Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front Math Chin    2011, Vol. 6 Issue (2) : 363-378    https://doi.org/10.1007/s11464-011-0108-y
RESEARCH ARTICLE
Singular values of nonnegative rectangular tensors
Yuning YANG, Qingzhi YANG()
School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
 Download: PDF(209 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. Some properties concerning the singular values of a real rectangular tensor were discussed by K. C. Chang et al. [J. Math. Anal. Appl., 2010, 370: 284-294]. In this paper, we give some new results on the Perron-Frobenius Theorem for nonnegative rectangular tensors. We show that the weak Perron-Frobenius keeps valid and the largest singular value is really geometrically simple under some conditions. In addition, we establish the convergence of an algorithm proposed by K. C. Chang et al. for finding the largest singular value of nonnegative primitive rectangular tensors.

Keywords Nonnegative rectangular tensor      Perron-Frobenius Theorem      singular value      algorithm     
Corresponding Author(s): YANG Qingzhi,Email:qz-yang@nankai.edu.cn   
Issue Date: 01 April 2011
 Cite this article:   
Yuning YANG,Qingzhi YANG. Singular values of nonnegative rectangular tensors[J]. Front Math Chin, 2011, 6(2): 363-378.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-011-0108-y
https://academic.hep.com.cn/fmc/EN/Y2011/V6/I2/363
1 Bloy L, Verma R. On computing the underlying fiber directions from the diffusion orientation distribution function. In: Metaxas D, Axel L, Fichtinger G, Székely G, eds. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2008. Lecture Notes in Computer Science, No 5241 . Berlin/Heidelberg: Springer, 2008, 1-8
doi: 10.1007/978-3-540-85988-8_1
2 Chang K C, Pearson K, T. Zhang T. Perron Frobenius Theorem for nonnegative tensors. Comm Math Sci , 2008, 6: 507-520
3 Chang K C, Qi L, Zhou G. Singular values of a real rectangular tensor. J Math Anal Appl , 2010, 370: 284-294
doi: 10.1016/j.jmaa.2010.04.037
4 Drineas P, Lim L H. A multilinear spectral theory of hypergraphs and expander hypergraphs. 2005
5 Lathauwer L D, Moor B D, Vandewalle J. On the best rank-1 and rank-(R1, R2, . . . , RN) approximation of higher-order tensors. SIAM J Matrix Anal Appl , 2000, 21: 1324-1342
doi: 10.1137/S0895479898346995
6 Lim L H. Singular values and eigenvalues of tensors: a variational approach. Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi-Sensor Adaptive Processing , 2005, 1: 129-132
7 Lim L H. Multilinear pagerank: measuring higher order connectivity in linked objects. The Internet: Today and Tomorrow , July, 2005
8 Ng M, Qi L, Zhou G. Finding the largest eigenvalue of a non-negative tensor. SIAM J Matrix Anal Appl , 2009, 31: 1090-1099
doi: 10.1137/09074838X
9 Ni Q, Qi L, Wang F. An eigenvalue method for the positive definiteness identification problem. IEEE Transactions on Automatic Control , 2008, 53: 1096-1107
doi: 10.1109/TAC.2008.923679
10 Pearson K. Essentially positive tensors. Int J Algebra , 2010, 4: 421-427
11 Pearson K. Primitive tensors and convergence of an iterative process for the eigenvalues of a primitive tensor. arXiv: 1004.2423v1 , 2010
12 Qi L. Eigenvalues of a real supersymmetric tensor. J Symb Comput , 2005, 40: 1302-1324
doi: 10.1016/j.jsc.2005.05.007
13 Qi L, Sun W, Wang Y. Numerical multilinear algebra and its applications. Front Math China , 2007, 2(4): 501-526
doi: 10.1007/s11464-007-0031-4
14 Qi L, Wang Y, Wu E. D-eigenvalues of diffusion kurtosis tensor. J Comput Appl Math , 2008, 221: 150-157
doi: 10.1016/j.cam.2007.10.012
15 Yang Y, Yang Q. Further results for Perron-Frobenius Theorem for nonnegative tensors. SIAM J Matrix Anal Appl , 2010, 31: 2517-2530
doi: 10.1137/090778766
16 Yang Y, Yang Q. A note on the geometric simplicity of the spectral radius of nonnegative irreducible tensor. http://arxiv.org/abs/1101.2479v1, 2010
[1] Hongmei YAO, Li MA, Chunmeng LIU, Changjiang BU. Brualdi-type inclusion sets of Z-eigenvalues and lk,s-singular values for tensors[J]. Front. Math. China, 2020, 15(3): 601-612.
[2] Mu-Fa CHEN, Yue-Shuang LI. Improved global algorithms for maximal eigenpair[J]. Front. Math. China, 2019, 14(6): 1077-1116.
[3] Qingzhi YANG, Yiyong LI. Standard tensor and its applications in problem of singular values of tensors[J]. Front. Math. China, 2019, 14(5): 967-987.
[4] Mu-Fa CHEN, Yue-Shuang LI. Development of powerful algorithm for maximal eigenpair[J]. Front. Math. China, 2019, 14(3): 493-519.
[5] Xinzhen ZHANG, Guanglu ZHOU, Louis CACCETTA, Mohammed ALQAHTANI. Approximation algorith ms for nonnegative polynomial optimization problems over unit spheres[J]. Front. Math. China, 2017, 12(6): 1409-1426.
[6] Mu-Fa CHEN. Global algorithms for maximal eigenpair[J]. Front. Math. China, 2017, 12(5): 1023-1043.
[7] Mu-Fa CHEN. Efficient initials for computing maximal eigenpair[J]. Front. Math. China, 2016, 11(6): 1379-1418.
[8] Hongmei YAO,Bingsong LONG,Changjiang BU,Jiang ZHOU. lk,s-Singular values and spectral radius of partially symmetric rectangular tensors[J]. Front. Math. China, 2016, 11(3): 605-622.
[9] Yiyong LI,Qingzhi YANG,Yuning YANG. A new definition of geometric multiplicity of eigenvalues of tensors and some results based on it[J]. Front. Math. China, 2015, 10(5): 1123-1146.
[10] Jing AN,Zhendong LUO,Hong LI,Ping SUN. Reduced-order extrapolation spectral-finite difference scheme based on POD method and error estimation for three-dimensional parabolic equation[J]. Front. Math. China, 2015, 10(5): 1025-1040.
[11] Zhiyong GAN,Dingjun LOU,Zanbo ZHANG,Xuelian WEN. Bipartite double cover and perfect 2-matching covered graph with its algorithm[J]. Front. Math. China, 2015, 10(3): 621-634.
[12] Guanli HUANG,Meng ZHOU. Termination of algorithm for computing relative Gr?bner bases and difference differential dimension polynomials[J]. Front. Math. China, 2015, 10(3): 635-648.
[13] Kai ZHANG,Jiachuan ZHANG,Haibao DUAN,Jingzhi LI. Effective algorithms for computing triangular operator in Schubert calculus[J]. Front. Math. China, 2015, 10(1): 221-237.
[14] Dongmei LI, Jinwang LIU, Weijun LIU. Normal projection: deterministic and probabilistic algorithms[J]. Front Math Chin, 2014, 9(1): 93-99.
[15] Xu KONG, Yaolin JIANG. Structured multi-way arrays and their applications[J]. Front Math Chin, 2013, 8(2): 345-369.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed