|
|
PathogenTrack and Yeskit: tools for identifying intracellular pathogens from single-cell RNA-sequencing datasets as illustrated by application to COVID-19 |
Wei Zhang1,2, Xiaoguang Xu1, Ziyu Fu1, Jian Chen3( ), Saijuan Chen1( ), Yun Tan1( ) |
1. Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 2. School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China 3. Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China |
|
|
Abstract Pathogenic microbes can induce cellular dysfunction, immune response, and cause infectious disease and other diseases including cancers. However, the cellular distributions of pathogens and their impact on host cells remain rarely explored due to the limited methods. Taking advantage of single-cell RNA-sequencing (scRNA-seq) analysis, we can assess the transcriptomic features at the single-cell level. Still, the tools used to interpret pathogens (such as viruses, bacteria, and fungi) at the single-cell level remain to be explored. Here, we introduced PathogenTrack, a python-based computational pipeline that uses unmapped scRNA-seq data to identify intracellular pathogens at the single-cell level. In addition, we established an R package named Yeskit to import, integrate, analyze, and interpret pathogen abundance and transcriptomic features in host cells. Robustness of these tools has been tested on various real and simulated scRNA-seq datasets. PathogenTrack is competitive to the state-of-the-art tools such as Viral-Track, and the first tools for identifying bacteria at the single-cell level. Using the raw data of bronchoalveolar lavage fluid samples (BALF) from COVID-19 patients in the SRA database, we found the SARS-CoV-2 virus exists in multiple cell types including epithelial cells and macrophages. SARS-CoV-2-positive neutrophils showed increased expression of genes related to type I interferon pathway and antigen presenting module. Additionally, we observed the Haemophilus parahaemolyticus in some macrophage and epithelial cells, indicating a co-infection of the bacterium in some severe cases of COVID-19. The PathogenTrack pipeline and the Yeskit package are publicly available at GitHub.
|
Keywords
scRNA-seq
intracellular pathogen
microbe
COVID-19
SARS-CoV-2
|
Corresponding Author(s):
Jian Chen,Saijuan Chen,Yun Tan
|
About author: Mingsheng Sun and Mingxiao Yang contributed equally to this work. |
Just Accepted Date: 23 December 2021
Online First Date: 22 February 2022
Issue Date: 26 April 2022
|
|
1 |
GXY Zheng, JM Terry, P Belgrader, P Ryvkin, ZW Bent, R Wilson, SB Ziraldo, TD Wheeler, GP McDermott, J Zhu, MT Gregory, J Shuga, L Montesclaros, JG Underwood, DA Masquelier, SY Nishimura, M Schnall-Levin, PW Wyatt, CM Hindson, R Bharadwaj, A Wong, KD Ness, LW Beppu, HJ Deeg, C McFarland, KR Loeb, WJ Valente, NG Ericson, EA Stevens, JP Radich, TS Mikkelsen, BJ Hindson, JH Bielas. Massively parallel digital transcriptional profiling of single cells. Nat Commun 2017; 8(1): 14049
https://doi.org/10.1038/ncomms14049
pmid: 28091601
|
2 |
J Cao, JS Packer, V Ramani, DA Cusanovich, C Huynh, R Daza, X Qiu, C Lee, SN Furlan, FJ Steemers, A Adey, RH Waterston, C Trapnell, J Shendure. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017; 357(6352): 661–667
https://doi.org/10.1126/science.aam8940
pmid: 28818938
|
3 |
S Aibar, CB González-Blas, T Moerman, VA Huynh-Thu, H Imrichova, G Hulselmans, F Rambow, JC Marine, P Geurts, J Aerts, J van den Oord, ZK Atak, J Wouters, S Aerts. SCENIC: single-cell regulatory network inference and clustering. Nat Methods 2017; 14(11): 1083–1086
https://doi.org/10.1038/nmeth.4463
pmid: 28991892
|
4 |
E Papalexi, R Satija. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 2018; 18(1): 35–45
https://doi.org/10.1038/nri.2017.76
pmid: 28787399
|
5 |
Q Zhang, Y He, N Luo, SJ Patel, Y Han, R Gao, M Modak, S Carotta, C Haslinger, D Kind, GW Peet, G Zhong, S Lu, W Zhu, Y Mao, M Xiao, M Bergmann, X Hu, SP Kerkar, AB Vogt, S Pflanz, K Liu, J Peng, X Ren, Z Zhang. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 2019; 179(4): 829–845.e20
https://doi.org/10.1016/j.cell.2019.10.003
pmid: 31675496
|
6 |
S Jin, CF Guerrero-Juarez, L Zhang, I Chang, R Ramos, CH Kuan, P Myung, MV Plikus, Q Nie. Inference and analysis of cell−cell communication using CellChat. Nat Commun 2021; 12(1): 1088
https://doi.org/10.1038/s41467-021-21246-9
pmid: 33597522
|
7 |
B Hwang, JH Lee, D Bang. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 2018; 50(8): 1–14
https://doi.org/10.1038/s12276-018-0071-8
pmid: 30089861
|
8 |
AJ Westermann, L Barquist, J Vogel. Resolving host-pathogen interactions by dual RNA-seq. PLoS Pathog 2017; 13(2): e1006033
https://doi.org/10.1371/journal.ppat.1006033
pmid: 28207848
|
9 |
P Bost, A Giladi, Y Liu, Y Bendjelal, G Xu, E David, R Blecher-Gonen, M Cohen, C Medaglia, H Li, A Deczkowska, S Zhang, B Schwikowski, Z Zhang, I Amit. Host-viral infection maps reveal signatures of severe COVID-19 patients. Cell 2020; 181(7): 1475–1488.e12
https://doi.org/10.1016/j.cell.2020.05.006
pmid: 32479746
|
10 |
A Srivastava, L Malik, T Smith, I Sudbery, R Patro. Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol 2019; 20(1): 65
https://doi.org/10.1186/s13059-019-1670-y
pmid: 30917859
|
11 |
T Smith, A Heger, I Sudbery. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res 2017; 27(3): 491–499
https://doi.org/10.1101/gr.209601.116
pmid: 28100584
|
12 |
S Chen, Y Zhou, Y Chen, J Gu. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34(17): i884–i890
https://doi.org/10.1093/bioinformatics/bty560
pmid: 30423086
|
13 |
A Dobin, CA Davis, F Schlesinger, J Drenkow, C Zaleski, S Jha, P Batut, M Chaisson, TR Gingeras. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15–21
https://doi.org/10.1093/bioinformatics/bts635
pmid: 23104886
|
14 |
DE Wood, J Lu, B Langmead. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20(1): 257
https://doi.org/10.1186/s13059-019-1891-0
pmid: 31779668
|
15 |
T Stuart, A Butler, P Hoffman, C Hafemeister, E Papalexi, WM Mauck 3rd, Y Hao, M Stoeckius, P Smibert, R Satija. Comprehensive integration of single-cell data. Cell 2019; 177(7): 1888–1902.e21
https://doi.org/10.1016/j.cell.2019.05.031
pmid: 31178118
|
16 |
I Korsunsky, N Millard, J Fan, K Slowikowski, F Zhang, K Wei, Y Baglaenko, M Brenner, PR Loh, S Raychaudhuri. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods 2019; 16(12): 1289–1296
https://doi.org/10.1038/s41592-019-0619-0
pmid: 31740819
|
17 |
HTN Tran, KS Ang, M Chevrier, X Zhang, NYS Lee, M Goh, J Chen. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol 2020; 21(1): 12
https://doi.org/10.1186/s13059-019-1850-9
pmid: 31948481
|
18 |
A Alexa, J Rahnenführer. Gene set enrichment analysis with topGO. Bioconductor Improv 2009; 27: 1–26
|
19 |
A Liberzon, A Subramanian, R Pinchback, H Thorvaldsdóttir, P Tamayo, JP Mesirov. Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011; 27(12): 1739–1740
https://doi.org/10.1093/bioinformatics/btr260
pmid: 21546393
|
20 |
L Zappia, B Phipson, A Oshlack. Splatter: simulation of single-cell RNA sequencing data. Genome Biol 2017; 18(1): 174
https://doi.org/10.1186/s13059-017-1305-0
pmid: 28899397
|
21 |
H Sarkar, A Srivastava, R Patro. Minnow: a principled framework for rapid simulation of dscRNA-seq data at the read level. Bioinformatics 2019; 35(14): i136–i144
https://doi.org/10.1093/bioinformatics/btz351
pmid: 31510649
|
22 |
WV Li, JJ Li. A statistical simulator scDesign for rational scRNA-seq experimental design. Bioinformatics 2019; 35(14): i41–i50
https://doi.org/10.1093/bioinformatics/btz321
pmid: 31510652
|
23 |
X Zhang, C Xu, N Yosef. Simulating multiple faceted variability in single cell RNA sequencing. Nat Commun 2019; 10(1): 2611
https://doi.org/10.1038/s41467-019-10500-w
pmid: 31197158
|
24 |
P Dibaeinia, S Sinha. SERGIO: a single-cell expression simulator guided by gene regulatory networks. Cell Syst 2020; 11(3): 252–271.e11
https://doi.org/10.1016/j.cels.2020.08.003
pmid: 32871105
|
25 |
J Tian, J Wang, K Roeder. ESCO: single cell expression simulation incorporating gene co-expression. Bioinformatics 2021; 37(16): 2374–2381
https://doi.org/10.1093/bioinformatics/btab116
pmid: 33624750
|
26 |
AC Frazee, AE Jaffe, B Langmead, JT Leek. Polyester: simulating RNA-seq datasets with differential transcript expression. Bioinformatics 2015; 31(17): 2778–2784
https://doi.org/10.1093/bioinformatics/btv272
pmid: 25926345
|
27 |
B Hie, H Cho, B DeMeo, B Bryson, B Berger. Geometric sketching compactly summarizes the single-cell transcriptomic landscape. Cell Syst 2019; 8(6): 483–493.e7
https://doi.org/10.1016/j.cels.2019.05.003
pmid: 31176620
|
28 |
M Liao, Y Liu, J Yuan, Y Wen, G Xu, J Zhao, L Cheng, J Li, X Wang, F Wang, L Liu, I Amit, S Zhang, Z Zhang. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med 2020; 26(6): 842–844
https://doi.org/10.1038/s41591-020-0901-9
pmid: 32398875
|
29 |
AS Le Floch, N Cassir, S Hraiech, C Guervilly, L Papazian, JM Rolain. Haemophilus parahaemolyticus septic shock after aspiration pneumonia, France. Emerg Infect Dis 2013; 19(10): 1694–1695
https://doi.org/10.3201/eid1910.130608
pmid: 24050515
|
30 |
P Zhang, M Yang, Y Zhang, S Xiao, X Lai, A Tan, S Du, S Li. Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer. Cell Rep 2019; 27(6): 1934–1947.e5
https://doi.org/10.1016/j.celrep.2019.04.052
pmid: 31067475
|
31 |
C Wang, J Xie, L Zhao, X Fei, H Zhang, Y Tan, X Nie, L Zhou, Z Liu, Y Ren, L Yuan, Y Zhang, J Zhang, L Liang, X Chen, X Liu, P Wang, X Han, X Weng, Y Chen, T Yu, X Zhang, J Cai, R Chen, ZL Shi, XW Bian. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine 2020; 57: 102833
https://doi.org/10.1016/j.ebiom.2020.102833
pmid: 32574956
|
32 |
Y Tan, W Zhang, Z Zhu, N Qiao, Y Ling, M Guo, T Yin, H Fang, X Xu, G Lu, P Zhang, S Yang, Z Fu, D Liang, Y Xie, R Zhang, L Jiang, S Yu, J Lu, F Jiang, J Chen, C Xiao, S Wang, S Chen, XW Bian, H Lu, F Liu, S Chen. Integrating longitudinal clinical laboratory tests with targeted proteomic and transcriptomic analyses reveal the landscape of host responses in COVID-19. Cell Discov 2021; 7(1): 42
https://doi.org/10.1038/s41421-021-00274-1
pmid: 34103487
|
33 |
RM Rodriguez, BY Hernandez, M Menor, Y Deng, VS Khadka. The landscape of bacterial presence in tumor and adjacent normal tissue across 9 major cancer types using TCGA exome sequencing. Comput Struct Biotechnol J 2020; 18: 631–641
https://doi.org/10.1016/j.csbj.2020.03.003
pmid: 32257046
|
34 |
GD Poore, E Kopylova, Q Zhu, C Carpenter, S Fraraccio, S Wandro, T Kosciolek, S Janssen, J Metcalf, SJ Song, J Kanbar, S Miller-Montgomery, R Heaton, R Mckay, SP Patel, AD Swafford, R Knight. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 2020; 579(7800): 567–574
https://doi.org/10.1038/s41586-020-2095-1
pmid: 32214244
|
35 |
D Nejman, I Livyatan, G Fuks, N Gavert, Y Zwang, LT Geller, A Rotter-Maskowitz, R Weiser, G Mallel, E Gigi, A Meltser, GM Douglas, I Kamer, V Gopalakrishnan, T Dadosh, S Levin-Zaidman, S Avnet, T Atlan, ZA Cooper, R Arora, AP Cogdill, MAW Khan, G Ologun, Y Bussi, A Weinberger, M Lotan-Pompan, O Golani, G Perry, M Rokah, K Bahar-Shany, EA Rozeman, CU Blank, A Ronai, R Shaoul, A Amit, T Dorfman, R Kremer, ZR Cohen, S Harnof, T Siegal, E Yehuda-Shnaidman, EN Gal-Yam, H Shapira, N Baldini, MGI Langille, A Ben-Nun, B Kaufman, A Nissan, T Golan, M Dadiani, K Levanon, J Bar, S Yust-Katz, I Barshack, DS Peeper, DJ Raz, E Segal, JA Wargo, J Sandbank, N Shental, R Straussman. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 2020; 368(6494): 973–980
https://doi.org/10.1126/science.aay9189
pmid: 32467386
|
36 |
MG Gareau, PM Sherman, WA Walker. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol 2010; 7(9): 503–514
https://doi.org/10.1038/nrgastro.2010.117
pmid: 20664519
|
37 |
I Cho, MJ Blaser. The human microbiome: at the interface of health and disease. Nat Rev Genet 2012; 13(4): 260–270
https://doi.org/10.1038/nrg3182
pmid: 22411464
|
38 |
F Sommer, JM Anderson, R Bharti, J Raes, P Rosenstiel. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol 2017; 15(10): 630–638
https://doi.org/10.1038/nrmicro.2017.58
pmid: 28626231
|
39 |
ME Sanders, DJ Merenstein, G Reid, GR Gibson, RA Rastall. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 2019; 16(10): 605–616
https://doi.org/10.1038/s41575-019-0173-3
pmid: 31296969
|
40 |
D Zheng, T Liwinski, E Elinav. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30(6): 492–506
https://doi.org/10.1038/s41422-020-0332-7
pmid: 32433595
|
41 |
JL Round, SK Mazmanian. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9(5): 313–323
https://doi.org/10.1038/nri2515
pmid: 19343057
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|