17-AAP1344
2 R M Anderson, R M May. Infectious Diseases of Humans: Dynamic and Control. Oxford: Oxford Univ Press, 1991
3 D Bertacchi, N Lanchier, F Zucca. Contact and voter processes on the infinite percolation cluster as models of host-symbiont interactions. Ann Appl Probab, 2011, 21: 1215–1252
https://doi.org/10.1214/10-AAP734
4 T Britton, E Pardoux. Stochastic epidemics in a homogeneous community. arXiv: 1808.05350
5 R Durrett. Random Graph Dynamics. Cambridge: Cambridge Univ Press, 2007
https://doi.org/10.1017/CBO9780511546594
6 N Ethier, T Kurtz. Markov Processes: Characterization and Convergence. Hoboken: John Wiley and Sons, 1986
https://doi.org/10.1002/9780470316658
7 F Q Gao, J Quastel. Moderate deviations from the hydrodynamic limit of the symmetric exclusion process. Sci China Math, 2003, 46(5): 577–592
https://doi.org/10.1360/02ys0114
8 T Kurtz. Strong approximation theorems for density dependent Markov chains. Stochastic Process Appl, 1978, 6: 223–240
https://doi.org/10.1016/0304-4149(78)90020-0
9 E Pardoux, B Samegni-Kepgnou. Large deviation principle for epidemic models. J Appl Probab, 2017, 54: 905–920
https://doi.org/10.1017/jpr.2017.41
10 J Peterson. The contact process on the complete graph with random vertex-dependent infection rates. Stochastic Process Appl, 2011, 121(3): 609–629
https://doi.org/10.1016/j.spa.2010.11.003
11 A Puhalskii. The method of stochastic exponentials for large deviations. Stochastic Process Appl, 1994, 54: 45–70
https://doi.org/10.1016/0304-4149(94)00004-2
12 V J Schuppen, E Wong. Transformation of local martingales under a change of law. Ann Probab, 1974, 2: 879–888
https://doi.org/10.1214/aop/1176996554
13 A Schwartz, A Weiss. Large Deviations for Performance Analysis. London: Chapman and Hall, 1995
14 M Sion. On general minimax theorems. Pacific J Math, 1958, 8: 171–176
https://doi.org/10.2140/pjm.1958.8.171
15 X F Xue. Law of large numbers for the SIR model with random vertex weights on Erdos-Renyi graph. Phys A, 2017, 486: 434–445
https://doi.org/10.1016/j.physa.2017.04.096
16 X F Xue. Moderate deviations of density-dependent Markov chains. Stochastic Process Appl, 2019, 140: 49–80
https://doi.org/10.1016/j.spa.2021.06.005
17 Q Yao, X X Chen. The complete convergence theorem holds for contact processes in a random environment on Zd×Z+. Stoch Anal Appl, 2012, 122(9): 3066–3100
[1] Xin WANG, Xingang LIANG, Chunmao HUANG. Convergence of complex martingale for a branching random walk in an independent and identically distributed environment[J]. Front. Math. China, 2021, 16(1): 187-209.
[2] Xiequan FAN, Haijuan HU, Quansheng LIU. Uniform Cramér moderate deviations and Berry-Esseen bounds for a supercritical branching process in a random environment[J]. Front. Math. China, 2020, 15(5): 891-914.
[3] Linlin FU, Jiahao XU, Fan WU. New proof of continuity of Lyapunov exponents for a class of smooth Schrödinger cocycles with weak Liouville frequencies[J]. Front. Math. China, 2020, 15(3): 467-489.
[4] Xiaocui MA, Fubao XI, Dezhi LIU. Moderate deviations for neutral functional stochastic differential equations driven by Levy noises[J]. Front. Math. China, 2020, 15(3): 529-554.
[5] Wenming HONG, Hui YANG. Scaling limit theorem for transient random walk in random environment[J]. Front. Math. China, 2018, 13(5): 1033-1044.
[6] Yunshi GAO, Hui JIANG, Shaochen WANG. Moderate deviations for Euler-Maruyama approximation of Hull-White stochastic volatility model[J]. Front. Math. China, 2018, 13(4): 809-832.
[7] Yongqiang SUO, Jin TAO, Wei ZHANG. Moderate deviation and central limit theorem for stochastic differential delay equations with polynomial growth[J]. Front. Math. China, 2018, 13(4): 913-933.
[8] Fuqing GAO, Qiaojing LIU. Moderate deviations for estimators under exponentially stochastic differentiability conditions[J]. Front. Math. China, 2018, 13(1): 25-40.
[9] Qi SUN, Mei ZHANG. Harmonic moments and large deviations for supercritical branching processes with immigration[J]. Front. Math. China, 2017, 12(5): 1201-1220.
[10] Lei CHEN, Shaochen WANG. Asymptotic behavior for log-determinants of several non-Hermitian rand om matrices[J]. Front. Math. China, 2017, 12(4): 805-819.
[11] Xinmei SHEN, Yuqing NIU, Hailan TIAN. Precise large deviations for sums of random vectors with dependent components of consistently varying tails[J]. Front. Math. China, 2017, 12(3): 711-732.
[12] Hui JIANG. Large and moderate deviations in testing Ornstein-Uhlenbeck process with linear drift[J]. Front. Math. China, 2016, 11(2): 291-307.
[13] Wenming HONG,Hui YANG,Ke ZHOU. Scaling limit of local time of Sinai’s random walk[J]. Front. Math. China, 2015, 10(6): 1313-1324.
[14] Xiaocui MA,Fubao XI. Large deviations for empirical measures of switching diffusion processes with small parameters[J]. Front. Math. China, 2015, 10(4): 949-963.
[15] Fuqing GAO. Laws of iterated logarithm for transient random walks in random environments[J]. Front. Math. China, 2015, 10(4): 857-874.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed