Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (1) : 102-110    https://doi.org/10.1007/s11684-021-0850-9
RESEARCH ARTICLE
Renin--angiotensin system inhibitor is associated with the reduced risk of all-cause mortality in COVID-19 among patients with/without hypertension
Huai-yu Wang1, Suyuan Peng1, Zhanghui Ye2, Pengfei Li2, Qing Li2, Xuanyu Shi1, Rui Zeng3, Ying Yao4, Fan He3, Junhua Li3, Liu Liu3, Shuwang Ge3, Xianjun Ke5, Zhibin Zhou5, Gang Xu3, Ming-hui Zhao7,8, Haibo Wang6, Luxia Zhang1,2,7(), Erdan Dong9
1. National Institute of Health Data Science at Peking University, Beijing 100191, China
2. Peking University Advanced Institute of Information Technology, Hangzhou 311215, China
3. Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
4. Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
5. Taikang Tongji (Wuhan) Hospital, Wuhan 430050, China
6. First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
7. Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China
8. Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
9. Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
 Download: PDF(191 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Consecutively hospitalized patients with confirmed coronavirus disease 2019 (COVID-19) in Wuhan, China were retrospectively enrolled from January 2020 to March 2020 to investigate the association between the use of renin–angiotensin system inhibitor (RAS-I) and the outcome of this disease. Associations between the use of RAS-I (angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB)), ACEI, and ARB and in-hospital mortality were analyzed using multivariate Cox proportional hazards regression models in overall and subgroup of hypertension status. A total of 2771 patients with COVID-19 were included, with moderate and severe cases accounting for 45.0% and 36.5%, respectively. A total of 195 (7.0%) patients died. RAS-I (hazard ratio (HR)=0.499, 95% confidence interval (CI) 0.325–0.767) and ARB (HR=0.410, 95% CI 0.240–0.700) use was associated with a reduced risk of all-cause mortality among patients with COVID-19. For patients with hypertension, RAS-I and ARB applications were also associated with a reduced risk of mortality with HR of 0.352 (95% CI 0.162–0.764) and 0.279 (95% CI 0.115–0.677), respectively. RAS-I exhibited protective effects on the survival outcome of COVID-19. ARB use was associated with a reduced risk of all-cause mortality among patients with COVID-19.

Keywords COVID-19      RAS inhibitor      hypertension      all-cause mortality     
Corresponding Author(s): Luxia Zhang   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 04 June 2021   Online First Date: 13 July 2021    Issue Date: 28 March 2022
 Cite this article:   
Huai-yu Wang,Suyuan Peng,Zhanghui Ye, et al. Renin--angiotensin system inhibitor is associated with the reduced risk of all-cause mortality in COVID-19 among patients with/without hypertension[J]. Front. Med., 2022, 16(1): 102-110.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-021-0850-9
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I1/102
Fig.1  Flowchart of enrollment process.
Factors Overall
(n = 2771)
RAS-I administration P value
Yes (n = 280) No (n = 2491)
Age, n (%) <0.001
<18 years 16 (0.6%) 0 (0.0%) 16 (0.6%)
18–44 years 477 (17.2%) 12 (4.3%) 465 (18.7%)
45–64 years 1262 (45.5%) 113 (40.4%) 1149 (46.1%)
65 years 1016 (36.7%) 155 (55.4%) 861 (34.6%)
Male, n (%) 1328 (47.9%) 147 (52.5%) 1181 (47.4%) 0.110
Comorbidity, n (%)
Hypertension 590 (21.5%) 141 (50.4%) 449 (18.2%) <0.001
Diabetes 299 (10.9%) 56 (20.0%) 243 (9.8%) <0.001
Cardiovascular disease 133 (4.8%) 31 (11.1%) 102 (4.1%) <0.001
Chronic kidney disease 26 (0.9%) 4 (1.4%) 22 (0.9%) 0.330
Chronic obstructive pulmonary disease 56 (2.0%) 5 (1.8%) 51 (2.1%) 0.750
Cancer 30 (1.1%) 6 (2.1%) 24 (1.0%) 0.120
None of above 1947 (70.3%) 128 (45.7%) 1819 (73.0%) <0.001
Laboratory test
WBC (× 109 cells/L) 6.8 (5.4, 8.9) 7.9 (5.6, 13.2) 6.8 (5.4, 8.8) 0.007
LYM (× 109 cells/L) 1.2 (0.7, 1.6) 0.9 (0.4, 1.3) 1.2 (0.7, 1.6) <0.001
hs-CRP (mg/L) 19.9 (2.4, 78.4) 65.7 (5.0, 161.6) 19.3 (2.3, 75.6) <0.001
PCT (ng/L) 0.07 (0.04, 0.21) 0.14 (0.05, 0.61) 0.07 (0.04, 0.21) 0.003
IL-6 (pg/mL) 6.3 (2.1, 14.4) 12.7 (4.0, 72.6) 6.3 (2.1, 14.2) <0.001
hs-cTn (ng/mL) 4.5 (1.9, 11.7) 11.5 (4.7, 29.6) 4.4 (1.9, 11.4) <0.001
SCr (µmol/L) 70.0 (58.0, 86.0) 88.4 (71.0, 133.0) 70.0 (58.0, 85.6) <0.001
SBP (mmHg) 124.4 (116.7, 132.5) 119.5 (71.9, 135.6) 124.4 (116.8, 132.5) 0.087
DBP (mmHg) 75.4 (71.1, 80.7) 86.2 (74.7, 117.3) 75.2 (71.0, 80.5) <0.001
Complication, n (%)
Acute respiratory distress syndrome 416 (15.0%) 68 (24.3%) 348 (14.0%) <0.001
Heart failure 296 (10.7%) 59 (21.1%) 237 (9.5%) <0.001
Acute myocardial infarction 250 (9.0%) 41 (14.6%) 209 (8.4%) <0.001
Acute kidney injury 107 (3.9%) 22 (7.9%) 85 (3.4%) <0.001
Multiple organ dysfunction syndrome 265 (9.6%) 52 (18.6%) 213 (8.6%) <0.001
Treatment, n (%)
Anti-virus drug 1861 (67.2%) 198 (70.7%) 1663 (66.8%) 0.180
Glucocorticoid 625 (22.6%) 73 (26.1%) 552 (22.2%) 0.140
Chloroquine/hydroxychloroquine 293 (10.6%) 37 (13.2%) 256 (10.3%) 0.130
Tocilizumab 41 (1.5%) 10 (3.6%) 31 (1.2%) 0.002
NPPV 316 (11.4%) 49 (17.5%) 267 (10.7%) <0.001
IPPV 129 (4.7%) 19 (6.8%) 110 (4.4%) 0.074
CRRT 51 (1.8%) 15 (5.4%) 36 (1.4%) <0.001
Severity, n (%) <0.001
Mild cases 109 (3.9%) 5 (1.8%) 104 (4.2%)
Moderate cases 1247 (45.0%) 96 (34.3%) 1151 (46.2%)
Severe cases 1012 (36.5%) 119 (42.5%) 893 (35.8%)
Critical 403 (14.5%) 60 (21.4%) 343 (13.8%)
Outcome, n (%) 0.072
Recovery 2576 (93.0%) 253 (90.4%) 2323 (93.3%)
Death 195 (7.0%) 27 (9.6%) 168 (6.7%)
Tab.1  Demographic characteristics
Variable Unadjusted model Model 1 Model 2 Model 3
Crude HR (95% CI) P value Adjusted HR (95% CI) P value Adjusted HR (95% CI) P value Adjusted HR (95% CI) P value
RAS-I administration
No Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref.
Yes 1.160 (0.771–1.743) 0.477 0.845 (0.561–1.272) 0.419 0.562 (0.371–0.852) 0.007 0.499 (0.325–0.767) 0.002
ACEI administration
No Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref.
Yes 2.767 (1.542–4.967) 0.001 1.962 (1.091–3.528) 0.024 0.885 (0.488–1.605) 0.688 0.892 (0.473–1.682) 0.724
ARB administration
No Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref.
Yes 0.775 (0.464–1.295) 0.331 0.579 (0.346–0.967) 0.037 0.457 (0.272–0.770) 0.003 0.410 (0.240–0.700) 0.001
Tab.2  Association between RAS-I administration and all-cause mortality
Factors Overall (n = 590) RAS-I administration P value
Yes (n = 141) No (n = 449)
Age, n (%) 0.540
<18 years 0 (0.0%) 0 (0.0%) 0 (0.0%)
18–44 years 21 (3.6%) 7 (5.0%) 14 (3.1%)
45–64 years 230 (39.0%) 55 (39.0%) 175 (39.0%)
65 years 339 (57.5%) 79 (56.0%) 260 (57.9%)
Male, n (%) 293 (49.7%) 68 (48.2%) 225 (50.1%) 0.700
Laboratory test
WBC (× 109 cells/L) 7.1 (5.6, 9.5) 6.4 (5.3, 9.0) 7.2 (5.6, 9.5) 0.260
LYM (× 109 cells/L) 1.1 (0.7, 1.6) 1.1 (0.6, 1.5) 1.1 (0.7, 1.6) 0.690
hs-CRP (mg/L) 38.0 (4.5, 102.1) 22.2 (4.6, 72.3) 42.8 (4.5, 111.3) 0.980
PCT (ng/L) 0.09 (0.05, 0.24) 0.08 (0.04, 0.23) 0.09 (0.05, 0.24) 0.340
IL-6 (pg/mL) 8.3 (3.2, 15.6) 9.7 (3.0, 15.5) 8.3 (3.3, 15.6) 0.790
hs-cTn (ng/mL) 7.9 (3.3, 20.6) 8.6 (4.1, 14.3) 7.8 (3.3, 20.6) 0.780
SCr (µmol/L) 73.4 (61.0, 92.0) 86.0 (69.0, 103.0) 73.0 (60.1, 92.0) 0.100
SBP (mmHg) 129.7 (122.3, 137.0) 135.6 (124.6, 141.9) 129.6 (122.3, 137.0) 0.220
DBP (mmHg) 76.6 (72.1, 82.3) 80.5 (74.1, 86.2) 76.5 (72.1, 82.3) 0.180
Complication, n (%)
Acute respiratory distress syndrome 84 (14.2%) 13 (9.2%) 71 (15.8%) 0.051
Heart failure 85 (14.4%) 18 (12.8%) 67 (14.9%) 0.520
Acute myocardial infarction 98 (16.6%) 19 (13.5%) 79 (17.6%) 0.250
Acute kidney injury 38 (6.4%) 8 (5.7%) 30 (6.7%) 0.840
Multiple organ dysfunction syndrome 76 (12.9%) 12 (8.5%) 64 (14.3%) 0.076
Severity, n (%) 0.730
Mild cases 10 (1.7%) 2 (1.4%) 8 (1.8%)
Moderate cases 209 (35.4%) 53 (37.6%) 156 (34.7%)
Severe cases 265 (44.9%) 65 (46.1%) 200 (44.5%)
Critical 106 (18.0%) 21 (14.9%) 85 (18.9%)
Outcome, n (%) 0.029
Recovery 526 (89.2%) 133 (94.3%) 393 (87.5%)
Death 64 (10.8%) 8 (5.7%) 56 (12.5%)
Tab.3  Demographic characteristics among patients with COVID-19 with hypertension
Variable Unadjusted model Model 1 Model 2
Crude HR (95% CI) P value Adjusted HR (95% CI) P value Adjusted HR (95% CI) P value
RAS-I administration
No Ref. Ref. Ref. Ref. Ref. Ref.
Yes 0.402 (0.192–0.845) 0.016 0.433 (0.206–0.909) 0.027 0.352 (0.162–0.764) 0.008
ACEI administration
No Ref. Ref. Ref. Ref. Ref. Ref.
Yes 0.691 (0.169–2.824) 0.606 0.663 (0.162–2.713) 0.567 1.008 (0.231–4.391) 0.992
ARB administration
No Ref. Ref. Ref. Ref. Ref. Ref.
Yes 0.353 (0.152–0.818) 0.015 0.381 (0.164–0.884) 0.025 0.279 (0.115–0.677) 0.005
Tab.4  Association between RAS-I administration and all-cause mortality among patients with hypertension
1 AB Patel, A Verma. COVID-19 and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: what is the evidence? JAMA 2020; 323(18): 1769–1770
https://doi.org/10.1001/jama.2020.4812 pmid: 32208485
2 WJ Guan, ZY Ni, Y Hu, WH Liang, CQ Ou, JX He, L Liu, H Shan, CL Lei, DSC Hui, B Du, LJ Li, G Zeng, KY Yuen, RC Chen, CL Tang, T Wang, PY Chen, J Xiang, SY Li, JL Wang, ZJ Liang, YX Peng, L Wei, Y Liu, YH Hu, P Peng, JM Wang, JY Liu, Z Chen, G Li, ZJ Zheng, SQ Qiu, J Luo, CJ Ye, SY Zhu, NS; Zhong China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708–1720
https://doi.org/10.1056/NEJMoa2002032 pmid: 32109013
3 H Zhang, JM Penninger, Y Li, N Zhong, AS Slutsky. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46(4): 586–590
https://doi.org/10.1007/s00134-020-05985-9 pmid: 32125455
4 G Zhou, S Chen, Z Chen. Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies. Front Med 2020; 14(2): 117–125
https://doi.org/10.1007/s11684-020-0773-x pmid: 32318975
5 AC Simões E Silva, MM Teixeira. ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol Res 2016; 107: 154–162
https://doi.org/10.1016/j.phrs.2016.03.018 pmid: 26995300
6 AM South, DI Diz, MC Chappell. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol 2020; 318(5): H1084–H1090
https://doi.org/10.1152/ajpheart.00217.2020 pmid: 32228252
7 Y Imai, K Kuba, S Rao, Y Huan, F Guo, B Guan, P Yang, R Sarao, T Wada, H Leong-Poi, MA Crackower, A Fukamizu, CC Hui, L Hein, S Uhlig, AS Slutsky, C Jiang, JM Penninger. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005; 436(7047): 112–116
https://doi.org/10.1038/nature03712 pmid: 16001071
8 AM South, L Tomlinson, D Edmonston, S Hiremath, MA Sparks. Controversies of renin–angiotensin system inhibition during the COVID-19 pandemic. Nat Rev Nephrol 2020; 16(6): 305–307
https://doi.org/10.1038/s41581-020-0279-4 pmid: 32246101
9 J Li, X Wang, J Chen, H Zhang, A Deng. Association of renin-angiotensin system inhibitors with severity or risk of death in patients with hypertension hospitalized for coronavirus disease 2019 (COVID-19) infection in Wuhan, China. JAMA Cardiol 2020; 5(7): 825–830
https://doi.org/10.1001/jamacardio.2020.1624 pmid: 32324209
10 J Meng, G Xiao, J Zhang, X He, M Ou, J Bi, R Yang, W Di, Z Wang, Z Li, H Gao, L Liu, G Zhang. Renin–angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerg Microbes Infect 2020; 9(1): 757–760
https://doi.org/10.1080/22221751.2020.1746200 pmid: 32228222
11 HR Reynolds, S Adhikari, C Pulgarin, AB Troxel, E Iturrate, SB Johnson, A Hausvater, JD Newman, JS Berger, S Bangalore, SD Katz, GI Fishman, D Kunichoff, Y Chen, G Ogedegbe, JS Hochman. Renin–angiotensin–aldosterone system inhibitors and risk of Covid-19. N Engl J Med 2020; 382(25): 2441–2448
https://doi.org/10.1056/NEJMoa2008975 pmid: 32356628
12 G Mancia, F Rea, M Ludergnani, G Apolone, G Corrao. Renin–angiotensin–aldosterone system blockers and the risk of Covid-19. N Engl J Med 2020; 382(25): 2431–2440
https://doi.org/10.1056/NEJMoa2006923 pmid: 32356627
13 N Mehta, A Kalra, AS Nowacki, S Anjewierden, Z Han, P Bhat, AE Carmona-Rubio, M Jacob, GW Procop, S Harrington, A Milinovich, LG Svensson, L Jehi, JB Young, MK Chung. Association of use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; 5(9): 1020–1026
https://doi.org/10.1001/jamacardio.2020.1855 pmid: 32936273
14 J Xu, C Huang, G Fan, Z Liu, L Shang, F Zhou, Y Wang, J Yu, L Yang, K Xie, Z Huang, L Huang, X Gu, H Li, Y Zhang, Y Wang, FG Hayden, PW Horby, B Cao, C Wang. Use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in context of COVID-19 outbreak: a retrospective analysis. Front Med 2020; 14(5): 601–612
https://doi.org/10.1007/s11684-020-0800-y pmid: 32621202
15 The National Health Commission of China. Diagnosis and Treatment Protocol for COVID-19 (Trial Version 7). 2020
16 ARDS Definition Task Force, VM Ranieri, GD Rubenfeld, BT Thompson, ND Ferguson, E Caldwell, E Fan, L Camporota, AS Slutsky. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307(23): 2526–2533
pmid: 22797452
17 P Ponikowski, AA Voors, SD Anker, H Bueno, JG Cleland, AJ Coats, V Falk, JR González-Juanatey, VP Harjola, EA Jankowska, M Jessup, C Linde, P Nihoyannopoulos, JT Parissis, B Pieske, JP Riley, GM Rosano, LM Ruilope, F Ruschitzka, FH Rutten, P van der Meer; Authors/Task Force Members; Document Reviewers. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2016; 18(8): 891–975
https://doi.org/10.1002/ejhf.592 pmid: 27207191
18 T Reichlin, R Twerenbold, M Reiter, S Steuer, S Bassetti, C Balmelli, K Winkler, S Kurz, C Stelzig, M Freese, B Drexler, P Haaf, C Zellweger, S Osswald, C Mueller. Introduction of high-sensitivity troponin assays: impact on myocardial infarction incidence and prognosis. Am J Med 2012; 125(12): 1205–1213.e1
https://doi.org/10.1016/j.amjmed.2012.07.015 pmid: 23164485
19 Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. Kidney Disease: Improving Global Outcomes—CKD Evaluation and Management 2012
20 NH Ng’andu. An empirical comparison of statistical tests for assessing the proportional hazards assumption of Cox’s model. Stat Med 1997; 16(6): 611–626
https://doi.org/10.1002/(SICI)1097-0258(19970330)16:6<611::AID-SIM437>3.0.CO;2-T pmid: 9131751
21 Y Chen, D Yang, C Yang, L Zheng, K Huang. Response to Comment on Chen et al. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care 2020; 43: 1399–1407. Diabetes Care 2020; 43(10): e165–e166
https://doi.org/10.2337/dci20-0035 pmid: 32958627
22 P Zhang, L Zhu, J Cai, F Lei, JJ Qin, J Xie, YM Liu, YC Zhao, X Huang, L Lin, M Xia, MM Chen, X Cheng, X Zhang, D Guo, Y Peng, YX Ji, J Chen, ZG She, Y Wang, Q Xu, R Tan, H Wang, J Lin, P Luo, S Fu, H Cai, P Ye, B Xiao, W Mao, L Liu, Y Yan, M Liu, M Chen, XJ Zhang, X Wang, RM Touyz, J Xia, BH Zhang, X Huang, Y Yuan, R Loomba, PP Liu, H Li. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ Res 2020; 126(12): 1671–1681
https://doi.org/10.1161/CIRCRESAHA.120.317134 pmid: 32302265
23 S Culver, C Li, HM Siragy. Intrarenal angiotensin-converting enzyme: the old and the new. Curr Hypertens Rep 2017; 19(10): 80
https://doi.org/10.1007/s11906-017-0778-2 pmid: 28929450
24 R Kreutz, EAE Algharably, M Azizi, P Dobrowolski, T Guzik, A Januszewicz, A Persu, A Prejbisz, TG Riemer, JG Wang, M Burnier. Hypertension, the renin–angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc Res 2020; 116(10): 1688–1699
https://doi.org/10.1093/cvr/cvaa097 pmid: 32293003
25 L Anguiano, M Riera, J Pascual, MJ Soler. Circulating ACE2 in cardiovascular and kidney diseases. Curr Med Chem 2017; 24(30): 3231–3241
https://doi.org/10.2174/0929867324666170414162841 pmid: 28413960
26 RT Eberhardt, RM Kevak, PM Kang, WH Frishman. Angiotensin II receptor blockade: an innovative approach to cardiovascular pharmacotherapy. J Clin Pharmacol 1993; 33(11): 1023–1038
https://doi.org/10.1002/j.1552-4604.1993.tb01939.x pmid: 8300885
27 F Aghaaliakbari, MA Abbasi, M Ranjbar, M Jamshidi Makiani, M Farrokhpour, F Safarnezhad Tameshkel, MH Karbalaie Niya, S Doltkhah, K Yaghoobzadeh, S Savaj. Angiotensin converting enzyme inhibitors, a risk factor of poor outcome in diabetic patients with COVID-19 infection. Iran J Kidney Dis 2020; 14(6): 482–487
pmid: 33277453
28 F Gutiérrez, M Masiá, C Mirete, B Soldán, JC Rodríguez, S Padilla, I Hernández, G Royo, A Martin-Hidalgo. The influence of age and gender on the population-based incidence of community-acquired pneumonia caused by different microbial pathogens. J Infect 2006; 53(3): 166–174
https://doi.org/10.1016/j.jinf.2005.11.006 pmid: 16375972
29 M Woodhead, F Blasi, S Ewig, J Garau, G Huchon, M Ieven, A Ortqvist, T Schaberg, A Torres, G van der Heijden, R Read, TJ Verheij; Joint Taskforce of the European Respiratory Society and European Society for Clinical Microbiology and Infectious Diseases. Guidelines for the management of adult lower respiratory tract infections—full version. Clin Microbiol Infect 2011; 17(Suppl 6): E1–E59
https://doi.org/10.1111/j.1469-0691.2011.03672.x pmid: 21951385
30 CH Chou, CS Hung, CW Liao, LH Wei, CW Chen, CT Shun, WF Wen, CH Wan, XM Wu, YY Chang, VC Wu, KD Wu, YH Lin; TAIPAI Study Group. IL-6 trans-signalling contributes to aldosterone-induced cardiac fibrosis. Cardiovasc Res 2018; 114(5): 690–702
https://doi.org/10.1093/cvr/cvy013 pmid: 29360942
31 M Siedlinski, E Jozefczuk, X Xu, A Teumer, E Evangelou, RB Schnabel, P Welsh, P Maffia, J Erdmann, M Tomaszewski, MJ Caulfield, N Sattar, MV Holmes, TJ Guzik. White blood cells and blood pressure: a Mendelian randomization study. Circulation 2020; 141(16): 1307–1317
https://doi.org/10.1161/CIRCULATIONAHA.119.045102 pmid: 32148083
32 Y Imai, K Kuba, JM Penninger. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol 2008; 93(5): 543–548
https://doi.org/10.1113/expphysiol.2007.040048 pmid: 18448662
[1] Wei Zhang, Xiaoguang Xu, Ziyu Fu, Jian Chen, Saijuan Chen, Yun Tan. PathogenTrack and Yeskit: tools for identifying intracellular pathogens from single-cell RNA-sequencing datasets as illustrated by application to COVID-19[J]. Front. Med., 2022, 16(2): 251-262.
[2] Xiaoguang Xu, Wei Zhang, Mingquan Guo, Chenlu Xiao, Ziyu Fu, Shuting Yu, Lu Jiang, Shengyue Wang, Yun Ling, Feng Liu, Yun Tan, Saijuan Chen. Integrated analysis of gut microbiome and host immune responses in COVID-19[J]. Front. Med., 2022, 16(2): 263-275.
[3] Zehong Huang, Yingying Su, Tianying Zhang, Ningshao Xia. A review of the safety and efficacy of current COVID-19 vaccines[J]. Front. Med., 2022, 16(1): 39-55.
[4] Yuntao Zhang, Yunkai Yang, Niu Qiao, Xuewei Wang, Ling Ding, Xiujuan Zhu, Yu Liang, Zibo Han, Feng Liu, Xinxin Zhang, Xiaoming Yang. Early assessment of the safety and immunogenicity of a third dose (booster) of COVID-19 immunization in Chinese adults[J]. Front. Med., 2022, 16(1): 93-101.
[5] Qiaoli Shi, Fei Xia, Qixin Wang, Fulong Liao, Qiuyan Guo, Chengchao Xu, Jigang Wang. Discovery and repurposing of artemisinin[J]. Front. Med., 2022, 16(1): 1-9.
[6] Li Ni, Zheng Wen, Xiaowen Hu, Wei Tang, Haisheng Wang, Ling Zhou, Lujin Wu, Hong Wang, Chang Xu, Xizhen Xu, Zhichao Xiao, Zongzhe Li, Chene Li, Yujian Liu, Jialin Duan, Chen Chen, Dan Li, Runhua Zhang, Jinliang Li, Yongxiang Yi, Wei Huang, Yanyan Chen, Jianping Zhao, Jianping Zuo, Jianping Weng, Hualiang Jiang, Dao Wen Wang. Effects of Shuanghuanglian oral liquids on patients with COVID-19: a randomized, open-label, parallel-controlled, multicenter clinical trial[J]. Front. Med., 2021, 15(5): 704-717.
[7] Weijian Hang, Chen Chen, Xin A. Zhang, Dao Wen Wang. Endothelial dysfunction in COVID-19 calls for immediate attention: the emerging roles of the endothelium in inflammation caused by SARS-CoV-2[J]. Front. Med., 2021, 15(4): 638-643.
[8] Rongtao Lai, Tianhui Zhou, Xiaogang Xiang, Jie Lu, Haiguang Xin, Qing Xie. Neutralizing monoclonal antibodies present new prospects to treat SARS-CoV-2 infections[J]. Front. Med., 2021, 15(4): 644-648.
[9] Dongsheng Wang, Binqing Fu, Zhen Peng, Dongliang Yang, Mingfeng Han, Min Li, Yun Yang, Tianjun Yang, Liangye Sun, Wei Li, Wei Shi, Xin Yao, Yan Ma, Fei Xu, Xiaojing Wang, Jun Chen, Daqing Xia, Yubei Sun, Lin Dong, Jumei Wang, Xiaoyu Zhu, Min Zhang, Yonggang Zhou, Aijun Pan, Xiaowen Hu, Xiaodong Mei, Haiming Wei, Xiaoling Xu. Tocilizumab in patients with moderate or severe COVID-19: a randomized, controlled, open-label, multicenter trial[J]. Front. Med., 2021, 15(3): 486-494.
[10] Junnan Liang, Guannan Jin, Tongtong Liu, Jingyuan Wen, Ganxun Li, Lin Chen, Wei Wang, Yuwei Wang, Wei Liao, Jia Song, Zeyang Ding, Xiao-ping Chen, Bixiang Zhang. Clinical characteristics and risk factors for mortality in cancer patients with COVID-19[J]. Front. Med., 2021, 15(2): 264-274.
[11] Guohua Chen, Wen Su, Jiayao Yang, Dan Luo, Ping Xia, Wen Jia, Xiuyang Li, Chuan Wang, Suping Lang, Qingbin Meng, Ying Zhang, Yuhe Ke, An Fan, Shuo Yang, Yujiao Zheng, Xuepeng Fan, Jie Qiao, Fengmei Lian, Li Wei, Xiaolin Tong. Chinese herbal medicine reduces mortality in patients with severe and critical coronavirus disease 2019: a retrospective cohort study[J]. Front. Med., 2020, 14(6): 752-759.
[12] Zhengqian Li, Taotao Liu, Ning Yang, Dengyang Han, Xinning Mi, Yue Li, Kaixi Liu, Alain Vuylsteke, Hongbing Xiang, Xiangyang Guo. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain[J]. Front. Med., 2020, 14(5): 533-541.
[13] Zhihang Peng, Wenyu Song, Zhongxing Ding, Quanquan Guan, Xu Yang, Qiaoqiao Xu, Xu Wang, Yankai Xia. Linking key intervention timings to rapid declining effective reproduction number to quantify lessons against COVID-19[J]. Front. Med., 2020, 14(5): 623-629.
[14] Jiuyang Xu, Chaolin Huang, Guohui Fan, Zhibo Liu, Lianhan Shang, Fei Zhou, Yeming Wang, Jiapei Yu, Luning Yang, Ke Xie, Zhisheng Huang, Lixue Huang, Xiaoying Gu, Hui Li, Yi Zhang, Yimin Wang, Frederick G. Hayden, Peter W. Horby, Bin Cao, Chen Wang. Use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in context of COVID-19 outbreak: a retrospective analysis[J]. Front. Med., 2020, 14(5): 601-612.
[15] Lingling Tang, Yingan Jiang, Mengfei Zhu, Lijun Chen, Xiaoyang Zhou, Chenliang Zhou, Peng Ye, Xiaobei Chen, Baohong Wang, Zhenyu Xu, Qiang Zhang, Xiaowei Xu, Hainv Gao, Xiaojun Wu, Dong Li, Wanli Jiang, Jingjing Qu, Charlie Xiang, Lanjuan Li. Clinical study using mesenchymal stem cells for the treatment of patients with severe COVID-19[J]. Front. Med., 2020, 14(5): 664-673.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed