|
|
|
Singular values of nonnegative rectangular tensors |
Yuning YANG, Qingzhi YANG( ) |
| School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China |
|
|
|
|
Abstract The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. Some properties concerning the singular values of a real rectangular tensor were discussed by K. C. Chang et al. [J. Math. Anal. Appl., 2010, 370: 284-294]. In this paper, we give some new results on the Perron-Frobenius Theorem for nonnegative rectangular tensors. We show that the weak Perron-Frobenius keeps valid and the largest singular value is really geometrically simple under some conditions. In addition, we establish the convergence of an algorithm proposed by K. C. Chang et al. for finding the largest singular value of nonnegative primitive rectangular tensors.
|
| Keywords
Nonnegative rectangular tensor
Perron-Frobenius Theorem
singular value
algorithm
|
|
Corresponding Author(s):
YANG Qingzhi,Email:qz-yang@nankai.edu.cn
|
|
Issue Date: 01 April 2011
|
|
| 1 |
Bloy L, Verma R. On computing the underlying fiber directions from the diffusion orientation distribution function. In: Metaxas D, Axel L, Fichtinger G, Székely G, eds. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2008. Lecture Notes in Computer Science, No 5241 . Berlin/Heidelberg: Springer, 2008, 1-8 doi: 10.1007/978-3-540-85988-8_1
|
| 2 |
Chang K C, Pearson K, T. Zhang T. Perron Frobenius Theorem for nonnegative tensors. Comm Math Sci , 2008, 6: 507-520
|
| 3 |
Chang K C, Qi L, Zhou G. Singular values of a real rectangular tensor. J Math Anal Appl , 2010, 370: 284-294 doi: 10.1016/j.jmaa.2010.04.037
|
| 4 |
Drineas P, Lim L H. A multilinear spectral theory of hypergraphs and expander hypergraphs. 2005
|
| 5 |
Lathauwer L D, Moor B D, Vandewalle J. On the best rank-1 and rank-(R1, R2, . . . , RN) approximation of higher-order tensors. SIAM J Matrix Anal Appl , 2000, 21: 1324-1342 doi: 10.1137/S0895479898346995
|
| 6 |
Lim L H. Singular values and eigenvalues of tensors: a variational approach. Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi-Sensor Adaptive Processing , 2005, 1: 129-132
|
| 7 |
Lim L H. Multilinear pagerank: measuring higher order connectivity in linked objects. The Internet: Today and Tomorrow , July, 2005
|
| 8 |
Ng M, Qi L, Zhou G. Finding the largest eigenvalue of a non-negative tensor. SIAM J Matrix Anal Appl , 2009, 31: 1090-1099 doi: 10.1137/09074838X
|
| 9 |
Ni Q, Qi L, Wang F. An eigenvalue method for the positive definiteness identification problem. IEEE Transactions on Automatic Control , 2008, 53: 1096-1107 doi: 10.1109/TAC.2008.923679
|
| 10 |
Pearson K. Essentially positive tensors. Int J Algebra , 2010, 4: 421-427
|
| 11 |
Pearson K. Primitive tensors and convergence of an iterative process for the eigenvalues of a primitive tensor. arXiv: 1004.2423v1 , 2010
|
| 12 |
Qi L. Eigenvalues of a real supersymmetric tensor. J Symb Comput , 2005, 40: 1302-1324 doi: 10.1016/j.jsc.2005.05.007
|
| 13 |
Qi L, Sun W, Wang Y. Numerical multilinear algebra and its applications. Front Math China , 2007, 2(4): 501-526 doi: 10.1007/s11464-007-0031-4
|
| 14 |
Qi L, Wang Y, Wu E. D-eigenvalues of diffusion kurtosis tensor. J Comput Appl Math , 2008, 221: 150-157 doi: 10.1016/j.cam.2007.10.012
|
| 15 |
Yang Y, Yang Q. Further results for Perron-Frobenius Theorem for nonnegative tensors. SIAM J Matrix Anal Appl , 2010, 31: 2517-2530 doi: 10.1137/090778766
|
| 16 |
Yang Y, Yang Q. A note on the geometric simplicity of the spectral radius of nonnegative irreducible tensor. http://arxiv.org/abs/1101.2479v1, 2010
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|