|
|
Integrated analysis of gut microbiome and host immune responses in COVID-19 |
Xiaoguang Xu1, Wei Zhang1,2, Mingquan Guo3, Chenlu Xiao4, Ziyu Fu1, Shuting Yu1, Lu Jiang1, Shengyue Wang1, Yun Ling3, Feng Liu1, Yun Tan1( ), Saijuan Chen1( ) |
1. Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 2. School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China 3. Shanghai Public Health Clinical Center, Shanghai 201508, China 4. Department of Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China |
|
|
Abstract Emerging evidence indicates that the gut microbiome contributes to the host immune response to infectious diseases. Here, to explore the role of the gut microbiome in the host immune responses in COVID-19, we conducted shotgun metagenomic sequencing and immune profiling of 14 severe/critical and 24 mild/moderate COVID-19 cases as well as 31 healthy control samples. We found that the diversity of the gut microbiome was reduced in severe/critical COVID-19 cases compared to mild/moderate ones. We identified the abundance of some gut microbes altered post-SARS-CoV-2 infection and related to disease severity, such as Enterococcus faecium, Coprococcus comes, Roseburia intestinalis, Akkermansia muciniphila, Bacteroides cellulosilyticus and Blautia obeum. We further analyzed the correlation between the abundance of gut microbes and host responses, and obtained a correlation map between clinical features of COVID-19 and 16 severity-related gut microbe, including Coprococcus comes that was positively correlated with CD3+/CD4+/CD8+ lymphocyte counts. In addition, an integrative analysis of gut microbiome and the transcriptome of peripheral blood mononuclear cells (PBMCs) showed that genes related to viral transcription and apoptosis were up-regulated in Coprococcus comes low samples. Moreover, a number of metabolic pathways in gut microbes were also found to be differentially enriched in severe/critical or mild/moderate COVID-19 cases, including the superpathways of polyamine biosynthesis II and sulfur oxidation that were suppressed in severe/critical COVID-19. Together, our study highlighted a potential regulatory role of severity related gut microbes in the immune response of host.
|
Keywords
COVID-19
SARS-COV-2
gut microbiome
immune response
|
Corresponding Author(s):
Yun Tan,Saijuan Chen
|
About author: Mingsheng Sun and Mingxiao Yang contributed equally to this work. |
Just Accepted Date: 12 January 2022
Online First Date: 07 March 2022
Issue Date: 26 April 2022
|
|
1 |
Y Shen, F Zheng, D Sun, Y Ling, J Chen, F Li, T Li, Z Qian, Y Zhang, Q Xu, L Liu, Q Huang, F Shan, L Xu, J Wu, Z Zhu, Z Song, S Li, Y Shi, J Zhang, X Wu, JB Mendelsohn, T Zhu, H Lu. Epidemiology and clinical course of COVID-19 in Shanghai, China. Emerg Microbes Infect 2020; 9(1): 1537–1545
https://doi.org/10.1080/22221751.2020.1787103
pmid: 32573353
|
2 |
N Taleghani, F Taghipour. Diagnosis of COVID-19 for controlling the pandemic: a review of the state-of-the-art. Biosens Bioelectron 2021; 174: 112830
https://doi.org/10.1016/j.bios.2020.112830
pmid: 33339696
|
3 |
M D’Arienzo, A Coniglio. Assessment of the SARS-CoV-2 basic reproduction number, R0, based on the early phase of COVID-19 outbreak in Italy. Biosaf Health 2020; 2(2): 57–59
https://doi.org/10.1016/j.bsheal.2020.03.004
pmid: 32835209
|
4 |
X Zhang, Y Tan, Y Ling, G Lu, F Liu, Z Yi, X Jia, M Wu, B Shi, S Xu, J Chen, W Wang, B Chen, L Jiang, S Yu, J Lu, J Wang, M Xu, Z Yuan, Q Zhang, X Zhang, G Zhao, S Wang, S Chen, H Lu. Viral and host factors related to the clinical outcome of COVID-19. Nature 2020; 583(7816): 437–440
https://doi.org/10.1038/s41586-020-2355-0
pmid: 32434211
|
5 |
Y Tan, W Zhang, Z Zhu, N Qiao, Y Ling, M Guo, T Yin, H Fang, X Xu, G Lu, P Zhang, S Yang, Z Fu, D Liang, Y Xie, R Zhang, L Jiang, S Yu, J Lu, F Jiang, J Chen, C Xiao, S Wang, S Chen, XW Bian, H Lu, F Liu, S Chen. Integrating longitudinal clinical laboratory tests with targeted proteomic and transcriptomic analyses reveal the landscape of host responses in COVID-19. Cell Discov 2021; 7(1): 42
https://doi.org/10.1038/s41421-021-00274-1
pmid: 34103487
|
6 |
A Jin, B Yan, W Hua, D Feng, B Xu, L Liang, C Guo. Clinical characteristics of patients diagnosed with COVID-19 in Beijing. Biosaf Health 2020; 2(2): 104–111
https://doi.org/10.1016/j.bsheal.2020.05.003
pmid: 32835210
|
7 |
L Kok, D Masopust, TN Schumacher. The precursors of CD8+ tissue resident memory T cells: from lymphoid organs to infected tissues. Nat Rev Immunol 2021; [Epub ahead of print] doi: 10.1038/s41577-021-00590-3
https://doi.org/10.1038/s41577-021-00590-3
pmid: 34480118
|
8 |
KA Krautkramer, J Fan, F Bäckhed. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol 2021; 19(2): 77–94
https://doi.org/10.1038/s41579-020-0438-4
pmid: 32968241
|
9 |
Y Fan, O Pedersen. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 2021; 19(1): 55–71
https://doi.org/10.1038/s41579-020-0433-9
pmid: 32887946
|
10 |
K Martinez-Guryn, V Leone, EB Chang. Regional diversity of the gastrointestinal microbiome. Cell Host Microbe 2019; 26(3): 314–324
https://doi.org/10.1016/j.chom.2019.08.011
pmid: 31513770
|
11 |
G Falony, M Joossens, S Vieira-Silva, J Wang, Y Darzi, K Faust, A Kurilshikov, MJ Bonder, M Valles-Colomer, D Vandeputte, RY Tito, S Chaffron, L Rymenans, C Verspecht, L De Sutter, G Lima-Mendez, K D’hoe, K Jonckheere, D Homola, R Garcia, EF Tigchelaar, L Eeckhaudt, J Fu, L Henckaerts, A Zhernakova, C Wijmenga, J Raes. Population-level analysis of gut microbiome variation. Science 2016; 352(6285): 560–564
https://doi.org/10.1126/science.aad3503
pmid: 27126039
|
12 |
MC Abt, LC Osborne, LA Monticelli, TA Doering, T Alenghat, GF Sonnenberg, MA Paley, M Antenus, KL Williams, J Erikson, EJ Wherry, D Artis. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 2012; 37(1): 158–170
https://doi.org/10.1016/j.immuni.2012.04.011
pmid: 22705104
|
13 |
SC Ganal, SL Sanos, C Kallfass, K Oberle, C Johner, C Kirschning, S Lienenklaus, S Weiss, P Staeheli, P Aichele, A Diefenbach. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 2012; 37(1): 171–186
https://doi.org/10.1016/j.immuni.2012.05.020
pmid: 22749822
|
14 |
YK Yeoh, T Zuo, GC Lui, F Zhang, Q Liu, AY Li, AC Chung, CP Cheung, EY Tso, KS Fung, V Chan, L Ling, G Joynt, DS Hui, KM Chow, SSS Ng, TC Li, RW Ng, TC Yip, GL Wong, FK Chan, CK Wong, PK Chan, SC Ng. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021; 70(4): 698–706
https://doi.org/10.1136/gutjnl-2020-323020
pmid: 33431578
|
15 |
Y Chen, S Gu, Y Chen, H Lu, D Shi, J Guo, WR Wu, Y Yang, Y Li, KJ Xu, C Ding, R Luo, C Huang, L Yu, M Xu, P Yi, J Liu, JJ Tao, H Zhang, L Lv, B Wang, J Sheng, L Li. Six-month follow-up of gut microbiota richness in patients with COVID-19. Gut 2022; 71(1): 222–225
pmid: 33833065
|
16 |
T Zuo, F Zhang, GCY Lui, YK Yeoh, AYL Li, H Zhan, Y Wan, ACK Chung, CP Cheung, N Chen, CKC Lai, Z Chen, EYK Tso, KSC Fung, V Chan, L Ling, G Joynt, DSC Hui, FKL Chan, PKS Chan, SC Ng. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 2020; 159(3): 944–955.e8
https://doi.org/10.1053/j.gastro.2020.05.048
pmid: 32442562
|
17 |
J Cao, C Wang, Y Zhang, G Lei, K Xu, N Zhao, J Lu, F Meng, L Yu, J Yan, C Bai, S Zhang, N Zhang, Y Gong, Y Bi, Y Shi, Z Chen, L Dai, J Wang, P Yang. Integrated gut virome and bacteriome dynamics in COVID-19 patients. Gut Microbes 2021; 13(1): 1–21
https://doi.org/10.1080/19490976.2021.1887722
pmid: 33678150
|
18 |
AM Bolger, M Lohse, B Usadel. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30(15): 2114–2120
https://doi.org/10.1093/bioinformatics/btu170
pmid: 24695404
|
19 |
B Langmead, SL Salzberg. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9(4): 357–359
https://doi.org/10.1038/nmeth.1923
pmid: 22388286
|
20 |
DE Wood, J Lu, B Langmead. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20(1): 257
https://doi.org/10.1186/s13059-019-1891-0
pmid: 31779668
|
21 |
MD Robinson, DJ McCarthy, GK Smyth. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26(1): 139–140
https://doi.org/10.1093/bioinformatics/btp616
pmid: 19910308
|
22 |
M Hall, RG Beiko. 16S rRNA gene analysis with QIIME2. Methods Mol Biol 2018; 1849: 113–129
https://doi.org/10.1007/978-1-4939-8728-3_8
pmid: 30298251
|
23 |
N Segata, J Izard, L Waldron, D Gevers, L Miropolsky, WS Garrett, C Huttenhower. Metagenomic biomarker discovery and explanation. Genome Biol 2011; 12(6): R60
https://doi.org/10.1186/gb-2011-12-6-r60
pmid: 21702898
|
24 |
MI Love, W Huber, S Anders. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15(12): 550
https://doi.org/10.1186/s13059-014-0550-8
pmid: 25516281
|
25 |
F Beghini, LJ McIver, A Blanco-Míguez, L Dubois, F Asnicar, S Maharjan, A Mailyan, P Manghi, M Scholz, AM Thomas, M Valles-Colomer, G Weingart, Y Zhang, M Zolfo, C Huttenhower, EA Franzosa, N Segata. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. eLife 2021; 10: e65088
https://doi.org/10.7554/eLife.65088
pmid: 33944776
|
26 |
RC Newsome, J Gauthier, MC Hernandez, GE Abraham, TO Robinson, HB Williams, M Sloan, A Owings, H Laird, T Christian, Y Pride, KJ Wilson, M Hasan, A Parker, M Senitko, SC Glover, RZ Gharaibeh, C Jobin. The gut microbiome of COVID-19 recovered patients returns to uninfected status in a minority-dominated United States cohort. Gut Microbes 2021; 13(1): 1–15
https://doi.org/10.1080/19490976.2021.1926840
pmid: 34100340
|
27 |
S Gu, Y Chen, Z Wu, Y Chen, H Gao, L Lv, F Guo, X Zhang, R Luo, C Huang, H Lu, B Zheng, J Zhang, R Yan, H Zhang, H Jiang, Q Xu, J Guo, Y Gong, L Tang, L Li. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin Infect Dis 2020; 71(10): 2669–2678
https://doi.org/10.1093/cid/ciaa709
pmid: 32497191
|
28 |
W Tao, G Zhang, X Wang, M Guo, W Zeng, Z Xu, D Cao, A Pan, Y Wang, K Zhang, X Ma, Z Chen, T Jin, L Liu, J Weng, S Zhu. Analysis of the intestinal microbiota in COVID-19 patients and its correlation with the inflammatory factor IL-18. Med Microecol 2020; 5: 100023
https://doi.org/10.1016/j.medmic.2020.100023
pmid: 34173452
|
29 |
T Zuo, Q Liu, F Zhang, GC Lui, EY Tso, YK Yeoh, Z Chen, SS Boon, FK Chan, PK Chan, SC Ng. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut 2021; 70(2): 276–284
pmid: 32690600
|
30 |
Y Tan, F Liu, X Xu, Y Ling, W Huang, Z Zhu, M Guo, Y Lin, Z Fu, D Liang, T Zhang, J Fan, M Xu, H Lu, S Chen. Durability of neutralizing antibodies and T-cell response post SARS-CoV-2 infection. Front Med 2020; 14(6): 746–751
https://doi.org/10.1007/s11684-020-0822-5
pmid: 33017040
|
31 |
C Zhu, K Song, Z Shen, Y Quan, B Tan, W Luo, S Wu, K Tang, Z Yang, X Wang. Roseburia intestinalis inhibits interleukin17 excretion and promotes regulatory T cells differentiation in colitis. Mol Med Rep 2018; 17(6): 7567–7574
https://doi.org/10.3892/mmr.2018.8833
pmid: 29620246
|
32 |
M Schirmer, SP Smeekens, H Vlamakis, M Jaeger, M Oosting, EA Franzosa, R Ter Horst, T Jansen, L Jacobs, MJ Bonder, A Kurilshikov, J Fu, LAB Joosten, A Zhernakova, C Huttenhower, C Wijmenga, MG Netea, RJ Xavier. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 2016; 167(4): 1125–1136.e8
https://doi.org/10.1016/j.cell.2016.10.020
pmid: 27814509
|
33 |
CC Naidoo, GR Nyawo, I Sulaiman, BG Wu, CT Turner, K Bu, Z Palmer, Y Li, BWP Reeve, S Moodley, JG Jackson, J Limberis, AH Diacon, PD van Helden, JC Clemente, RM Warren, M Noursadeghi, LN Segal, G Theron. Anaerobe-enriched gut microbiota predicts pro-inflammatory responses in pulmonary tuberculosis. EBioMedicine 2021; 67: 103374
https://doi.org/10.1016/j.ebiom.2021.103374
pmid: 33975252
|
34 |
R Loomba, V Seguritan, W Li, T Long, N Klitgord, A Bhatt, PS Dulai, C Caussy, R Bettencourt, SK Highlander, MB Jones, CB Sirlin, B Schnabl, L Brinkac, N Schork, CH Chen, DA Brenner, W Biggs, S Yooseph, JC Venter, KE Nelson. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab 2017; 25(5): 1054–1062.e5
https://doi.org/10.1016/j.cmet.2017.04.001
pmid: 28467925
|
35 |
C Solé, S Guilly, K Da Silva, M Llopis, E Le-Chatelier, P Huelin, M Carol, R Moreira, N Fabrellas, G De Prada, L Napoleone, I Graupera, E Pose, A Juanola, N Borruel, M Berland, D Toapanta, F Casellas, F Guarner, J Doré, E Solà, SD Ehrlich, P Ginès. Alterations in gut microbiome in cirrhosis as assessed by quantitative metagenomics: relationship with acute-on-chronic liver failure and prognosis. Gastroenterology 2021; 160(1): 206–218.e13
https://doi.org/10.1053/j.gastro.2020.08.054
pmid: 32941879
|
36 |
Z Jie, H Xia, SL Zhong, Q Feng, S Li, S Liang, H Zhong, Z Liu, Y Gao, H Zhao, D Zhang, Z Su, Z Fang, Z Lan, J Li, L Xiao, J Li, R Li, X Li, F Li, H Ren, Y Huang, Y Peng, G Li, B Wen, B Dong, JY Chen, QS Geng, ZW Zhang, H Yang, J Wang, J Wang, X Zhang, L Madsen, S Brix, G Ning, X Xu, X Liu, Y Hou, H Jia, K He, K Kristiansen. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 2017; 8(1): 845
https://doi.org/10.1038/s41467-017-00900-1
pmid: 29018189
|
37 |
C Depommier, A Everard, C Druart, H Plovier, M Van Hul, S Vieira-Silva, G Falony, J Raes, D Maiter, NM Delzenne, M de Barsy, A Loumaye, MP Hermans, JP Thissen, WM de Vos, PD Cani. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 2019; 25(7): 1096–1103
https://doi.org/10.1038/s41591-019-0495-2
pmid: 31263284
|
38 |
M Rasmussen, D Johansson, SK Söbirk, M Mörgelin, O Shannon. Clinical isolates of Enterococcus faecalis aggregate human platelets. Microbes Infect 2010; 12(4): 295–301
https://doi.org/10.1016/j.micinf.2010.01.005
pmid: 20109578
|
39 |
R Ahmadrajabi, MS Dalfardi, A Farsinejad, F Saffari. Distribution of Ebp pili among clinical and fecal isolates of Enterococcus faecalis and evaluation for human platelet activation. APMIS 2018; 126(4): 314–319
https://doi.org/10.1111/apm.12813
pmid: 29372575
|
40 |
W Lee, S Lim, HH Son, KS Bae. Sonicated extract of Enterococcus faecalis induces irreversible cell cycle arrest in phytohemagglutinin-activated human lymphocytes. J Endod 2004; 30(4): 209–212
https://doi.org/10.1097/00004770-200404000-00006
pmid: 15085047
|
41 |
A Nakamura, S Kurihara, D Takahashi, W Ohashi, Y Nakamura, S Kimura, M Onuki, A Kume, Y Sasazawa, Y Furusawa, Y Obata, S Fukuda, S Saiki, M Matsumoto, K Hase. Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon. Nat Commun 2021; 12(1): 2105
https://doi.org/10.1038/s41467-021-22212-1
pmid: 33833232
|
42 |
E Proietti, S Rossini, U Grohmann, G Mondanelli. Polyamines and kynurenines at the intersection of immune modulation. Trends Immunol 2020; 41(11): 1037–1050
https://doi.org/10.1016/j.it.2020.09.007
pmid: 33055013
|
43 |
M Zhang, T Caragine, H Wang, PS Cohen, G Botchkina, K Soda, M Bianchi, P Ulrich, A Cerami, B Sherry, KJ Tracey. Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanism that restrains the immune response. J Exp Med 1997; 185(10): 1759–1768
https://doi.org/10.1084/jem.185.10.1759
pmid: 9151701
|
44 |
Q Wang, M Zhang, Y Ding, Q Wang, W Zhang, P Song, MH Zou. Activation of NAD(P)H oxidase by tryptophan-derived 3-hydroxykynurenine accelerates endothelial apoptosis and dysfunction in vivo. Circ Res 2014; 114(3): 480–492
https://doi.org/10.1161/CIRCRESAHA.114.302113
pmid: 24281189
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|