Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2020, Vol. 14 Issue (6) : 746-751    https://doi.org/10.1007/s11684-020-0822-5
RESEARCH ARTICLE
Durability of neutralizing antibodies and T-cell response post SARS-CoV-2 infection
Yun Tan1, Feng Liu1, Xiaoguang Xu1, Yun Ling2, Weijin Huang3, Zhaoqin Zhu2, Mingquan Guo2, Yixiao Lin2, Ziyu Fu1, Dongguo Liang1, Tengfei Zhang2, Jian Fan2, Miao Xu3, Hongzhou Lu2(), Saijuan Chen1()
1. Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
2. Shanghai Public Health Clinical Center, Shanghai 201508, China
3. National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
 Download: PDF(595 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The ongoing pandemic of coronavirus disease 19 (COVID-19) is caused by a newly discovered β coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). How long the adaptive immunity triggered by SARS-CoV-2 can last is of critical clinical relevance in assessing the probability of second infection and efficacy of vaccination. Here we examined, using ELISA, the IgG antibodies in serum specimens collected from 17 COVID-19 patients at 6–7 months after diagnosis and the results were compared to those from cases investigated 2 weeks to 2 months post-infection. All samples were positive for IgGs against the S- and N-proteins of SARS-CoV-2. Notably, 14 samples available at 6–7 months post-infection all showed significant neutralizing activities in a pseudovirus assay, with no difference in blocking the cell-entry of the 614D and 614G variants of SARS-CoV-2. Furthermore, in 10 blood samples from cases at 6–7 months post-infection used for memory T-cell tests, we found that interferon γ-producing CD4+ and CD8+ cells were increased upon SARS-CoV-2 antigen stimulation. Together, these results indicate that durable anti-SARS-CoV-2 immunity is common in convalescent population, and vaccines developed from 614D variant may offer protection from the currently predominant 614D variant of SARS-CoV-2.

Keywords SARS-CoV-2      neutralizing antibodies      T-cell response     
Corresponding Author(s): Hongzhou Lu,Saijuan Chen   
Just Accepted Date: 16 September 2020   Online First Date: 30 September 2020    Issue Date: 24 December 2020
 Cite this article:   
Yun Tan,Feng Liu,Xiaoguang Xu, et al. Durability of neutralizing antibodies and T-cell response post SARS-CoV-2 infection[J]. Front. Med., 2020, 14(6): 746-751.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0822-5
https://academic.hep.com.cn/fmd/EN/Y2020/V14/I6/746
2 weeks to 1 month ?(n = 15) 1–2 month
?(n = 20)
6–8 months
?(n = 17)
Healthy donors
?(n = 12)
P value
Gender 0.89b
?Female, n (%) 6 (40.0%) 9 (45.0%) 9 (52.9%) 6 (50.0%)
?Male, n (%) 9 (60.0%) 11 (55.0%) 8 (47.1%) 6 (50.0%)
Age (year) 0.87b
?<60, n (%) 10 (66.7%) 11 (55.0%) 11 (64.7%) 8 (66.7%)
?≥60, n (%) 5 (33.3%) 9 (45.0%) 6 (35.3%) 4 (33.3%)
Severity of COVID-19 0.76b
?Mild/moderate, n (%) 12 (80.0%) 14 (70.0%) 13 (76.5%)
?Severe/critical, n (%) 3 (20.0%) 6 (30.0%) 4 (23.5%)
Days post infectiona 20 (17–22) 43.5 (42.25–47) 206 (193.5–212) <0.0001c
?Concentration of S-RBD protein IgGa (mg/mL) 31.89 (27.38–35.36) 29.96 (24.74–32.36) 15.38 (8.43–22.01) 0.11 (0.02–0.17) <0.0001c
?Concentration of N protein IgGa (mg/mL) 11.81 (10.91–13.47) 10.97 (10.00–11.39) 8.96 (3.71–11.14) 0.03 (0.01–0.03) <0.0001c
Tab.1  General information about cases enrolled in the ELISA-based SARS-CoV-2 antibody tests
Fig.1  Persistent antibody and T cell response to SARS-CoV-2 after six-month of infections. (A) The levels of antibodies against SARS-CoV-2 S-protein and the N-protein in plasma samples at 2 weeks to 1 month, 1–2 months, and 6–7 months post-infection are plotted. The levels of non-infected donors were included as negative control. (B) The neutralizing antibodies against the SARS-CoV-2 (S-614D) and SARS-CoV-2 (S-614G) pseudovirus in plasma samples of cases collected at 2 weeks to 2 months or 6–7 months post infection are plotted. Plasma samples of non-infected donors were used as negative control. (C) T cell response to the SARS-CoV-2 antigen stimulation. The interferon γ-producing CD4+ T cells and CD8+ T cells were detected with or without stimulation by SARS-CoV-2 antigens. The blood samples of cases collected at 6–7 months post infection were used. **P<0.01, ***P<0.001.
No. Gender Age Days post ?infectionc Severity of ?COVID-19 S protein ?variant Viral loadd ?(CT value) NT50 ?(SARS-CoV-2 ?pseudovirus) NT50 ?(SARS-CoV-2 ?D614G pseudo-?virus)
1 Male 65 20 Severe/critical WT 21.23 244.5 186.7
2 Female 64 22 Severe/critical WT 28 85.6 95.8
3 Male 37 43 Mild/moderate H49Y 29.31 507 481.4
4 Female 65 43 Mild/moderate WT 18.47 200.5 261.2
5 Female 68 44 Mild/moderate NA 23.63 606.1 850.2
6 Male 58 45 Mild/moderate WT NA 141.7 143.6
7 Female 53 52 Mild/moderate WT 31.73 50.2 58.8
8 Male 68 59 Severe/critical WT 26.56 912.2 1109.6
9a Female 58 186 Severe/critical WT 19.72 368.9 523.2
10 Male 37 188 Mild/moderate NA NA 73.7 125.7
11 Male 40 193 Mild/moderate NA NA 289.8 251.6
12 Female 42 194 Mild/moderate WT 23.52 436.2 519.9
13 Female 62 196 Mild/moderate NA NA 118.4 152.1
14 Male 39 197 Mild/moderate WT 27.71 183.8 331.2
15 Male 40 206 Mild/moderate WT NA 303.2 385.1
16 Male 68 207 Mild/moderate WT 29 251.5 315.9
17 Male 60 208 Mild/moderate WT 26.96 154.2 281.6
18b Female 71 208 Mild/moderate NA 36.5 55.1 95.3
19 Female 33 211 Mild/moderate WT 29.46 270.7 363.8
20 Female 47 215 Mild/moderate D614G 32.52 98.4 122
21a Male 71 219 Severe/critical WT NA 207.9 185.5
22b Female 51 220 Mild/moderate NA 30.14 64.5 86
Tab.2  Detailed information of cases in the analysis of neutralizing antibodies against SARS-CoV-2 pseudovirus
1 G Zhou, S Chen, Z Chen. Back to the spring of 2020: facts and hope of COVID-19 outbreak. Front Med 2020; 14(2): 113–116
https://doi.org/10.1007/s11684-020-0758-9 pmid: 32172487
2 G Zhou, S Chen, Z Chen. Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies. Front Med 2020; 14(2): 117–125
https://doi.org/10.1007/s11684-020-0773-x pmid: 32318975
3 M Zhou, X Zhang, J Qu. Coronavirus disease 2019 (COVID-19): a clinical update. Front Med 2020; 14(2): 126–135
https://doi.org/10.1007/s11684-020-0767-8 pmid: 32240462
4 N Le Bert, AT Tan, K Kunasegaran, CYL Tham, M Hafezi, A Chia, MHY Chng, M Lin, N Tan, M Linster, WN Chia, MI Chen, LF Wang, EE Ooi, S Kalimuddin, PA Tambyah, JG Low, YJ Tan, A Bertoletti. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 2020; 584(7821): 457–462
https://doi.org/10.1038/s41586-020-2550-z pmid: 32668444
5 A Grifoni, D Weiskopf, SI Ramirez, J Mateus, JM Dan, CR Moderbacher, SA Rawlings, A Sutherland, L Premkumar, RS Jadi, D Marrama, AM de Silva, A Frazier, AF Carlin, JA Greenbaum, B Peters, F Krammer, DM Smith, S Crotty, A Sette. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020; 181(7): 1489–1501.e15
https://doi.org/DOI: 10.1016/j.cell.2020.05.015 pmid: 32473127
6 KK To, OT Tsang, WS Leung, AR Tam, TC Wu, DC Lung, CC Yip, JP Cai, JM Chan, TS Chik, DP Lau, CY Choi, LL Chen, WM Chan, KH Chan, JD Ip, AC Ng, RW Poon, CT Luo, VC Cheng, JF Chan, IF Hung, Z Chen, H Chen, KY Yuen. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis 2020; 20(5): 565–574
https://doi.org/10.1016/S1473-3099(20)30196-1 pmid: 32213337
7 DF Robbiani, C Gaebler, F Muecksch, JCC Lorenzi, Z Wang, A Cho, M Agudelo, CO Barnes, A Gazumyan, S Finkin, T Hägglöf, TY Oliveira, C Viant, A Hurley, HH Hoffmann, KG Millard, RG Kost, M Cipolla, K Gordon, F Bianchini, ST Chen, V Ramos, R Patel, J Dizon, I Shimeliovich, P Mendoza, H Hartweger, L Nogueira, M Pack, J Horowitz, F Schmidt, Y Weisblum, E Michailidis, AW Ashbrook, E Waltari, JE Pak, KE Huey-Tubman, N Koranda, PR Hoffman, AP West Jr, CM Rice, T Hatziioannou, PJ Bjorkman, PD Bieniasz, M Caskey, MC Nussenzweig. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 2020; 584(7821): 437–442
https://doi.org/10.1038/s41586-020-2456-9 pmid: 32555388
8 FJ Ibarrondo, JA Fulcher, D Goodman-Meza, J Elliott, C Hofmann, MA Hausner, KG Ferbas, NH Tobin, GM Aldrovandi, OO Yang. Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild Covid-19. N Engl J Med 2020; 383(11): 1085–1087
https://doi.org/10.1056/NEJMc2025179 pmid: 32706954
9 DF Gudbjartsson, GL Norddahl, P Melsted, K Gunnarsdottir, H Holm, E Eythorsson, AO Arnthorsson, D Helgason, K Bjarnadottir, RF Ingvarsson, B Thorsteinsdottir, S Kristjansdottir, K Birgisdottir, AM Kristinsdottir, MI Sigurdsson, GA Arnadottir, EV Ivarsdottir, M Andresdottir, F Jonsson, AB Agustsdottir, J Berglund, B Eiriksdottir, R Fridriksdottir, EE Gardarsdottir, M Gottfredsson, OS Gretarsdottir, S Gudmundsdottir, KR Gudmundsson, TR Gunnarsdottir, A Gylfason, A Helgason, BO Jensson, A Jonasdottir, H Jonsson, T Kristjansson, KG Kristinsson, DN Magnusdottir, OT Magnusson, LB Olafsdottir, S Rognvaldsson, L le Roux, G Sigmundsdottir, A Sigurdsson, G Sveinbjornsson, KE Sveinsdottir, M Sveinsdottir, EA Thorarensen, B Thorbjornsson, M Thordardottir, J Saemundsdottir, SH Kristjansson, KS Josefsdottir, G Masson, G Georgsson, M Kristjansson, A Moller, R Palsson, T Gudnason, U Thorsteinsdottir, I Jonsdottir, P Sulem, K Stefansson. Humoral immune response to SARS-CoV-2 in Iceland. N Engl J Med 2020; [Epub ahead of print] doi: 10.1056/NEJMoa2026116
https://doi.org/10.1056/NEJMoa2026116 pmid: 32871063
10 G Alter, R Seder. The power of antibody-based surveillance. N Engl J Med 2020; [Epub ahead of print] doi: 10.1056/NEJMe2028079
https://doi.org/10.1056/NEJMe2028079 pmid: 32871061
11 NN Zhang, XF Li, YQ Deng, H Zhao, YJ Huang, G Yang, WJ Huang, P Gao, C Zhou, RR Zhang, Y Guo, SH Sun, H Fan, SL Zu, Q Chen, Q He, TS Cao, XY Huang, HY Qiu, JH Nie, Y Jiang, HY Yan, Q Ye, X Zhong, XL Xue, ZY Zha, D Zhou, X Yang, YC Wang, B Ying, CF Qin. A thermostable mRNA vaccine against COVID-19. Cell 2020; 182(5): 1271–1283.e16
https://doi.org/DOI: 10.1016/j.cell.2020.07.024 pmid: 32795413
12 J Nie, Q Li, J Wu, C Zhao, H Hao, H Liu, L Zhang, L Nie, H Qin, M Wang, Q Lu, X Li, Q Sun, J Liu, C Fan, W Huang, M Xu, Y Wang. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg Microbes Infect 2020; 9(1): 680–686
https://doi.org/10.1080/22221751.2020.1743767 pmid: 32207377
13 H Shi, J Ye, J Teng, Y Yin, Q Hu, X Wu, H Liu, X Cheng, Y Su, M Liu, J Gu, T Lu, H Chen, H Zheng, Y Sun, C Yang. Elevated serum autoantibodies against co-inhibitory PD-1 facilitate T cell proliferation and correlate with disease activity in new-onset systemic lupus erythematosus patients. Arthritis Res Ther 2017; 19(1): 52
https://doi.org/10.1186/s13075-017-1258-4 pmid: 28274252
14 C Goudot, A Coillard, AC Villani, P Gueguen, A Cros, S Sarkizova, TL Tang-Huau, M Bohec, S Baulande, N Hacohen, S Amigorena, E Segura. Aryl hydrocarbon receptor controls monocyte differentiation into dendritic cells versus macrophages. Immunity 2017; 47(3): 582–596.e6
https://doi.org/DOI: 10.1016/j.immuni.2017.08.016 pmid: 28930664
15 B Korber, WM Fischer, S Gnanakaran, H Yoon, J Theiler, W Abfalterer, N Hengartner, EE Giorgi, T Bhattacharya, B Foley, KM Hastie, MD Parker, DG Partridge, CM Evans, TM Freeman, TI de Silva, C-GG Sheffield, C McDanal, LG Perez, H Tang, A Moon-Walker, SP Whelan, CC LaBranche, EO Saphire, DC Montefiori. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 2020; 182(4): 812–827.e19
https://doi.org/DOI: 10.1016/j.cell.2020.06.043 pmid: PMID: 32697968
16 X Zhang, Y Tan, Y Ling, G Lu, F Liu, Z Yi, X Jia, M Wu, B Shi, S Xu, J Chen, W Wang, B Chen, L Jiang, S Yu, J Lu, J Wang, M Xu, Z Yuan, Q Zhang, X Zhang, G Zhao, S Wang, S Chen, H Lu. Viral and host factors related to the clinical outcome of COVID-19. Nature 2020; 583(7816): 437–440
https://doi.org/10.1038/s41586-020-2355-0 pmid: 32434211
17 TF Rogers, F Zhao, D Huang, N Beutler, A Burns, WT He, O Limbo, C Smith, G Song, J Woehl, L Yang, RK Abbott, S Callaghan, E Garcia, J Hurtado, M Parren, L Peng, S Ramirez, J Ricketts, MJ Ricciardi, SA Rawlings, NC Wu, M Yuan, DM Smith, D Nemazee, JR Teijaro, JE Voss, IA Wilson, R Andrabi, B Briney, E Landais, D Sok, JG Jardine, DR Burton. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science 2020; 369(6506): 956–963
https://doi.org/10.1126/science.abc7520 pmid: 32540903
18 H Peng, LT Yang, J Li, ZQ Lu, LY Wang, RA Koup, RT Bailer, CY Wu. Human memory T cell responses to SARS-CoV E protein. Microbes Infect 2006; 8(9-10): 2424–2431
https://doi.org/10.1016/j.micinf.2006.05.008 pmid: 16844400
19 H Peng, LT Yang, LY Wang, J Li, J Huang, ZQ Lu, RA Koup, RT Bailer, CY Wu. Long-lived memory T lymphocyte responses against SARS coronavirus nucleocapsid protein in SARS-recovered patients. Virology 2006; 351(2): 466–475
https://doi.org/10.1016/j.virol.2006.03.036 pmid: 16690096
20 OW Ng, A Chia, AT Tan, RS Jadi, HN Leong, A Bertoletti, YJ Tan. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine 2016; 34(17): 2008–2014
https://doi.org/10.1016/j.vaccine.2016.02.063 pmid: 26954467
21 L Yang, H Peng, Z Zhu, G Li, Z Huang, Z Zhao, RA Koup, RT Bailer, C Wu. Persistent memory CD4+ and CD8+ T-cell responses in recovered severe acute respiratory syndrome (SARS) patients to SARS coronavirus M antigen. J Gen Virol 2007; 88(Pt 10): 2740–2748
https://doi.org/10.1099/vir.0.82839-0 pmid: 17872527
[1] Xiaoguang Xu, Wei Zhang, Mingquan Guo, Chenlu Xiao, Ziyu Fu, Shuting Yu, Lu Jiang, Shengyue Wang, Yun Ling, Feng Liu, Yun Tan, Saijuan Chen. Integrated analysis of gut microbiome and host immune responses in COVID-19[J]. Front. Med., 2022, 16(2): 263-275.
[2] Yi Zhang, Haocheng Zhang, Wenhong Zhang. SARS-CoV-2 variants, immune escape, and countermeasures[J]. Front. Med., 2022, 16(2): 196-207.
[3] Yiming Shao, Yingqi Wu, Yi Feng, Wenxin Xu, Feng Xiong, Xinxin Zhang. SARS-CoV-2 vaccine research and immunization strategies for improved control of the COVID-19 pandemic[J]. Front. Med., 2022, 16(2): 185-195.
[4] Wei Zhang, Xiaoguang Xu, Ziyu Fu, Jian Chen, Saijuan Chen, Yun Tan. PathogenTrack and Yeskit: tools for identifying intracellular pathogens from single-cell RNA-sequencing datasets as illustrated by application to COVID-19[J]. Front. Med., 2022, 16(2): 251-262.
[5] Zehong Huang, Yingying Su, Tianying Zhang, Ningshao Xia. A review of the safety and efficacy of current COVID-19 vaccines[J]. Front. Med., 2022, 16(1): 39-55.
[6] Yuntao Zhang, Yunkai Yang, Niu Qiao, Xuewei Wang, Ling Ding, Xiujuan Zhu, Yu Liang, Zibo Han, Feng Liu, Xinxin Zhang, Xiaoming Yang. Early assessment of the safety and immunogenicity of a third dose (booster) of COVID-19 immunization in Chinese adults[J]. Front. Med., 2022, 16(1): 93-101.
[7] Li Ni, Zheng Wen, Xiaowen Hu, Wei Tang, Haisheng Wang, Ling Zhou, Lujin Wu, Hong Wang, Chang Xu, Xizhen Xu, Zhichao Xiao, Zongzhe Li, Chene Li, Yujian Liu, Jialin Duan, Chen Chen, Dan Li, Runhua Zhang, Jinliang Li, Yongxiang Yi, Wei Huang, Yanyan Chen, Jianping Zhao, Jianping Zuo, Jianping Weng, Hualiang Jiang, Dao Wen Wang. Effects of Shuanghuanglian oral liquids on patients with COVID-19: a randomized, open-label, parallel-controlled, multicenter clinical trial[J]. Front. Med., 2021, 15(5): 704-717.
[8] Rongtao Lai, Tianhui Zhou, Xiaogang Xiang, Jie Lu, Haiguang Xin, Qing Xie. Neutralizing monoclonal antibodies present new prospects to treat SARS-CoV-2 infections[J]. Front. Med., 2021, 15(4): 644-648.
[9] Guizhen Wang, Qun Zhao, Hui Zhang, Fan Liang, Chen Zhang, Jun Wang, Zhenyin Chen, Ran Wu, Hong Yu, Beibei Sun, Hua Guo, Ruie Feng, Kaifeng Xu, Guangbiao Zhou. Degradation of SARS-CoV-2 receptor ACE2 by the E3 ubiquitin ligase Skp2 in lung epithelial cells[J]. Front. Med., 2021, 15(2): 252-263.
[10] Junnan Liang, Guannan Jin, Tongtong Liu, Jingyuan Wen, Ganxun Li, Lin Chen, Wei Wang, Yuwei Wang, Wei Liao, Jia Song, Zeyang Ding, Xiao-ping Chen, Bixiang Zhang. Clinical characteristics and risk factors for mortality in cancer patients with COVID-19[J]. Front. Med., 2021, 15(2): 264-274.
[11] Zhengqian Li, Taotao Liu, Ning Yang, Dengyang Han, Xinning Mi, Yue Li, Kaixi Liu, Alain Vuylsteke, Hongbing Xiang, Xiangyang Guo. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain[J]. Front. Med., 2020, 14(5): 533-541.
[12] Jiuyang Xu, Chaolin Huang, Guohui Fan, Zhibo Liu, Lianhan Shang, Fei Zhou, Yeming Wang, Jiapei Yu, Luning Yang, Ke Xie, Zhisheng Huang, Lixue Huang, Xiaoying Gu, Hui Li, Yi Zhang, Yimin Wang, Frederick G. Hayden, Peter W. Horby, Bin Cao, Chen Wang. Use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in context of COVID-19 outbreak: a retrospective analysis[J]. Front. Med., 2020, 14(5): 601-612.
[13] Qian Wang, Linqi Zhang. Broadly neutralizing antibodies and vaccine design against HIV-1 infection[J]. Front. Med., 2020, 14(1): 30-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed