Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2020, Vol. 14 Issue (5) : 601-612    https://doi.org/10.1007/s11684-020-0800-y
RESEARCH ARTICLE
Use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in context of COVID-19 outbreak: a retrospective analysis
Jiuyang Xu1, Chaolin Huang2, Guohui Fan3,4,5, Zhibo Liu3,4, Lianhan Shang3,4,6, Fei Zhou3,4, Yeming Wang3,4,7, Jiapei Yu1, Luning Yang1, Ke Xie3,7, Zhisheng Huang3,8, Lixue Huang3,7, Xiaoying Gu3,4,5, Hui Li3,4, Yi Zhang3,4, Yimin Wang3,4, Frederick G. Hayden9, Peter W. Horby10, Bin Cao3,4,7,11(), Chen Wang3,4,11,12()
1. Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China
2. Department of Infectious Diseases, Jinyintan Hospital, Wuhan 430030, China
3. Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China
4. Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
5. Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
6. Beijing University of Chinese Medicine, Beijing 100029, China
7. Department of Respiratory Medicine, Capital Medical University, Beijing 100029, China
8. Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
9. Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
10. Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX1 2JD, UK
11. Tsinghua University–Peking University Joint Center for Life Sciences, Beijing 100084, China
12. Chinese Academy of Engineering, Beijing 100088, China
 Download: PDF(552 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The possible effects of angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) on COVID-19 disease severity have generated considerable debate. We performed a single-center, retrospective analysis of hospitalized adult COVID-19 patients in Wuhan, China, who had definite clinical outcome (dead or discharged) by February 15, 2020. Patients on anti-hypertensive treatment with or without ACEI/ARB were compared on their clinical characteristics and outcomes. The medical records from 702 patients were screened. Among the 101 patients with a history of hypertension and taking at least one anti-hypertensive medication, 40 patients were receiving ACEI/ARB as part of their regimen, and 61 patients were on anti-hypertensive medication other than ACEI/ARB. We observed no statistically significant differences in percentages of in-hospital mortality (28% vs. 34%, P=0.46), ICU admission (20% vs. 28%, P=0.37) or invasive mechanical ventilation (18% vs. 26%, P=0.31) between patients with or without ACEI/ARB treatment. Further multivariable adjustment of age and gender did not provide evidence for a significant association between ACEI/ARB treatment and severe COVID-19 outcomes. Our findings confirm the lack of an association between chronic receipt of renin-angiotensin system antagonists and severe outcomes of COVID-19. Patients should continue previous anti-hypertensive therapy until further evidence is available.

Keywords COVID-19      SARS-CoV-2      hypertension      angiotensin-converting enzyme inhibitor      angiotensin II receptor blocker     
Corresponding Author(s): Bin Cao,Chen Wang   
Just Accepted Date: 04 June 2020   Online First Date: 06 July 2020    Issue Date: 12 October 2020
 Cite this article:   
Jiuyang Xu,Chaolin Huang,Guohui Fan, et al. Use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in context of COVID-19 outbreak: a retrospective analysis[J]. Front. Med., 2020, 14(5): 601-612.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0800-y
https://academic.hep.com.cn/fmd/EN/Y2020/V14/I5/601
Fig.1  Physiology of ACE/AngII/AT1 and ACE2/Ang1–7/Mas axes. (A) Schematic structures of angiotensin and its derivatives. The three-letter codes were used to represent amino acid residues. (B) Physiology of angiotensin processing and blood regulation. In hypovolemic conditions, renin, secreted by cells in macula densa in the kidney, cleaves angiotensinogen into a decapeptide angiotensin I (Ang I). The angiotensin-converting enzyme (ACE) further cleaves the peptide into an octapeptide angiotensin II (Ang II), which acts on the cellular receptor angiotensin II receptor I (AT1) to constrict the blood vessels and increases blood pressure (“yang”). ACE2 is a mono-carboxypeptidase transforming the Ang II into angiotensin-(1–7) (Ang1–7), which binds to the G protein-coupled receptor Mas to dilate the blood vessels and counter-balance ACE/Ang II in blood pressure regulation (“yin”). Figure was generated with BioRender.
Fig.2  Schematic for patient selection in this study.
Characteristics Total
n = 101
ACEI/ARB
n = 40
Non-ACEI/ARB
n = 61
P value
Age (year) 65.0 (58.0, 73.0) 66.5 (58.0, 72.0) 65.0 (58.0, 74.0) 0.8024
Gender, male, n (%) 53 (52) 19 (48) 34 (56) 0.4175
Smoking, n (%) 4 (4) 3 (8) 1 (2) 0.3394
Time from illness onset to admission (day) 13.0 (8.5, 16.0) 12.5 (8.5, 16.0) 13.0 (8.5, 15.5) 0.7805
Comorbidity
Hypertension, n (%) 101 (100) 40 (100) 61 (100) NA
Diabetes, n (%) 19 (19) 8 (20) 11 (18) 0.8046
Heart failure, n (%) 1 (1) 0 (0) 1 (2) 1.0000
Coronary heart disease, n (%) 12 (12) 5 (13) 7 (11) 1.0000
COPD, n (%) 2 (2) 1 (3) 1 (2) 1.0000
Carcinoma, n (%) 5 (5) 2 (5) 3 (5) 1.0000
Chronic kidney disease, n (%) 2 (2) 0 (0) 2 (3) 0.5168
Vital signs
Respiratory rate>24 /min, n (%) 19 (19) 6 (15) 13 (21) 0.4273
Systolic BP (mmHg) 135 (122, 152) 138 (131, 152) 134 (123, 147) 0.6617
≥140, n (%) 39 (39) 17 (43) 22 (36) 0.5160
Diastolic BP (mmHg) 81 (75, 88) 79 (74, 90) 82 (76, 87) 0.4222
≥90 mmHg, n (%) 22 (22) 11 (28) 11 (18) 0.2596
Symptoms
Fever, n (%) 88 (87) 31 (78) 57 (93) 0.0193
Cough, n (%) 80 (79) 30 (75) 50 (82) 0.3988
Sputum, n (%) 30 (30) 11 (28) 19 (31) 0.6948
Myalgia, n (%) 9 (9) 2 (5) 7 (11) 0.4472
Headache, n (%) 9 (9) 5 (13) 4 (7) 0.5040
Fatigue, n (%) 39 (39) 15 (38) 24 (39) 0.8523
Diarrhea, n (%) 8 (8) 3 (8) 5 (8) 1.0000
Dyspnea, n (%) 64 (63) 23 (58) 41 (67) 0.3217
Laboratory findings
Na (mmol/L) 140.0 (139.0, 142.0) 141.0 (139.0, 143.0) 140.0 (139.0, 142.0) 0.1949
<135 2 (2) 0 (0) 2 (3) 0.7669
135–145 97 (96) 39 (98) 58 (95)
>145 2 (2) 1 (3) 1 (2)
K (mmol/L) 4.1 (3.7, 4.5) 4.1 (3.6, 4.6) 4.1 (3.7, 4.4) 0.5923
<3.5 15 (15) 4 (10) 11 (18) 0.5247
3.5–5.5 81 (80) 34 (85) 47 (77)
>5.5 5 (5) 2 (5) 3 (5)
White blood cell count (×109/L) 6.0 (4.5, 8.7) 6.1 (5.0, 9.7) 5.8 (4.4, 8.2) 0.5289
4–10, n (%) 66/100 (66) 26 (65) 40/60 (67) 0.9049
<4, n (%) 16/100 (16) 6 (15) 10/60 (17)
>10, n (%) 18/100 (18) 8 (20) 10/60 (17)
Lymphocyte count (×109/L) 0.8 (0.6, 1.3) 0.8 (0.6, 1.3) 0.8 (0.6, 1.2) 0.8301
<0.8, n (%) 51/100 (51) 22 (55) 29/60 (48) 0.5135
Hemoglobin (g/L) 121.0 (110.0, 135.5) 117.5 (108.5, 134.0) 123.0 (113.0, 136.5) 0.2601
Platelet count (×109/L) 202.5 (150.0, 261.5) 189.0 (145.5, 251.5) 206.0 (162.0, 269.5) 0.5129
<100, n (%) 3/100 (3) 1 (3) 2/60 (3) 1.0000
Alanine transaminase (U/L) 32.0 (21.0, 54.0) 32.0 (23.0, 54.0) 34.0 (20.0, 53.0) 0.6342
≤40, n (%) 62 (61) 25 (63) 37 (61) 0.8523
>40, n (%) 39 (39) 15 (38) 24 (39)
Creatinine>133 (mmol/L), n (%) 6 (6) 2 (5) 4 (7) 1.0000
Lactate dehydrogenase (U/L) 336.0 (238.0, 455.0) 307.0 (230.0, 403.0) 357.0 (248.0, 481.5) 0.0828
≤245, n (%) 28/100 (28) 13 (33) 15/60 (25) 0.4132
>245, n (%) 72/100 (72) 27 (68) 45/60 (75)
Creatine kinase (U/L) 15.0 (12.0, 36.0) 15.0 (11.0, 23.5) 17.0 (13.0, 43.0) 0.2639
≤185, n (%) 95/99 (96) 38 (95) 57/59 (97) 1.0000
>185, n (%) 4/99 (4) 2 (5) 2/59 (3)
Brain natriuretic peptide (pg/mL) 58.6 (29.9, 110.6) 55.7 (28.9, 119.7) 61.2 (32.6, 108.6) 0.6878
≥100, n (%) 17/62 (27) 7/25 (28) 10/37 (27) 0.9329
Cardiac troponin I (pg/mL) 7.2 (3.1, 19.9) 5.7 (2.5, 20.8) 9.1 (4.1, 17.2) 0.2629
>28, n (%) 18/99 (18) 7 (18) 11/59 (19) 0.8848
Prothrombin time (s) 11.4 (10.4, 12.4) 11.5 (10.2, 12.6) 11.3 (10.5, 12.3) 0.9857
<16, n (%) 97/99 (98) 38/39 (97) 59/60 (98) 1.0000
≥16, n (%) 2/99 (2) 1/39 (3) 1/60 (2)
D-dimer (mg/mL) 1.3 (0.6, 4.5) 1.2 (0.5, 2.7) 1.4 (0.7, 5.5) 0.1759
≤1, n (%) 41/99 (41) 16/39 (41) 25/60 (42) 0.9496
>1, n (%) 58/99 (59) 23/39 (59) 35/60 (58)
Serum ferritin (mg/L) 576.9 (334.5, 980.4) 577.1 (334.5, 938.8) 548.8 (336.6, 1001.0) 0.9853
≤300, n (%) 17/83 (20) 8/35 (23) 9/48 (19) 0.6471
>300, n (%) 66/83 (80) 27/35 (77) 39/48 (81)
Procalcitonin (ng/mL) 0.1 (0.1, 0.2) 0.1 (0.1, 0.1) 0.1 (0.1, 0.2) 0.2729
<0.1, n (%) 36/65 (55) 16/24 (67) 20/41 (49) 0.4237
≥0.1 to <0.25, n (%) 21/65 (32) 5/24 (21) 16/41 (39)
≥0.25 to <0.5, n (%) 2/65 (3) 1/24 (4) 1/41 (2)
≥0.5, n (%) 6/65 (9) 2/24 (8) 4/41 (10)
Interleukin 6 (pg/mL) 7.5 (6.0, 10.9) 7.0 (5.7, 9.8) 8.0 (6.1, 11.4) 0.1429
Imaging features
Consolidation, n (%) 64 (63) 24 (60) 40 (66) 0.5696
Ground-glass opacity, n (%) 82 (81) 32 (80) 50 (82) 0.8046
Bilateral pulmonary infiltration, n (%) 82 (81) 33 (83) 49 (80) 0.7847
Disease severity scores
SOFA 3.5 (2.0, 4.0) 2.0 (1.0, 4.0) 4.0 (2.0, 4.5) 0.2917
CURB-65 1.0 (1.0, 2.0) 1.0 (1.0, 2.0) 1.0 (0.0, 2.0) 0.6631
0–1, n (%) 73 (72) 28 (70) 45 (74) 0.7230
2, n (%) 20 (20) 9 (23) 11 (18)
3–5, n (%) 8 (8) 3 (8) 5 (8)
Tab.1  Demographic, clinical, laboratory, and radiologic findings on admission
Treatment Total
n = 101
ACEI/ARB
n = 40
Non-ACEI/ARB
n = 61
P value
ACEI 8 (8) 8 (20) 0 0.0011
ARB 33 (33) 33 (83) 0 <0.0001
a-blocker 2 (20) 1 (3) 1 (2) 1.0000
b-blocker 15 (15) 5 (13) 10 (16) 0.5905
CCB 77 (77) 19 (48) 58 (95) <0.0001
Diuretics 9 (9) 6 (15) 3 (5) 0.1669
Tab.2  Anti-hypertensive treatment therapies
Treatment Number
Aa 14
B 3
C 48
A+ B 3
A+ C 17
A+ D 2
B+ C 7
C+ D 3
A+ C+ D 2
A+ B+ C+ D 2
Total 101
Tab.3  Anti-hypertensive treatment therapies by combination
Total
n = 101
ACEI/ARB
n = 40
Non-ACEI/ARB
n = 61
P value
Treatments
Antibiotic drugs, n (%) 95 (94) 36 (90) 59 (97) 0.3334
Antiviral drugsa, n (%) 44 (44) 17 (43) 27 (44) 0.8613
Lopinavir-ritonavir, n (%) 16 (16) 6 (15) 10 (16) 0.8512
Corticosteroids, n (%) 28 (28) 11 (28) 17 (28) 0.9677
Intravenous immunoglobin, n (%) 36 (36) 15 (38) 21 (34) 0.7524
Highest oxygenation support therapy
No oxygenation support, n (%) 6 (6) 5 (12) 1 (2) 0.1087
NC, n (%) 56 (55) 23 (58) 33 (54)
HFNC, n (%) 16 (16) 5 (12) 11 (18)
NIMV, n (%) 4 (4) 0 (0) 4 (6)
IMV, n (%) 19 (19) 7 (18) 12 (20)
Renal replacement therapy, n (%) 8 (8) 3 (8) 5 (8) 1.0000
Complications
Respiratory failure, n (%) 53 (52) 17 (43) 36 (59) 0.1040
Sepsis, n (%) 55 (54) 19 (48) 36 (59) 0.2557
Sepsis shock, n (%) 13 (13) 5 (13) 8 (13) 0.9281
ARDS, n (%) 33 (33) 11 (28) 22 (36) 0.3694
Acute kidney injury, n (%) 11 (11) 5 (13) 6 (10) 0.9253
Acute cardiac injury, n (%) 24 (24) 9 (23) 15 (25) 0.8093
Acidosis, n (%) 9 (9) 3 (8) 6 (10) 0.9633
Secondary infection, n (%) 9 (9) 4 (10) 5 (8) 1.0000
Hypoproteinemia, n (%) 21 (21) 10 (25) 11 (18) 0.3988
Coagulopathy, n (%) 15 (15) 7 (18) 8 (13) 0.5444
Outcomes
ICU admission, n (%) 25 (25) 8 (20) 17 (28) 0.3702
Death, n (%) 32 (32) 11 (28) 21 (34) 0.4643
Mechanical ventilationb, n (%) 23 (23) 7 (18) 16 (26) 0.3062
Hospital length of stayc (day) 12.0 (8.5, 15.0) 13.0 (9.0, 15.0) 12.0 (7.0, 14.5) 0.1955
Duration of viral shedding after illness onsetc (day) 18.0 (15.0, 23.0) 19.0 (15.0, 23.0) 18.0 (14.5, 23.0) 0.8123
Tab.4  Treatments and clinical outcomes
Death ICU admission IMV
OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value
ACEI/ARB 0.73 (0.29–1.82) 0.4994 0.65 (0.25–1.70) 0.3798 0.87 (0.31–2.43) 0.7860
ACEI/ARB (adjusted)a 0.78 (0.32–1.93) 0.5894 0.68 (0.26–1.81) 0.4431 0.92 (0.32–2.63) 0.8796
Tab.5  Risk of ACEI/ARB administration on severe COVID-19 outcome
Univariable OR (95% CI) P value Multivariable OR (95% CI) P value
Age (year) 1.07 (1.03–1.12) 0.0025 1.04 (0.99–1.10) 0.1059
Diabetes 1.76 (0.63–4.91) 0.2820
qSOFA score 4.77 (2.07–10.96) 0.00024 5.41 (2.18–13.48) 0.00028
D-dimer >1 µg/mL 3.43 (1.30–9.02) 0.0125 3.64 (1.10–11.99) 0.0341
Tab.6  Risk factors associated with in-hospital death in hypertensive patients on medication
1 World Health Organization. Coronavirus disease (COVID-19) outbreak situation. 2020. (accessed May 24, 2020)
2 WJ Guan, ZY Ni, Y Hu, WH Liang, CQ Ou, JX He, L Liu, H Shan, CL Lei, DSC Hui, B Du, LJ Li, G Zeng, KY Yuen, RC Chen, CL Tang, T Wang, PY Chen, J Xiang, SY Li, JL Wang, ZJ Liang, YX Peng, L Wei, Y Liu, YH Hu, P Peng, JM Wang, JY Liu, Z Chen, G Li, ZJ Zheng, SQ Qiu, J Luo, CJ Ye, SY Zhu, NS Zhong; China Medical Treatment Expert Group for COVID-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708–1720
https://doi.org/10.1056/NEJMoa2002032
3 D Wang, B Hu, C Hu, F Zhu, X Liu, J Zhang, B Wang, H Xiang, Z Cheng, Y Xiong, Y Zhao, Y Li, X Wang, Z Peng. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061
https://doi.org/10.1001/jama.2020.1585
4 WJ Guan, WH Liang, Y Zhao, HR Liang, ZS Chen, YM Li, XQ Liu, RC Chen, CL Tang, T Wang, CQ Ou, L Li, PY Chen, L Sang, W Wang, JF Li, CC Li, LM Ou, B Cheng, S Xiong, ZY Ni, J Xiang, Y Hu, L Liu, H Shan, CL Lei, YX Peng, L Wei, Y Liu, YH Hu, P Peng, JM Wang, JY Liu, Z Chen, G Li, ZJ Zheng, SQ Qiu, J Luo, CJ Ye, SY Zhu, LL Cheng, F Ye, SY Li, JP Zheng, NF Zhang, NS Zhong, JX He; China Medical Treatment Expert Group for COVID-19. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J 2020; 55(5): 2000547
https://doi.org/10.1183/13993003.00547-2020
5 T Chen, D Wu, H Chen, W Yan, D Yang, G Chen, K Ma, D Xu, H Yu, H Wang, T Wang, W Guo, J Chen, C Ding, X Zhang, J Huang, M Han, S Li, X Luo, J Zhao, Q Ning. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020; 368: m1091
https://doi.org/10.1136/bmj.m1091
6 F Zhou, T Yu, R Du, G Fan, Y Liu, Z Liu, J Xiang, Y Wang, B Song, X Gu, L Guan, Y Wei, H Li, X Wu, J Xu, S Tu, Y Zhang, H Chen, B Cao. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054–1062
https://doi.org/10.1016/S0140-6736(20)30566-3
7 J Lu, Y Lu, X Wang, X Li, GC Linderman, C Wu, X Cheng, L Mu, H Zhang, J Liu, M Su, H Zhao, ES Spatz, JA Spertus, FA Masoudi, HM Krumholz, L Jiang. Prevalence, awareness, treatment, and control of hypertension in China: data from 1.7 million adults in a population-based screening study (China PEACE Million Persons Project). Lancet 2017; 390(10112): 2549–2558
https://doi.org/10.1016/S0140-6736(17)32478-9
8 L Fang, G Karakiulakis, M Roth. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020; 8(4): e21
https://doi.org/10.1016/S2213-2600(20)30116-8
9 Y Liao, X Cheng, Q Zeng, Z Chen, Z Wang, J Yuan, X Wang, Z Zhou, Y Wei, G Cao. Expert recommendations for management and treatment of cardiovascular diseases under the epidemic situation of novel coronavirus pneumonia in Hubei Province. J Clin Cardiol (Lin Chuang Xin Xue Guan Bing Za Zhi) 2020; 36(3): 201–203 (in Chinese)
10 D Caldeira, J Alarcao, A Vaz-Carneiro, J Costa. Risk of pneumonia associated with use of angiotensin converting enzyme inhibitors and angiotensin receptor blockers: systematic review and meta-analysis. BMJ, 2012; 345: e4260
https://doi.org/10.1136/bmj.e4260
11 EM Mortensen, B Nakashima, J Cornell, LA Copeland, MJ Pugh, A Anzueto, C Good, MI Restrepo, JR Downs, CR Frei, MJ Fine. Population-based study of statins, angiotensin II receptor blockers, and angiotensin-converting enzyme inhibitors on pneumonia-related outcomes. Clin Infect Dis 2012; 55(11): 1466–1473
https://doi.org/10.1093/cid/cis733
12 K Kuba, Y Imai, S Rao, H Gao, F Guo, B Guan, Y Huan, P Yang, Y Zhang, W Deng, L Bao, B Zhang, G Liu, Z Wang, M Chappell, Y Liu, D Zheng, A Leibbrandt, T Wada, AS Slutsky, D Liu, C Qin, C Jiang, JM Penninger. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005; 11(8): 875–879
https://doi.org/10.1038/nm1267
13 Y Yan, Q Liu, N Li, J Du, X Li, C Li, N Jin, C Jiang. Angiotensin II receptor blocker as a novel therapy in acute lung injury induced by avian influenza A H5N1 virus infection in mouse. Sci China Life Sci 2015; 58(2): 208–211
https://doi.org/10.1007/s11427-015-4814-7
14 M Donoghue, F Hsieh, E Baronas, K Godbout, M Gosselin, N Stagliano, M Donovan, B Woolf, K Robison, R Jeyaseelan, RE Breitbart, S Acton. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 2000; 87(5): E1–E9
https://doi.org/10.1161/01.RES.87.5.e1
15 SR Tipnis, NM Hooper, R Hyde, E Karran, G Christie, AJ Turner. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 2000; 275(43): 33238–33243
https://doi.org/10.1074/jbc.M002615200
16 RA Santos, AC Simoes e Silva, C Maric, DM Silva, RP Machado, I de Buhr, S Heringer-Walther, SV Pinheiro, MT Lopes, M Bader, EP Mendes, VS Lemos, MJ Campagnole-Santos, HP Schultheiss, R Speth, T Walther. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 2003; 100(14): 8258–8263
https://doi.org/10.1073/pnas.1432869100
17 RM Wösten-van Asperen, R Lutter, PA Specht, GN Moll, JB van Woensel, CM van der Loos, H van Goor, J Kamilic, S Florquin, AP Bos. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1–7) or an angiotensin II receptor antagonist. J Pathol 2011; 225(4): 618–627
https://doi.org/10.1002/path.2987
18 W Li, MJ Moore, N Vasilieva, J Sui, SK Wong, MA Berne, M Somasundaran, JL Sullivan, K Luzuriaga, TC Greenough, H Choe, M Farzan. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450–454
https://doi.org/10.1038/nature02145
19 M Letko, A Marzi, V Munster. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562–569
https://doi.org/10.1038/s41564-020-0688-y
20 P Zhou, XL Yang, XG Wang, B Hu, L Zhang, W Zhang, HR Si, Y Zhu, B Li, CL Huang, HD Chen, J Chen, Y Luo, H Guo, RD Jiang, MQ Liu, Y Chen, XR Shen, X Wang, XS Zheng, K Zhao, QJ Chen, F Deng, LL Liu, B Yan, FX Zhan, YY Wang, GF Xiao, ZL Shi. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270–273
https://doi.org/10.1038/s41586-020-2012-7
21 R Yan, Y Zhang, Y Li, L Xia, Y Guo, Q Zhou. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367(6485): 1444–1448
https://doi.org/10.1126/science.abb2762
22 I Hamming, W Timens, ML Bulthuis, AT Lely, G Navis, H van Goor. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203(2): 631–637
https://doi.org/10.1002/path.1570
23 Y Zhao, Z Zhao, Y Wang, Y Zhou, Y Ma, W. ZuoSingle-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. bioRxiv 2020; doi: 10.1101/2020.01.26.919985
https://doi.org/10.1101/2020.01.26.919985
24 PE Gallagher, CM Ferrario, EA Tallant. Regulation of ACE2 in cardiac myocytes and fibroblasts. Am J Physiol Heart Circ Physiol 2008; 295(6): H2373–H2379
https://doi.org/10.1152/ajpheart.00426.2008
25 LM Burrell, J Risvanis, E Kubota, RG Dean, PS MacDonald, S Lu, C Tikellis, SL Grant, RA Lew, AI Smith, ME Cooper, CI Johnston. Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J 2005; 26(4): 369–375, discussion 322–364
https://doi.org/10.1093/eurheartj/ehi114
26 AHJ Danser, M Epstein, D Batlle. Renin-angiotensin system blockers and the COVID-19 pandemic: at present there is no evidence to abandon renin-angiotensin system blockers. Hypertension 2020; 75(6): 1382–1385
https://doi.org/10.1161/HYPERTENSIONAHA.120.15082
27 Z Huang, J Cao, Y Yao, X Jin, Z Luo, Y Xue, C Zhu, Y Song, Y Wang, Y Zou, J Qian, K Yu, H Gong, J Ge. The effect of RAS blockers on the clinical characteristics of COVID-19 patients with hypertension. Ann Transl Med 2020; 8(7): 430
https://doi.org/10.21037/atm.2020.03.229
28 P Zhang, L Zhu, J Cai, F Lei, JJ Qin, J Xie, YM Liu, YC Zhao, X Huang, L Lin, M Xia, MM Chen, X Cheng, X Zhang, D Guo, Y Peng, YX Ji, J Chen, ZG She, Y Wang, Q Xu, R Tan, H Wang, J Lin, P Luo, S Fu, H Cai, P Ye, B Xiao, W Mao, L Liu, Y Yan, M Liu, M Chen, XJ Zhang, X Wang, RM Touyz, J Xia, BH Zhang, X Huang, Y Yuan, L Rohit, PP Liu, H Li. Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res 2020; [Epub ahead of print] doi: 10.1161/CIRCRESAHA.120.317134
https://doi.org/10.1161/CIRCRESAHA.120.317134
29 N Mehta, A Kalra, AS Nowacki , S Anjewierden, Z Han, P Bhat, AE Carmona-Rubio, M Jacob, G W Procop, S Harrington, A Milinovich, LG Svensson, L Jehi, JB Young, MK Chung.Association of use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; [Epub ahead of print] doi: 10.1001/jamacardio.2020.1855
https://doi.org/10.1001/jamacardio.2020.1855
30 HR Reynolds, S Adhikari, C Pulgarin, AB Troxel, E Iturrate, SB Johnson, A Hausvater, JD Newman, JS Berger, S Bangalore, SD Katz, GI Fishman, D Kunichoff, Y Chen, G Ogedegbe, JS Hochman. Renin-angiotensin-aldosterone system inhibitors and risk of COVID-19. N Engl J Med 2020; [Epub ahead of print] doi: 10.1056/NEJMoa2008975
https://doi.org/10.1056/NEJMoa2008975
31 FJ de Abajo, S Rodríguez-Martín, V Lerma, G Mejía-Abril, M Aguilar, A García-Luque, L Laredo, O Laosa, GA Centeno-Soto, M Ángeles Gálvez, M Puerro, E González-Rojano, L Pedraza, I de Pablo, F Abad-Santos, L Rodríguez-Mañas, M Gil, A Tobías, A Rodríguez-Miguel, D Rodríguez-Puyol, D Barreira-Hernandez, P Zubiaur, E Santos-Molina, E Pintos-Sánchez, M Navares-Gómez, RM Aparicio, V García-Rosado, C Gutiérrez-Ortega, C Pérez, A Ascaso, C Elvira. Use of renin–angiotensin–aldosterone system inhibitors and risk of COVID-19 requiring admission to hospital: a case-population study. Lancet 2020; 395(10238): 1705–1714
https://doi.org/10.1016/S0140-6736(20)31030-8
32 G Mancia, F Rea, M Ludergnani, G Apolone, G Corrao. Renin-angiotensin-aldosterone system blockers and the risk of COVID-19. N Engl J Med 2020; [Epub ahead of print] doi: 10.1056/NEJMoa2006923
https://doi.org/10.1056/NEJMoa2006923
33 M Singer, CS Deutschman, CW Seymour, M Shankar-Hari, D Annane, M Bauer, R Bellomo, GR Bernard, JD Chiche, CM Coopersmith, RS Hotchkiss, MM Levy, JC Marshall, GS Martin, SM Opal, GD Rubenfeld, T van der Poll, JL Vincent, DC Angus. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016; 315(8): 801–810
https://doi.org/10.1001/jama.2016.0287
34 ADT Force, VM Ranieri, GD Rubenfeld, BT Thompson, ND Ferguson, E Caldwell, E Fan, L Camporota, AS Slutsky. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307(23): 2526–2533
35 KDIGO. Clinical Practice Guideline for Acute Kidney Injury. 2012. (accessed May 24, 2020)
36 C Huang, Y Wang, X Li, L Ren, J Zhao, Y Hu, L Zhang, G Fan, J Xu, X Gu, Z Cheng, T Yu, J Xia, Y Wei, W Wu, X Xie, W Yin, H Li, M Liu, Y Xiao, H Gao, L Guo, J Xie, G Wang, R Jiang, Z Gao, Q Jin, J Wang, B Cao. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497–506
https://doi.org/10.1016/S0140-6736(20)30183-5
37 M Abe, O Oikawa, K Okada, M Soma. Urinary angiotensin-converting enzyme 2 increases in diabetic nephropathy by angiotensin II type 1 receptor blocker olmesartan. J Renin Angiotensin Aldosterone Syst 2015; 16(1): 159–164
https://doi.org/10.1177/1470320314551443
38 M Furuhashi, N Moniwa, T Mita, T Fuseya, S Ishimura, K Ohno, S Shibata, M Tanaka, Y Watanabe, H Akasaka, H Ohnishi, H Yoshida, H Takizawa, S Saitoh, N Ura, K Shimamoto, T Miura. Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker. Am J Hypertens 2015; 28(1): 15–21
https://doi.org/10.1093/ajh/hpu086
39 A Soro-Paavonen, D Gordin, C Forsblom, M Rosengard-Barlund, J Waden, L Thorn, N Sandholm, MC Thomas, PH Groop; FinnDiane Study Group. Circulating ACE2 activity is increased in patients with type 1 diabetes and vascular complications. J Hypertens 2012; 30(2): 375–383
https://doi.org/10.1097/HJH.0b013e32834f04b6
40 J Liu, H Ji, W Zheng, X Wu, JJ Zhu, AP Arnold, K Sandberg. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biol Sex Differ 2010; 1(1): 6
https://doi.org/10.1186/2042-6410-1-6
41 CM Ferrario, J Jessup, PE Gallagher, DB Averill, KB Brosnihan, E Ann Tallant, RD Smith, MC Chappell. Effects of renin-angiotensin system blockade on renal angiotensin-(1–7) forming enzymes and receptors. Kidney Int 2005; 68(5): 2189–2196
https://doi.org/10.1111/j.1523-1755.2005.00675.x
42 S Bunyavanich, A Do, A Vicencio. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA 2020; [Epub ahead of print] doi: 10.1001/jama.2020.8707
https://doi.org/10.1001/jama.2020.8707
43 LR Schouten, AH van Kaam, F Kohse, F Veltkamp, LD Bos, FM de Beer, RT van Hooijdonk, J Horn, M Straat, E Witteveen, GJ Glas, L Wieske, LA van Vught, MA Wiewel, SA Ingelse, B Cortjens, JB van Woensel, AP Bos, T Walther, MJ Schultz, RM Wosten-van Asperen; MARS consortium. Age-dependent differences in pulmonary host responses in ARDS: a prospective observational cohort study. Ann Intensive Care 2019; 9(1): 55
https://doi.org/10.1186/s13613-019-0529-4
44 Y Imai, K Kuba, S Rao, Y Huan, F Guo, B Guan, P Yang, R Sarao, T Wada, H Leong-Poi, MA Crackower, A Fukamizu, CC Hui, L Hein, S Uhlig, AS Slutsky, C Jiang, JM Penninger. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005; 436(7047): 112–116
https://doi.org/10.1038/nature03712
45 M Gheblawi, K Wang, A Viveiros, Q Nguyen, JC Zhong, AJ Turner, MK Raizada, MB Grant, GY Oudit. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res 2020; 126(10): 1456–1474
https://doi.org/10.1161/CIRCRESAHA.120.317015
46 A Gu, SN Farzadeh, YJ Chang, A Kwong, S Lam. Patterns of antihypertensive drug utilization among US Adults with diabetes and comorbid hypertension: the national health and nutrition examination survey 1999–2014. Clin Med Insights Cardiol 2019; 13: 1179546819839418
https://doi.org/10.1177/1179546819839418
47 Joint Committee for Guideline Revision. 2018 Chinese Guidelines for Prevention and Treatment of Hypertension—A report of the Revision Committee of Chinese Guidelines for Prevention and Treatment of Hypertension. J Geriatr Cardiol 2019; 16(3): 182–241
https://doi.org/DOI: 10.11909/j.issn.1671-5411.2019.03.014
48 J Meng, G Xiao, J Zhang, X He, M Ou, J Bi, R Yang, W Di, Z Wang, Z Li, H Gao, L Liu, G Zhang. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerg Microbes Infect 2020; 9(1): 757–760
https://doi.org/10.1080/22221751.2020.1746200
49 YD Peng, K Meng, HQ Guan, L Leng, RR Zhu, BY Wang, MA He, LX Cheng, K Huang, QT Zeng. Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nCoV. Chin J Cardiol (Zhonghua Xin Xue Guan Bing Za Zhi) 2020; 48(0): E004
50 C Bavishi, TM Maddox, FH Messerli. Coronavirus disease 2019 (COVID-19) infection and renin angiotensin system blockers. JAMA Cardiol 2020; [Epub ahead of print] doi: 10.1001/jamacardio.2020.1282
https://doi.org/10.1001/jamacardio.2020.1282
[1] Zixin Shu, Yana Zhou, Kai Chang, Jifen Liu, Xiaojun Min, Qing Zhang, Jing Sun, Yajuan Xiong, Qunsheng Zou, Qiguang Zheng, Jinghui Ji, Josiah Poon, Baoyan Liu, Xuezhong Zhou, Xiaodong Li. Clinical features and the traditional Chinese medicine therapeutic characteristics of 293 COVID-19 inpatient cases[J]. Front. Med., 2020, 14(6): 760-775.
[2] Guohua Chen, Wen Su, Jiayao Yang, Dan Luo, Ping Xia, Wen Jia, Xiuyang Li, Chuan Wang, Suping Lang, Qingbin Meng, Ying Zhang, Yuhe Ke, An Fan, Shuo Yang, Yujiao Zheng, Xuepeng Fan, Jie Qiao, Fengmei Lian, Li Wei, Xiaolin Tong. Chinese herbal medicine reduces mortality in patients with severe and critical coronavirus disease 2019: a retrospective cohort study[J]. Front. Med., 2020, 14(6): 752-759.
[3] Yun Tan, Feng Liu, Xiaoguang Xu, Yun Ling, Weijin Huang, Zhaoqin Zhu, Mingquan Guo, Yixiao Lin, Ziyu Fu, Dongguo Liang, Tengfei Zhang, Jian Fan, Miao Xu, Hongzhou Lu, Saijuan Chen. Durability of neutralizing antibodies and T-cell response post SARS-CoV-2 infection[J]. Front. Med., 2020, 14(6): 746-751.
[4] Qingwei Li, Han Wang, Xiuyang Li, Yujiao Zheng, Yu Wei, Pei Zhang, Qiyou Ding, Jiaran Lin, Shuang Tang, Yikun Zhao, Linhua Zhao, Xiaolin Tong. The role played by traditional Chinese medicine in preventing and treating COVID-19 in China[J]. Front. Med., 2020, 14(5): 681-688.
[5] Mian Peng, Xueyan Liu, Jinxiu Li, Di Ren, Yongfeng Liu, Xi Meng, Yansi Lyu, Ronglin Chen, Baojun Yu, Weixiong Zhong. Successful management of seven cases of critical COVID-19 with early noninvasive–invasive sequential ventilation algorithm and bundle pharmacotherapy[J]. Front. Med., 2020, 14(5): 674-680.
[6] Lingling Tang, Yingan Jiang, Mengfei Zhu, Lijun Chen, Xiaoyang Zhou, Chenliang Zhou, Peng Ye, Xiaobei Chen, Baohong Wang, Zhenyu Xu, Qiang Zhang, Xiaowei Xu, Hainv Gao, Xiaojun Wu, Dong Li, Wanli Jiang, Jingjing Qu, Charlie Xiang, Lanjuan Li. Clinical study using mesenchymal stem cells for the treatment of patients with severe COVID-19[J]. Front. Med., 2020, 14(5): 664-673.
[7] Zhihang Peng, Wenyu Song, Zhongxing Ding, Quanquan Guan, Xu Yang, Qiaoqiao Xu, Xu Wang, Yankai Xia. Linking key intervention timings to rapid declining effective reproduction number to quantify lessons against COVID-19[J]. Front. Med., 2020, 14(5): 623-629.
[8] Chen Xu, Yinqiao Dong, Xiaoyue Yu, Huwen Wang, Lhakpa Tsamlag, Shuxian Zhang, Ruijie Chang, Zezhou Wang, Yuelin Yu, Rusi Long, Ying Wang, Gang Xu, Tian Shen, Suping Wang, Xinxin Zhang, Hui Wang, Yong Cai. Estimation of reproduction numbers of COVID-19 in typical countries and epidemic trends under different prevention and control scenarios[J]. Front. Med., 2020, 14(5): 613-622.
[9] Zhengqian Li, Taotao Liu, Ning Yang, Dengyang Han, Xinning Mi, Yue Li, Kaixi Liu, Alain Vuylsteke, Hongbing Xiang, Xiangyang Guo. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain[J]. Front. Med., 2020, 14(5): 533-541.
[10] Cenyi Shao, Shijian Li, Feng Zhu, Dahai Zhao, Hui Shao, Haixiao Chen, Zhiruo Zhang. Taizhou’s COVID-19 prevention and control experience with telemedicine features[J]. Front. Med., 2020, 14(4): 506-510.
[11] Guangbiao Zhou, Saijuan Chen, Zhu Chen. Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies[J]. Front. Med., 2020, 14(2): 117-125.
[12] Yong Li, Fan He, Ning Zhou, Jia Wei, Zeyang Ding, Luyun Wang, Peng Chen, Shuiming Guo, Binhao Zhang, Xiaoning Wan, Wei Zhu, on behalf of Multidisciplinary Team for COVID-19, Optical Valley Branch of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Organ function support in patients with coronavirus disease 2019: Tongji experience[J]. Front. Med., 2020, 14(2): 232-248.
[13] Zhiruo Zhang, Shelan Liu, Mi Xiang, Shijian Li, Dahai Zhao, Chaolin Huang, Saijuan Chen. Protecting healthcare personnel from 2019-nCoV infection risks: lessons and suggestions[J]. Front. Med., 2020, 14(2): 229-231.
[14] Fanghua Gong, Yong Xiong, Jian Xiao, Li Lin, Xiaodong Liu, Dezhong Wang, Xiaokun Li. China’s local governments are combating COVID-19 with unprecedented responses ---- from a Wenzhou governance perspective[J]. Front. Med., 2020, 14(2): 220-224.
[15] Shuxian Zhang, Zezhou Wang, Ruijie Chang, Huwen Wang, Chen Xu, Xiaoyue Yu, Lhakpa Tsamlag, Yinqiao Dong, Hui Wang, Yong Cai. COVID-19 containment: China provides important lessons for global response[J]. Front. Med., 2020, 14(2): 215-219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed