Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (5) : 704-717    https://doi.org/10.1007/s11684-021-0853-6
RESEARCH ARTICLE
Effects of Shuanghuanglian oral liquids on patients with COVID-19: a randomized, open-label, parallel-controlled, multicenter clinical trial
Li Ni1, Zheng Wen1, Xiaowen Hu2, Wei Tang3, Haisheng Wang4, Ling Zhou1, Lujin Wu1, Hong Wang1, Chang Xu1, Xizhen Xu1, Zhichao Xiao1, Zongzhe Li1, Chene Li1, Yujian Liu1, Jialin Duan1, Chen Chen1, Dan Li1, Runhua Zhang1, Jinliang Li5, Yongxiang Yi6, Wei Huang1,7, Yanyan Chen8, Jianping Zhao9, Jianping Zuo3(), Jianping Weng2(), Hualiang Jiang3,10(), Dao Wen Wang1()
1. Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
2. The First Affiliated Hospital of University of Science and Technology of China, Hefei 230026, China
3. State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
4. Harbin Pharmaceutical Group Co., Ltd., Harbin 150070, China
5. The Sixth Hospital of Harbin, Harbin 150036, China
6. The Second Hospital of Nanjing and the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210003, China
7. Department of Cardiology, Chinese People’s Liberation Army Central War Command General Hospital, Wuhan 430010, China
8. Department of Information Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
9. Division of Respiratory, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
10. Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
 Download: PDF(409 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We conducted a randomized, open-label, parallel-controlled, multicenter trial on the use of Shuanghuanglian (SHL), a traditional Chinese patent medicine, in treating cases of COVID-19. A total of 176 patients received SHL by three doses (56 in low dose, 61 in middle dose, and 59 in high dose) in addition to standard care. The control group was composed of 59 patients who received standard therapy alone. Treatment with SHL was not associated with a difference from standard care in the time to disease recovery. Patients with 14-day SHL treatment had significantly higher rate in negative conversion of SARS-CoV-2 in nucleic acid swab tests than the patients from the control group (93.4% vs. 73.9%, P=0.006). Analysis of chest computed tomography images showed that treatment with high-dose SHL significantly promoted absorption of inflammatory focus of pneumonia, which was evaluated by density reduction of inflammatory focus from baseline, at day 7 (mean difference (95% CI), −46.39 (−86.83 to −5.94) HU; P=0.025) and day 14 (mean difference (95% CI), −74.21 (−133.35 to −15.08) HU; P=0.014). No serious adverse events occurred in the SHL groups. This study illustrated that SHL in combination with standard care was safe and partially effective for the treatment of COVID-19.

Keywords COVID-19      SARS-CoV-2      Shuanghuanglian oral liquid      clinical trial     
Corresponding Author(s): Jianping Zuo,Jianping Weng,Hualiang Jiang,Dao Wen Wang   
Just Accepted Date: 18 March 2021   Online First Date: 27 April 2021    Issue Date: 01 November 2021
 Cite this article:   
Li Ni,Zheng Wen,Xiaowen Hu, et al. Effects of Shuanghuanglian oral liquids on patients with COVID-19: a randomized, open-label, parallel-controlled, multicenter clinical trial[J]. Front. Med., 2021, 15(5): 704-717.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-021-0853-6
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I5/704
Fig.1  Randomization and treatment assignment.
Characteristic Standard care Low-dose SHL Middle-dose SHL High-dose SHL Total
(N = 59) (N = 56) (N = 61) (N = 59) (N = 235)
Age, median (IQR), year 51.00 (38.50, 65.00) 54.00 (42.00, 62.25) 56.00 (44.00, 65.00) 53.00 (41.50, 63.00) 54.00 (42.00, 64.00)
Male sex, no. (%) 25 (42.4) 23 (41.1) 33 (54.1) 27 (45.8) 108 (46.0)
Classification, no. (%)
Mild cases 2 (3.4) 0 1 (1.6) 0 3 (1.3)
Moderate cases 46 (78.0) 43 (76.8) 51 (83.6) 49 (83.1) 189 (80.4)
Severe cases 11 (18.6) 13 (23.2) 9 (14.8) 10 (16.9) 43 (18.3)
Days from illness onset to randomization, median (IQR) 22.00 (14.00, 31.50) 21.50 (16.00, 35.75) 23.00 (18.00, 34.00) 18.00 (14.00, 31.50) 22.00 (15.00, 33.00)
Body temperature (℃), median (IQR) 36.60 (36.30, 36.85) 36.50 (36.20, 36.80) 36.60 (36.30, 36.80) 36.60 (36.40, 36.85) 36.60 (36.30, 36.80)
Heart rate (beat/min), median (IQR) 80.00 (76.00, 89.50) 82.00 (78.75, 90.50) 84.00 (78.00, 94.00) 84.00 (72.00, 94.00) 83.00 (76.00, 92.00)
Respiratory rate (breath/min), median (IQR) 20.00 (20.00, 21.00) 20.00 (19.00, 21.00) 20.00 (19.00, 21.00) 20.00 (19.50, 20.00) 20.00 (19.50, 21.00)
Systolic blood pressure (mmHg), median (IQR) 128.00 (117.00, 146.00) 122.00 (113.75, 133.25) 127.00 (118.00, 139.00) 128.00 (120.00, 140.50) 125.00 (117.50, 141.00)
Fever, no. (%) 7 (11.9) 6 (10.7) 12 (19.7) 10 (16.9) 35 (14.9)
Cough, no. (%) 27 (45.8) 26 (46.4) 25 (41.0) 30 (50.8) 108 (46.0)
Fatigue, no. (%) 12 (20.3) 12 (21.4) 10 (16.4) 14 (23.7) 48 (20.4)
Diarrhea, no. (%) 2 (3.4) 5 (8.9) 5 (8.2) 6 (10.2) 18 (7.7)
White-cell count (× 109/L), median (IQR) 6.23 (4.94, 7.52) 5.77 (4.96, 6.96) 6.34 (5.01, 8.44) 5.41 (4.64, 6.90) 5.95 (4.89, 7.69)
4× 109/L −10 × 109/L, no. (%) 6 (10.2) 8 (14.5) 1 (1.6) 7 (12.1) 22 (9.4)
<4 × 109/L, no. (%) 48 (81.4) 41 (74.5) 53 (86.9) 49 (84.5) 191 (82.0)
>10 × 109/L, no. (%) 5 (8.5) 6 (10.9) 7 (11.5) 2 (3.4) 20 (8.6)
Lymphocyte count (× 109/L), median (IQR) 1.65 (1.21, 2.09) 1.41 (0.98, 1.89) 1.57 (1.16, 1.95) 1.47 (1.19, 1.73) 1.50 (1.14, 1.92)
<1.0 × 109/L, no. (%) 9 (15.3) 16 (29.1) 10 (16.4) 8 (13.8) 43 (18.5)
≥1.0 × 109/L, no. (%) 50 (84.7) 39 (70.9) 51 (83.6) 50 (86.2) 190 (81.5)
Platelet count (× 109/L), median (IQR) 225.00 (179.50, 293.50) 220.00 (194.50, 278.50) 231.00 (192.00, 280.00) 233.50 (195.50, 286.00) 228.00 (192.00, 287.00)
<100 × 109/L, no. (%) 0 1 (1.8) 0 1 (1.7) 2 (0.9)
≥100 × 109/L, no. (%) 59 (100.0) 54 (98.2) 61 (100.0) 57 (98.3) 231 (99.1)
Alanine aminotransferase (U/L), median (IQR) 24.00 (15.50, 44.50) 22.00 (14.00, 36.00) 26.00 (16.50, 42.50) 21.00 (14.00, 39.00) 23.00 (15.00, 40.00)
<40 U/L 42 (71.2) 42 (77.8) 42 (71.2) 46 (80.7) 172 (75.1)
≥40 U/L 17 (28.8) 12 (22.2) 17 (28.8) 11 (19.3) 57 (24.9)
Aspartate aminotransferase (U/L), median (IQR) 22.00 (17.00, 30.50) 19.00 (15.25, 27.75) 20.00 (17.00, 28.00) 21.00 (18.00, 30.00) 21.00 (17.00, 29.00)
<40 U/L 50 (84.7) 47 (87.0) 53 (89.8) 50 (87.7) 200 (87.3)
≥40 U/L 9 (15.3) 7 (13.0) 6 (10.2) 7 (12.3) 29 (12.7)
Serum creatinine (µmol/L), median (IQR) 60.50 (54.00, 73.75) 61.00 (53.25, 73.75) 65.50 (57.75, 79.25) 67.00 (60.00, 77.00) 64.00 (56.00, 77.00)
<133 µmol/L 57 (98.3) 54 (100.0) 60 (100.0) 57 (100.0) 228 (99.6)
≥133 µmol/L 1 (1.7) 0 0 0 1 (0.4)
Lactate dehydrogenase (U/L), median (IQR) 201.00 (169.00, 240.50) 198.00 (160.25, 232.75) 200.00 (153.50, 242.00) 203.00 (181.25, 233.25) 200.00 (163.00, 237.00)
<245 U/L 45 (76.3) 43 (79.6) 45 (75.0) 47 (81.0) 180 (77.9)
≥245 U/L 14 (23.7) 11 (20.4) 15 (25.0) 11 (19.0) 51 (22.1)
Total bilirubin (µmol/L), median (IQR) 9.50 (6.50, 14.05) 9.40 (6.42, 13.17) 9.90 (7.50, 15.10) 9.45 (6.53, 11.80) 9.55 (6.60, 13.10)
<21 µmol/L 56 (94.9) 50 (92.6) 57 (93.4) 55 (94.8) 218 (94.0)
≥21 µmol/L 3 (5.1) 4 (7.4) 4 (6.6) 3 (5.2) 14 (6.0)
Prothrombin time (s), median (IQR) 13.30 (12.97, 13.90) 13.60 (13.20, 14.10) 13.60 (12.80, 14.22) 13.70 (13.20, 14.10) 13.60 (13.00, 14.10)
<16 s 56 (100.0) 50 (94.3) 59 (98.3) 54 (96.4) 219 (97.3)
≥16 s 0 3 (5.7) 1 (1.7) 2 (3.6) 6 (2.7)
Tab.1  Demographic and clinical characteristics of patients at baselinea
Standard care Low-dose SHL Middle-dose SHL High-dose SHL Total
(N = 59) (N = 56) (N = 61) (N = 59) (N = 235)
Coexisting conditions, no. (%)
Hypertension 14 (23.7) 10 (17.9) 20 (32.8) 15 (25.4) 59 (25.1)
Diabetes 8 (13.6) 7 (12.5) 13 (21.3) 9 (15.3) 37 (15.7)
Coronary heart disease 2 (3.4) 3 (5.4) 1 (1.6) 4 (6.8) 10 (4.3)
Respiratory disease 2 (3.4) 0 5 (8.2) 2 (3.4) 9 (3.8)
Treatment, no. (%)
Angiotensin II receptor blocker 0 3 (5.4) 5 (8.2) 1 (1.7) 9 (3.8)
b-blocker 4 (6.8) 4 (7.1) 8 (13.1) 4 (6.8) 20 (8.5)
Calcium channel blockers 10 (16.9) 8 (14.3) 16 (26.2) 14 (23.7) 48 (20.4)
Diuretic 1 (1.7) 2 (3.6) 1 (1.6) 1 (1.7) 5 (2.1)
Antiplatelet drugs 2 (3.4) 3 (5.4) 6 (9.8) 2 (3.4) 13 (5.5)
Chinese herb 0 0 0 1 (1.7) 1 (0.4)
Lianhuaqingwen capsule 22 (37.3) 17 (30.4) 14 (23.0) 13 (22.0) 66 (28.1)
Other Chinese patent medicine 18 (30.5) 9 (16.1) 15 (24.6) 12 (20.3) 54 (23.0)
Lopinavir–ritonavir 2 (3.4) 4 (7.1) 3 (4.9) 1 (1.7) 10 (4.3)
Oseltamivir 12 (20.3) 8 (14.3) 21 (34.4) 16 (27.1) 57 (24.3)
Arbidol 3 (5.1) 6 (10.7) 0 3 (5.1) 12 (5.1)
Other antiviral drugs 31 (52.5) 25 (44.6) 22 (36.1) 26 (44.1) 104 (44.3)
Hydroxychloroquine 4 (6.8) 3 (5.4) 2 (3.3) 3 (5.1) 12 (5.1)
Glucocorticoid therapy 14 (23.7) 6 (10.7) 9 (14.8) 8 (13.6) 37 (15.7)
Intravenous immunoglobulin 4 (6.8) 5 (8.9) 6 (9.8) 3 (5.1) 18 (7.7)
Antibiotics 24 (40.7) 27 (48.2) 30 (49.2) 16 (27.1) 97 (41.3)
Interferon 6 (10.2) 6 (10.7) 5 (8.2) 6 (10.2) 23 (9.8)
Tab.2  Coexisting conditions and combined medicationa
Fig.2  Kaplan–Meier curve for time to disease recovery. (A) Time to disease recovery in different doses of the SHL treatment groups and control group. (B) Time to disease recovery in combined dose of the SHL treatment groups and control group.
Standard care SHL Combined dose groups P value
Low-dose SHL Middle-dose SHL High-dose SHL For trend across doses vs. standard care For combined dose groups vs. standard care
Conversion rate of virusa N = 23 N = 30 N = 31 N = 30 N = 91 0.043 0.006
17 (73.9) 28 (93.3) 30 (96.8) 27 (90.0) 85 (93.4)
Clinical improvementb N = 32 N = 29 N = 28 N = 33 N = 90
Primary symptoms improvement, day 4.00 (2.00, 7.00) 2.00 (2.00, 7.00) 4.00 (2.00, 5.50) 4.00 (2.00, 7.00) 4.00 (2.00, 7.00) 0.914 0.782
Clinical improvement rate, day 7 24 (75.0) 25 (86.2) 24 (85.7) 26 (78.8) 75 (83.3) 0.62 0.301
Hazard ratio (95% CI) 1.31 (0.75–2.29) 1.28 (0.72–2.25) 1.06 (0.61–1.84) 1.20 (0.76–1.90)
P 0.765 0.783 0.948 0.835
Clinical improvement rate, day 14 30 (93.8) 29 (100.0) 25 (89.3) 31 (93.9) 85 (94.4) 0.381 0.885
Hazard ratio (95% CI) 1.34 (0.80–2.24) 1.09 (0.64–1.86) 1.02 (0.62–1.68) 1.13 (0.74–1.72)
P 0.749 0.92 0.98 0.213
Tab.3  Secondary outcomes
Fig.3  Effects of SHL treatment on the symptoms scores as compared with standard care. Shown are the median symptoms scores. Control, standard care; Low dose, low dose of SHL; Mid dose, middle dose of SHL; High dose, high dose of SHL.
Fig.4  Reduction in density of infection focus on CT imaging from baseline. (A, B) The reduction in density of infection focus on CT imaging from baseline in combined dose of the SHL treatment groups and control group on day 7 (A) and day 14 (B). (C, D) The reduction in density of infection focus on CT imaging from baseline in different doses of the SHL treatment groups and control group on day 7 (C) and day 14 (D). Shown are the mean (standard error of mean, SEM) changes from baseline. Control, standard care; Low dose, low dose of SHL; Mid dose, middle dose of SHL; High dose, high dose of SHL; HU, Hounsfield unit.
Standard care
(N = 59)
SHL P value
Low-dose SHL Middle-dose SHL High-dose SHL Combined dose groups For trend across doses vs. standard care For combined dose groups vs. standard care
(N = 56) (N = 61) (N = 59) (N = 176)
Rash 0 0 1 (1.6) 2 (3.4) 3 (1.7) 0.303 0.313
Skin allergies 0 1 (1.8) 0 0 1 (0.6) 0.36 0.562
Gastrointestinal discomfort 0 0 3 (4.9) 2 (3.4) 5 (2.8) 0.156 0.191
Nausea 0 1 (1.8) 0 1 (1.7) 2 (1.1) 0.55 0.411
Vomiting 0 0 0 2 (3.4) 2 (1.1) 0.111 0.411
Diarrhea 0 1 (1.8) 0 1 (1.7) 2 (1.1) 0.55 0.411
Abdominal distension and pain 0 0 0 1 (1.7) 1 (0.6) 0.392 0.562
Poor appetite 0 0 1 (1.6) 0 1 (0.6) 0.413 0.562
Hypokalemia 0 0 1 (1.6) 0 1 (0.6) 0.413 0.562
Constipation 1 (1.7) 0 0 0 0 0.392 0.083
Urinary tract infection 0 1 (1.8) 0 0 1 (0.6) 0.36 0.562
Increased aspartate aminotransferase 0 2 (3.6) 0 1 (1.7) 3 (1.7) 0.264 0.313
Increased alanine aminotransferase 1 (1.7) 3 (5.4) 0 1 (1.7) 4 (2.3) 0.237 0.79
Increased g-glutamyl transpeptidase 0 3 (5.4) 0 1 (1.7) 4 (2.3) 0.088 0.243
Hyperlipidemia 0 0 2 (3.3) 0 2 (1.1) 0.124 0.411
Tab.4  Summary of adverse events
1 Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5(4): 536–544
https://doi.org/10.1038/s41564-020-0695-z pmid: 32123347
2 C Huang, Y Wang, X Li, L Ren, J Zhao, Y Hu, L Zhang, G Fan, J Xu, X Gu, Z Cheng, T Yu, J Xia, Y Wei, W Wu, X Xie, W Yin, H Li, M Liu, Y Xiao, H Gao, L Guo, J Xie, G Wang, R Jiang, Z Gao, Q Jin, J Wang, B Cao. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497–506
https://doi.org/10.1016/S0140-6736(20)30183-5 pmid: 31986264
3 N Chen, M Zhou, X Dong, J Qu, F Gong, Y Han, Y Qiu, J Wang, Y Liu, Y Wei, J Xia, T Yu, X Zhang, L Zhang. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507–513
https://doi.org/10.1016/S0140-6736(20)30211-7 pmid: 32007143
4 D Wang, B Hu, C Hu, F Zhu, X Liu, J Zhang, B Wang, H Xiang, Z Cheng, Y Xiong, Y Zhao, Y Li, X Wang, Z Peng. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061–1069
https://doi.org/10.1001/jama.2020.1585 pmid: 32031570
5 B Yu, C Li, P Chen, N Zhou, L Wang, J Li, H Jiang, DW Wang. Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Sci China Life Sci 2020; 63(10): 1515–1521
https://doi.org/10.1007/s11427-020-1732-2 pmid: 32418114
6 S Richardson, JS Hirsch, M Narasimhan, JM Crawford, T McGinn, KW; the Northwell COVID-19 Research Consortium Davidson, DP Barnaby, LB Becker, JD Chelico, SL Cohen, J Cookingham, K Coppa, MA Diefenbach, AJ Dominello, J Duer-Hefele, L Falzon, J Gitlin, N Hajizadeh, TG Harvin, DA Hirschwerk, EJ Kim, ZM Kozel, LM Marrast, JN Mogavero, GA Osorio, M Qiu, TP Zanos. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA 2020; 323(20): 2052–2059
https://doi.org/10.1001/jama.2020.6775 pmid: 32320003
7 T Chen, D Wu, H Chen, W Yan, D Yang, G Chen, K Ma, D Xu, H Yu, H Wang, T Wang, W Guo, J Chen, C Ding, X Zhang, J Huang, M Han, S Li, X Luo, J Zhao, Q Ning. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020; 368: m1091
https://doi.org/10.1136/bmj.m1091 pmid: 32217556
8 B Cao, Y Wang, D Wen, W Liu, J Wang, G Fan, L Ruan, B Song, Y Cai, M Wei, X Li, J Xia, N Chen, J Xiang, T Yu, T Bai, X Xie, L Zhang, C Li, Y Yuan, H Chen, H Li, H Huang, S Tu, F Gong, Y Liu, Y Wei, C Dong, F Zhou, X Gu, J Xu, Z Liu, Y Zhang, H Li, L Shang, K Wang, K Li, X Zhou, X Dong, Z Qu, S Lu, X Hu, S Ruan, S Luo, J Wu, L Peng, F Cheng, L Pan, J Zou, C Jia, J Wang, X Liu, S Wang, X Wu, Q Ge, J He, H Zhan, F Qiu, L Guo, C Huang, T Jaki, FG Hayden, PW Horby, D Zhang, C Wang. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382(19): 1787–1799
https://doi.org/10.1056/NEJMoa2001282 pmid: 32187464
9 D Cyranoski. China is promoting coronavirus treatments based on unproven traditional medicines. Nature 2020; [Epub ahead of print]
https://doi.org/10.1038/d41586-020-01284-x pmid: 32376938
10 K Hu, WJ Guan, Y Bi, W Zhang, L Li, B Zhang, Q Liu, Y Song, X Li, Z Duan, Q Zheng, Z Yang, J Liang, M Han, L Ruan, C Wu, Y Zhang, ZH Jia, NS Zhong. Efficacy and safety of Lianhuaqingwen capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: a multicenter, prospective, randomized controlled trial. Phytomedicine 2020; [Epub ahead of print]
https://doi.org/10.1016/j.phymed.2020.153242 pmid: 32425361
11 Chinese Pharmacopoeia Commission.Chinese Pharmacopoeia. 2015 ed. Beijing: China Medical Science and Technology Press, 2015 (in Chinese)
12 Chinese Medical Association, China Association of Chinese Medicine.Notice on recommending the newly revised diagnosis and treatment program for SARS. Nalt Med J China (Zhonghua Yi Xue Za Zhi) 2003; 83: 1731–1752 (in Chinese)
13 H Mo, K Lai, Y Jiang, J, Xie N Zhong. Anti-RSV effects of Shuanghuanglian and its disassembled prescription. China J Bas Med Trad Chin Med (Zhongguo Zhong Yi Ji Chu Yi Xue Za Zhi) 2005; 11: 194–196 (in Chinese)
14 Q Ma, D Liang, S Song, Q Yu, C Shi, X Xing, JB Luo. Comparative study on the antivirus activity of Shuang-Huang-Lian injectable powder and its bioactive compound mixture against human adenovirus III in vitro. Viruses 2017; 9(4): E79
https://doi.org/10.3390/v9040079 pmid: 28417913
15 J, Guo D Song. Research progress in pharmacological action, clinical application and adverse reactions of Shuanghuanglian. Chin J Clin Rationl Drug Use (Lin Chuang He Li Yong Yao Za Zhi) 2017; 21: 161–163 (in Chinese)
16 Ministry of Health, the People’s Republic of China.Diagnosis and Treatment Program for Human Avian Influenza. 2005 ed. Ministry of Health, the People’s Republic of China, 2005 (in Chinese)
17 Ministry of Health, the People’s Republic of China. Diagnosis and Treatment Program for Influenza A. H1N1. Trial Version 1. Ministry of Health, the People’s Republic of China, 2009 (in Chinese)
18 National Administration of Traditional Medicine. Expert Guidance on the Treatment of Ebola Haemorrhagic Fever with Traditional Chinese Medicine. Version 1. National Administration of Traditional Medicine, the People’s Republic of China, 2014 (in Chinese)
19 HX Su, S Yao, WF Zhao, MJ Li, J Liu, WJ Shang, H Xie, CQ Ke, HC Hu, MN Gao, KQ Yu, H Liu, JS Shen, W Tang, LK Zhang, GF Xiao, L Ni, DW Wang, JP Zuo, HL Jiang, F Bai, Y Wu, Y Ye, YC Xu. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol Sin 2020; 41(9): 1167–1177
https://doi.org/10.1038/s41401-020-0483-6 pmid: 32737471
20 L Ni, L Zhou, M Zhou, J Zhao, DW Wang. Combination of western medicine and Chinese traditional patent medicine in treating a family case of COVID-19. Front Med 2020; 14(2): 210–214
https://doi.org/10.1007/s11684-020-0757-x pmid: 32170559
21 W Gan. The influence of small dose of glucocorticoid on immune function of children with Mycoplasma pneumoniae pneumonia. Chin Mod Med (Zhongguo Dang Dai Yi Yao) 2013; 20: 40–41 (in Chinese)
22 MR Carazo, MS Kolodziej, ES DeWitt, NA Kasparian, JW Newburger, VE Duarte, MN Singh, AR Opotowsky. Prevalence and prognostic association of a clinical diagnosis of depression in adult congenital heart disease: results of the Boston Adult Congenital Heart Disease Biobank. J Am Heart Assoc 2020; 9(9): e014820
https://doi.org/10.1161/JAHA.119.014820 pmid: 32342722
23 H Pang, W Xue, A Shi, M Li, Y Li, G Cao, B Yan, F Dong, W Xiao, G He, G Du, X Hu, G Cheng. Multiple-ascending-dose pharmacokinetics and safety evaluation of baicalein chewable tablets in healthy Chinese volunteers. Clin Drug Investig 2016; 36(9): 713–724
https://doi.org/10.1007/s40261-016-0418-7 pmid: 27352310
24 M Li, A Shi, H Pang, W Xue, Y Li, G Cao, B Yan, F Dong, K Li, W Xiao, G He, G Du, X Hu. Safety, tolerability, and pharmacokinetics of a single ascending dose of baicalein chewable tablets in healthy subjects. J Ethnopharmacol 2014; 156: 210–215
https://doi.org/10.1016/j.jep.2014.08.031 pmid: 25219601
25 K Abe, O Inoue, E Yumioka. Biliary excretion of metabolites of baicalin and baicalein in rats. Chem Pharm Bull (Tokyo) 1990; 38(1): 209–211
https://doi.org/10.1248/cpb.38.208 pmid: 2337942
26 L Tian. A preliminary study on the integrated pharmacokinetics of anti-virus components from Shuang-Huang-Lian oral liquid. Master Thesis. Nanjing University of Chinese Medicine, 2016(in Chinese)
27 MF Konig, M Powell, V Staedtke, RY Bai, DL Thomas, N Fischer, S Huq, AM Khalafallah, A Koenecke, R Xiong, B Mensh, N Papadopoulos, KW Kinzler, B Vogelstein, JT Vogelstein, S Athey, S Zhou, C Bettegowda. Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists. J Clin Invest 2020; 130(7): 3345–3347
https://doi.org/10.1172/JCI139642 pmid: 32352407
28 RJ Jose, A Manuel. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med 2020; 8(6): e46–e47
https://doi.org/10.1016/S2213-2600(20)30216-2 pmid: 32353251
29 Y Gao, L Fang, R Cai, C Zong, X Chen, J Lu, Y Qi. Shuang-Huang-Lian exerts anti-inflammatory and anti-oxidative activities in lipopolysaccharide-stimulated murine alveolar macrophages. Phytomedicine 2014; 21(4): 461–469
https://doi.org/10.1016/j.phymed.2013.09.022 pmid: 24192210
30 H Shi, K Ren, B Lv, W Zhang, Y Zhao, RX Tan, E Li. Baicalin from Scutellaria baicalensis blocks respiratory syncytial virus (RSV) infection and reduces inflammatory cell infiltration and lung injury in mice. Sci Rep 2016; 6(1): 35851
https://doi.org/10.1038/srep35851 pmid: 27767097
31 G Emilien, W van Meurs, JM Maloteaux. The dose-response relationship in phase I clinical trials and beyond: use, meaning, and assessment. Pharmacol Ther 2000; 88(1): 33–58
https://doi.org/10.1016/S0163-7258(00)00077-2 pmid: 11033383
[1] FMD-21007-OF-JHL_suppl_1 Download
[1] Xiaoguang Xu, Wei Zhang, Mingquan Guo, Chenlu Xiao, Ziyu Fu, Shuting Yu, Lu Jiang, Shengyue Wang, Yun Ling, Feng Liu, Yun Tan, Saijuan Chen. Integrated analysis of gut microbiome and host immune responses in COVID-19[J]. Front. Med., 2022, 16(2): 263-275.
[2] Yi Zhang, Haocheng Zhang, Wenhong Zhang. SARS-CoV-2 variants, immune escape, and countermeasures[J]. Front. Med., 2022, 16(2): 196-207.
[3] Yiming Shao, Yingqi Wu, Yi Feng, Wenxin Xu, Feng Xiong, Xinxin Zhang. SARS-CoV-2 vaccine research and immunization strategies for improved control of the COVID-19 pandemic[J]. Front. Med., 2022, 16(2): 185-195.
[4] Wei Zhang, Xiaoguang Xu, Ziyu Fu, Jian Chen, Saijuan Chen, Yun Tan. PathogenTrack and Yeskit: tools for identifying intracellular pathogens from single-cell RNA-sequencing datasets as illustrated by application to COVID-19[J]. Front. Med., 2022, 16(2): 251-262.
[5] Qiaoli Shi, Fei Xia, Qixin Wang, Fulong Liao, Qiuyan Guo, Chengchao Xu, Jigang Wang. Discovery and repurposing of artemisinin[J]. Front. Med., 2022, 16(1): 1-9.
[6] Jing Wang, Zequn Lu, Meng Jin, Ying Wang, Kunming Tian, Jun Xiao, Yimin Cai, Yanan Wang, Xu Zhang, Tao Chen, Zhi Yao, Chunguang Yang, Renli Deng, Qiang Zhong, Xiongbo Deng, Xin Chen, Xiang-ping Yang, Gonghong Wei, Zhihua Wang, Jianbo Tian, Xiao-ping Chen. Clinical characteristics and risk factors of COVID-19 patients with chronic hepatitis B: a multi-center retrospective cohort study[J]. Front. Med., 2022, 16(1): 111-125.
[7] Huai-yu Wang, Suyuan Peng, Zhanghui Ye, Pengfei Li, Qing Li, Xuanyu Shi, Rui Zeng, Ying Yao, Fan He, Junhua Li, Liu Liu, Shuwang Ge, Xianjun Ke, Zhibin Zhou, Gang Xu, Ming-hui Zhao, Haibo Wang, Luxia Zhang, Erdan Dong. Renin--angiotensin system inhibitor is associated with the reduced risk of all-cause mortality in COVID-19 among patients with/without hypertension[J]. Front. Med., 2022, 16(1): 102-110.
[8] Zehong Huang, Yingying Su, Tianying Zhang, Ningshao Xia. A review of the safety and efficacy of current COVID-19 vaccines[J]. Front. Med., 2022, 16(1): 39-55.
[9] Yuntao Zhang, Yunkai Yang, Niu Qiao, Xuewei Wang, Ling Ding, Xiujuan Zhu, Yu Liang, Zibo Han, Feng Liu, Xinxin Zhang, Xiaoming Yang. Early assessment of the safety and immunogenicity of a third dose (booster) of COVID-19 immunization in Chinese adults[J]. Front. Med., 2022, 16(1): 93-101.
[10] Weijian Hang, Chen Chen, Xin A. Zhang, Dao Wen Wang. Endothelial dysfunction in COVID-19 calls for immediate attention: the emerging roles of the endothelium in inflammation caused by SARS-CoV-2[J]. Front. Med., 2021, 15(4): 638-643.
[11] Rongtao Lai, Tianhui Zhou, Xiaogang Xiang, Jie Lu, Haiguang Xin, Qing Xie. Neutralizing monoclonal antibodies present new prospects to treat SARS-CoV-2 infections[J]. Front. Med., 2021, 15(4): 644-648.
[12] Dongsheng Wang, Binqing Fu, Zhen Peng, Dongliang Yang, Mingfeng Han, Min Li, Yun Yang, Tianjun Yang, Liangye Sun, Wei Li, Wei Shi, Xin Yao, Yan Ma, Fei Xu, Xiaojing Wang, Jun Chen, Daqing Xia, Yubei Sun, Lin Dong, Jumei Wang, Xiaoyu Zhu, Min Zhang, Yonggang Zhou, Aijun Pan, Xiaowen Hu, Xiaodong Mei, Haiming Wei, Xiaoling Xu. Tocilizumab in patients with moderate or severe COVID-19: a randomized, controlled, open-label, multicenter trial[J]. Front. Med., 2021, 15(3): 486-494.
[13] Wenjie Zhu, Binghe Xu. Overcoming resistance to endocrine therapy in hormone receptor-positive human epidermal growth factor receptor 2-negative (HR+/HER2--) advanced breast cancer: a meta-analysis and systemic review of randomized clinical trials[J]. Front. Med., 2021, 15(2): 208-220.
[14] Guizhen Wang, Qun Zhao, Hui Zhang, Fan Liang, Chen Zhang, Jun Wang, Zhenyin Chen, Ran Wu, Hong Yu, Beibei Sun, Hua Guo, Ruie Feng, Kaifeng Xu, Guangbiao Zhou. Degradation of SARS-CoV-2 receptor ACE2 by the E3 ubiquitin ligase Skp2 in lung epithelial cells[J]. Front. Med., 2021, 15(2): 252-263.
[15] Junnan Liang, Guannan Jin, Tongtong Liu, Jingyuan Wen, Ganxun Li, Lin Chen, Wei Wang, Yuwei Wang, Wei Liao, Jia Song, Zeyang Ding, Xiao-ping Chen, Bixiang Zhang. Clinical characteristics and risk factors for mortality in cancer patients with COVID-19[J]. Front. Med., 2021, 15(2): 264-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed