Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (3) : 322-338    https://doi.org/10.1007/s11684-021-0901-2
REVIEW
CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success?
Pooria Safarzadeh Kozani1, Pouya Safarzadeh Kozani2, Fatemeh Rahbarizadeh1,3()
1. Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115/111, Iran
2. Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, P.O. Box 44771/66595, Iran
3. Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, P.O. Box 14115/111, Iran
 Download: PDF(4555 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Immune-based therapies have experienced a pronounced breakthrough in the past decades as they acquired multiple US Food and Drug Administration (FDA) approvals for various indications. To date, six chimeric antigen receptor T cell (CAR-T) therapies have been permitted for the treatment of certain patients with relapsed/refractory hematologic malignancies. However, several clinical trials of solid tumor CAR-T therapies were prematurely terminated, or they reported life-threatening treatment-related damages to healthy tissues. The simultaneous expression of target antigens by healthy organs and tumor cells is partly responsible for such toxicities. Alongside targeting tumor-specific antigens, targeting the aberrantly glycosylated glycoforms of tumor-associated antigens can also minimize the off-tumor effects of CAR-T therapies. Tn, T, and sialyl-Tn antigens have been reported to be involved in tumor progression and metastasis, and their expression results from the dysregulation of a series of glycosyltransferases and the endoplasmic reticulum protein chaperone, Cosmc. Moreover, these glycoforms have been associated with various types of cancers, including prostate, breast, colon, gastric, and lung cancers. Here, we discuss how underglycosylated antigens emerge and then detail the latest advances in the development of CAR-T-based immunotherapies that target some of such antigens.

Keywords cancer immunotherapy      chimeric antigen receptor      solid tumors      tumor-associated antigen      glycosylation      O-glycans      adoptive cell therapy     
Corresponding Author(s): Fatemeh Rahbarizadeh   
Just Accepted Date: 15 April 2022   Online First Date: 10 June 2022    Issue Date: 18 July 2022
 Cite this article:   
Pooria Safarzadeh Kozani,Pouya Safarzadeh Kozani,Fatemeh Rahbarizadeh. CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success?[J]. Front. Med., 2022, 16(3): 322-338.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-021-0901-2
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I3/322
Fig.1  Anatomy of a conventional CAR construct and action mechanism of a CAR-T. (A) Different components used in the construction of a second-generation CAR molecule. (B) The mechanism by which CAR-Ts enforce cytolytic reactions against the target tumor cells. Upon target antigen encounter, the downstream signaling cascades of the costimulatory domain(s) and the activation domain are triggered and result in the CAR-T-mediated production and secretion of granzyme and perforin. The downstream signaling of CD3ζ, 4-1BB, and CD28 is dependent on ZAP70, NF-κB, and PI3K, respectively. CAR-T, chimeric antigen receptor T-cell; ICOS, inducible T-cell costimulator; KIR2DS2, killer cell immunoglobulin-like receptor 2DS2; NF-κB, nuclear factor-κB; PI3K, phosphoinositide 3-kinase; ZAP70, the ζ-associated protein of 70 kDa.
Fig.2  Structural differences between properly glycosylated and aberrantly glycosylated forms of an antigen. The cancer-associated glycoform of the antigen exhibits a substantially different structural conformation compared with the one expressed on the surface of the normal cell. As “form is function”, Tn, T, and sialyl-Tn antigens are expected to be functionally different from their normal counterparts. This altered 3D conformation might impinge on the stability and expression level of the antigen, as well as its turnover.
Fig.3  Underlying mechanism of the emergence of Tn, T, and/or sialyl-Tn antigens. In normal situations (left panel), the Cosmc complex helps the unfolded T-synthase fold and assemble properly by serving as an endoplasmic reticulum chaperone. Once properly folded, the active T-synthase dimer exits the endoplasmic reticulum and enters the Golgi where it plays a critical role in the O-glycosylation of glycoproteins. In some tumor cells (right panel), somatic mutations or epigenetic gene silencing, such as those induced by hypoxia, can lead to Cosmc deficiency, which results in the aggregation of unfolded T-synthase, its proteolytic cleavage and retrotranslocation into the cytosol, and its polyubiquitination and consequent degradation. The loss of functional T-synthase, which might also be caused by some undeciphered mechanisms as detailed before, gives rise to the aberrant O-glycosylation of proteins and the surface expression of Tn, T, and sialyl-Tn antigens. In the case of sialyl-Tn antigen, a Neu5Ac may also be added to Tn antigen by ST6GalNAc-I, which results in the formation of sialyl-Tn antigen [36]. The aberrant expression of sialyl-Tn antigen is also speculated to be a result of the suppressive effects of ST6GalNAc-I on the functionality of T-synthase because of the high-level expression of ST6GalNAc-I [36]. ER, endoplasmic reticulum.
Fig.4  Underlying mechanism of how incorporating a targeting domain that only binds the tumor-specific glycoform of an antigen into the CAR construct considerably diminishes the “on-target, off-tumor” toxicities of CAR-Ts. The CAR represented here only recognizes the Tn, T, or sialyl-Tn glycoform of the target antigen, which is restricted to tumor cells. Such CAR-Ts are unable to enforce tumoricidal reactions toward healthy cells expressing the properly glycosylated form of the antigen because they cannot engage with them. CAR-T, chimeric antigen receptor T cell.
Monoclonal antibody name Target (notes) Involved indications Reference(s)
6C5 Tn glycoform of dysadherin Various solid tumors [61]
5G2 CEACAM5 and CEACAM6 Various solid tumors [67]
PcMab-60 Podocalyxin (tumor-specific form) Epithelial cancers and astrocytic gliomas [74]
237Ab Tn glycoform of podoplanin Astrocytic tumors, malignant mesothelioma, and germ cell tumors [113,114]
LpMab-2 Podoplanin (with aberrant O-glycosylation or sialylation) [81]
HMFG2 MUC1 (glycosylation dependent) HNSCC, pancreatic cancer, breast cancer, and various other [87,92]
SM3 MUC1 (glycosylation dependent) adenocarcinomas [115]
pSM3 Sialyl-T of MUC1 [88]
TAB004 The tumor form of MUC1 (tMUC1) [89,99]
PankoMAb Tn glycoform of MUC1 [116]
2D9 Tn glycoform of MUC1 [117]
MY.1E12 Sialylated MUC1 [118,119]
VU-2-G7 Tn glycoform of MUC1 [120]
1B9 T glycoform of MUC1 [117]
5E5 Tn glycoform of MUC1 [121]
PMH1 Tn glycoform of MUC2 Mucinous adenocarcinoma [108]
6E3 Tn glycoform of MUC4 Epithelial carcinomas [109]
UN1 Tn glycoform of CD43 Breast cancer, colon cancer, and T-cell leukemia [110,111]
FDC-6 Tn glycoform of fibronectin Colon and liver cancers [112]
B72.3 Sialyl-Tn epitope (expressed on glycoproteins and mucins) Ovarian cancer, lung adenocarcinoma, and colorectal [44,101]
CC49 Sialyl-Tn epitope (expressed on glycoproteins and mucins) cancer [122]
Tab.1  Summary of various CasMabs specific for tumor-specific antigen glycoforms
1 P Safarzadeh Kozani, P Safarzadeh Kozani, F Rahbarizadeh. Novel antigens of CAR T cell therapy: new roads; old destination. Transl Oncol 2021; 14( 7): 101079
https://doi.org/10.1016/j.tranon.2021.101079
2 M Hashem Boroojerdi, F Rahbarizadeh, P Safarzadeh Kozani, E Kamali, P Safarzadeh Kozani. Strategies for having a more effective and less toxic CAR T-cell therapy for acute lymphoblastic leukemia. Med Oncol 2020; 37( 11): 100
https://doi.org/10.1007/s12032-020-01416-3
3 A Mullard. FDA approves first CAR T therapy. Nat Rev Drug Discov 2017; 16( 10): 669
4 author listed No. FDA approves second CAR T-cell therapy. Cancer Discov 2018; 8( 1): 5– 6
https://doi.org/10.1158/2159-8290.CD-NB2017-155
5 R Voelker. CAR-T therapy is approved for mantle cell lymphoma. JAMA 2020; 324( 9): 832
https://doi.org/10.1001/jama.2020.15456
6 A Mullard. FDA approves first BCMA-targeted CAR-T cell therapy. Nat Rev Drug Discov 2021; 20( 5): 332
https://doi.org/10.1038/d41573-021-00063-1
7 A Mullard. FDA approves fourth CAR-T cell therapy. Nat Rev Drug Discov 2021; 20( 3): 166
8 P Safarzadeh Kozani, P Safarzadeh Kozani, F Rahbarizadeh, S Khoshtinat Nikkhoi. Strategies for dodging the obstacles in CAR T cell therapy. Front Oncol 2021; 11( 924): 627549
https://doi.org/10.3389/fonc.2021.627549
9 NN Shah, TJ Fry. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol 2019; 16( 6): 372– 385
https://doi.org/10.1038/s41571-019-0184-6
10 Kozani P Safarzadeh, Kozani P Safarzadeh, RS O’Connor. In like a lamb; out like a lion: marching CAR-T cells towards enhanced efficacy in B-ALL. Mol Cancer Ther 2021; 20( 7): 1223– 1233
https://doi.org/10.1158/1535-7163.MCT-20-1089
11 CH June, RS O’Connor, OU Kawalekar, S Ghassemi, MC Milone. CAR T cell immunotherapy for human cancer. Science 2018; 359( 6382): 1361– 1365
https://doi.org/10.1126/science.aar6711
12 E Landoni, G Fucá, J Wang, VR Chirasani, Z Yao, E Dukhovlinova, S Ferrone, B Savoldo, LK Hong, P Shou, S Musio, F Padelli, G Finocchiaro, M Droste, B Kuhlman, A Shamshiev, S Pellegatta, NV Dokholyan, G Dotti. Modifications to the framework regions eliminate chimeric antigen receptor tonic signaling. Cancer Immunol Res 2021; 9( 4): 441– 453
https://doi.org/10.1158/2326-6066.CIR-20-0451
13 AH Long, WM Haso, JF Shern, KM Wanhainen, M Murgai, M Ingaramo, JP Smith, AJ Walker, ME Kohler, VR Venkateshwara, RN Kaplan, GH Patterson, TJ Fry, RJ Orentas, CL Mackall. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015; 21( 6): 581– 590
https://doi.org/10.1038/nm.3838
14 A Ajina, J Maher. Strategies to address chimeric antigen receptor tonic signaling. Mol Cancer Ther 2018; 17( 9): 1795– 1815
https://doi.org/10.1158/1535-7163.MCT-17-1097
15 K Hege. Context matters in CAR T cell tonic signaling. Nat Med 2021; 27( 5): 763– 764
https://doi.org/10.1038/s41591-021-01340-7
16 JX Zhao, L Yang, ZN Gu, HQ Chen, FW Tian, YQ Chen, H Zhang, W Chen. Stabilization of the single-chain fragment variable by an interdomain disulfide bond and its effect on antibody affinity. Int J Mol Sci 2010; 12( 1): 1– 11
https://doi.org/10.3390/ijms12010001
17 F Rahbarizadeh, D Ahmadvand, SM Moghimi. CAR T-cell bioengineering: single variable domain of heavy chain antibody targeted CARs. Adv Drug Deliv Rev 2019; 141 : 41– 46
https://doi.org/10.1016/j.addr.2019.04.006
18 Z Sharifzadeh, F Rahbarizadeh, MA Shokrgozar, D Ahmadvand, F Mahboudi, FR Jamnani, SM Moghimi. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents. Cancer Lett 2013; 334( 2): 237– 244
https://doi.org/10.1016/j.canlet.2012.08.010
19 FR Jamnani, F Rahbarizadeh, MA Shokrgozar, F Mahboudi, D Ahmadvand, Z Sharifzadeh, L Parhamifar, SM Moghimi. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors: towards tumor-directed oligoclonal T cell therapy. Biochim Biophys Acta 2014; 1840( 1): 378– 386
https://doi.org/10.1016/j.bbagen.2013.09.029
20 S Khaleghi, F Rahbarizadeh, D Ahmadvand, MJ Rasaee, P Pognonec. A caspase 8-based suicide switch induces apoptosis in nanobody-directed chimeric receptor expressing T cells. Int J Hematol 2012; 95( 4): 434– 444
https://doi.org/10.1007/s12185-012-1037-6
21 A Rajabzadeh, F Rahbarizadeh, D Ahmadvand, M Kabir Salmani, AA Hamidieh. A VHH-based anti-MUC1 chimeric antigen receptor for specific retargeting of human primary T cells to MUC1-positive cancer cells. Cell J 2021; 22( 4): 502– 513
22 FJ Iri-Sofla, F Rahbarizadeh, D Ahmadvand, MJ Rasaee. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by φC31 integrase. Exp Cell Res 2011; 317( 18): 2630– 2641
https://doi.org/10.1016/j.yexcr.2011.08.015
23 SH Bakhtiari, F Rahbarizadeh, S Hasannia, D Ahmadvand, FJ Iri-Sofla, MJ Rasaee. Anti-MUC1 nanobody can redirect T-body cytotoxic effector function. Hybridoma (Larchmt) 2009; 28( 2): 85– 92
https://doi.org/10.1089/hyb.2008.0079
24 RC Larson, MV Maus. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer 2021; 21( 3): 145– 161
https://doi.org/10.1038/s41568-020-00323-z
25 S Rafiq, CS Hackett, RJ Brentjens. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 2020; 17( 3): 147– 167
https://doi.org/10.1038/s41571-019-0297-y
26 JB Huppa, M Axmann, MA Mörtelmaier, BF Lillemeier, EW Newell, M Brameshuber, LO Klein, GJ Schütz, MM Davis. TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 2010; 463( 7283): 963– 967
https://doi.org/10.1038/nature08746
27 J Huang, M Brameshuber, X Zeng, J Xie, QJ Li, YH Chien, S Valitutti, MM Davis. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4+ T cells. Immunity 2013; 39( 5): 846– 857
https://doi.org/10.1016/j.immuni.2013.08.036
28 M Huse, LO Klein, AT Girvin, JM Faraj, QJ Li, MS Kuhns, MM Davis. Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity 2007; 27( 1): 76– 88
https://doi.org/10.1016/j.immuni.2007.05.017
29 S Ramakrishna, SL Highfill, Z Walsh, SM Nguyen, H Lei, JF Shern, H Qin, IL Kraft, M Stetler-Stevenson, CM Yuan, JD Hwang, Y Feng, Z Zhu, D Dimitrov, NN Shah, TJ Fry. Modulation of target antigen density improves CAR T-cell functionality and persistence. Clin Cancer Res 2019; 25( 17): 5329– 5341
https://doi.org/10.1158/1078-0432.CCR-18-3784
30 RG Majzner, SP Rietberg, E Sotillo, R Dong, VT Vachharajani, L Labanieh, JH Myklebust, M Kadapakkam, EW Weber, AM Tousley, RM Richards, S Heitzeneder, SM Nguyen, V Wiebking, J Theruvath, RC Lynn, P Xu, AR Dunn, RD Vale, CL Mackall. Tuning the antigen density requirement for CAR T-cell activity. Cancer Discov 2020; 10( 5): 702– 723
https://doi.org/10.1158/2159-8290.CD-19-0945
31 E Donnadieu, L Dupré, LG Pinho, V Cotta-de-Almeida. Surmounting the obstacles that impede effective CAR T cell trafficking to solid tumors. J Leukoc Biol 2020; 108( 4): 1067– 1079
https://doi.org/10.1002/JLB.1MR0520-746R
32 U Karsten , S Goletz . What controls the expression of the core-1 (Thomsen-Friedenreich) glycotope on tumor cells? Biochemistry (Mosc) 2015; 80(7): 801–807
https://doi.org/10.1134/S0006297915070019 pmid: 26541995
33 VV Glinsky, GV Glinsky, K Rittenhouse-Olson, ME Huflejt, OV Glinskii, SL Deutscher, TP Quinn. The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res 2001; 61( 12): 4851– 4857
34 CF Bian, Y Zhang, H Sun, DF Li, DC Wang. Structural basis for distinct binding properties of the human galectins to Thomsen-Friedenreich antigen. PLoS One 2011; 6( 9): e25007
https://doi.org/10.1371/journal.pone.0025007
35 HD Chen, X Zhou, G Yu, YL Zhao, Y Ren, YD Zhou, Q Li, XL Zhang. Knockdown of core 1 beta 1, 3-galactosyltransferase prolongs skin allograft survival with induction of galectin-1 secretion and suppression of CD8+ T cells: T synthase knockdown effects on galectin-1 and CD8+ T cells. J Clin Immunol 2012; 32( 4): 820– 836
https://doi.org/10.1007/s10875-012-9653-8
36 C Fu, H Zhao, Y Wang, H Cai, Y Xiao, Y Zeng, H Chen. Tumor-associated antigens: Tn antigen, sTn antigen, and T antigen. HLA 2016; 88( 6): 275– 286
https://doi.org/10.1111/tan.12900
37 S Ogata, PJ Maimonis, SH Itzkowitz. Mucins bearing the cancer-associated sialosyl-Tn antigen mediate inhibition of natural killer cell cytotoxicity. Cancer Res 1992; 52( 17): 4741– 4746
38 Y Takenaka, T Fukumori, A Raz. Galectin-3 and metastasis. Glycoconj J 2002; 19( 7-9): 543– 549
https://doi.org/10.1023/B:GLYC.0000014084.01324.15
39 R Beatson, G Maurstad, G Picco, A Arulappu, J Coleman, HH Wandell, H Clausen, U Mandel, J Taylor-Papadimitriou, M Sletmoen, JM Burchell. The breast cancer-associated glycoforms of MUC1, MUC1-Tn and sialyl-Tn, are expressed in COSMC wild-type cells and bind the C-Type lectin MGL. PLoS One 2015; 10( 5): e0125994
https://doi.org/10.1371/journal.pone.0125994
40 S Pinho, NT Marcos, B Ferreira, AS Carvalho, MJ Oliveira, F Santos-Silva, A Harduin-Lepers, CA Reis. Biological significance of cancer-associated sialyl-Tn antigen: modulation of malignant phenotype in gastric carcinoma cells. Cancer Lett 2007; 249( 2): 157– 170
https://doi.org/10.1016/j.canlet.2006.08.010
41 Y van Kooyk, JM Ilarregui, SJ van Vliet. Novel insights into the immunomodulatory role of the dendritic cell and macrophage-expressed C-type lectin MGL. Immunobiology 2015; 220( 2): 185– 192
https://doi.org/10.1016/j.imbio.2014.10.002
42 Vliet SJ van, IM Vuist, K Lenos, B Tefsen, H Kalay, JJ García-Vallejo, Kooyk Y van. Human T cell activation results in extracellular signal-regulated kinase (ERK)-calcineurin-dependent exposure of Tn antigen on the cell surface and binding of the macrophage galactose-type lectin (MGL). J Biol Chem 2013; 288( 38): 27519– 27532
https://doi.org/10.1074/jbc.M113.471045
43 GF Springer, CR Taylor, DR Howard, H Tegtmeyer, PR Desai, SM Murthy, B Felder, EF Scanlon. Tn, a carcinoma-associated antigen, reacts with anti-Tn of normal human sera. Cancer 1985; 55( 3): 561– 569
https://doi.org/10.1002/1097-0142(19850201)55:3<561::AID-CNCR2820550315>3.0.CO;2-1
44 T Kjeldsen, H Clausen, S Hirohashi, T Ogawa, H Iijima, S Hakomori. Preparation and characterization of monoclonal antibodies directed to the tumor-associated O-linked sialosyl-2−6 alpha-N-acetylgalactosaminyl (sialosyl-Tn) epitope. Cancer Res 1988; 48( 8): 2214– 2220
45 S Itzkowitz, T Kjeldsen, A Friera, S Hakomori, US Yang, YS Kim. Expression of Tn, sialosyl Tn, and T antigens in human pancreas. Gastroenterology 1991; 100( 6): 1691– 1700
https://doi.org/10.1016/0016-5085(91)90671-7
46 SH Itzkowitz, M Yuan, CK Montgomery, T Kjeldsen, HK Takahashi, WL Bigbee, YS Kim. Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Res 1989; 49( 1): 197– 204
47 G Konska, M Guerry, F Caldefie-Chezet, M De Latour, J Guillot. Study of the expression of Tn antigen in different types of human breast cancer cells using VVA-B4 lectin. Oncol Rep 2006; 15( 2): 305– 310
https://doi.org/10.3892/or.15.2.305
48 H Kobayashi, T Terao, Y Kawashima. Clinical evaluation of circulating serum sialyl Tn antigen levels in patients with epithelial ovarian cancer. J Clin Oncol 1991; 9( 6): 983– 987
https://doi.org/10.1200/JCO.1991.9.6.983
49 K Akita, S Yoshida, Y Ikehara, S Shirakawa, M Toda, M Inoue, J Kitawaki, H Nakanishi, H Narimatsu, H Nakada. Different levels of sialyl-Tn antigen expressed on MUC16 in patients with endometriosis and ovarian cancer. Int J Gynecol Cancer 2012; 22( 4): 531– 538
https://doi.org/10.1097/IGC.0b013e3182473292
50 T Ju, RP Aryal, MR Kudelka, Y Wang, RD Cummings. The Cosmc connection to the Tn antigen in cancer. Cancer Biomark 2014; 14( 1): 63– 81
https://doi.org/10.3233/CBM-130375
51 E Lira-Navarrete, Las Rivas M de, I Compañón, MC Pallarés, Y Kong, J Iglesias-Fernández, GJ Bernardes, JM Peregrina, C Rovira, P Bernadó, P Bruscolini, H Clausen, A Lostao, F Corzana, R Hurtado-Guerrero. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation. Nat Commun 2015; 6( 1): 6937
https://doi.org/10.1038/ncomms7937
52 F Tamura, Y Sato, M Hirakawa, M Yoshida, M Ono, T Osuga, Y Okagawa, N Uemura, Y Arihara, K Murase, Y Kawano, S Iyama, K Takada, T Hayashi, T Sato, K Miyanishi, M Kobune, R Takimoto, J Kato. RNAi-mediated gene silencing of ST6GalNAc I suppresses the metastatic potential in gastric cancer cells. Gastric Cancer 2016; 19( 1): 85– 97
https://doi.org/10.1007/s10120-014-0454-z
53 T Ju, GS Lanneau, T Gautam, Y Wang, B Xia, SR Stowell, MT Willard, W Wang, JY Xia, RE Zuna, Z Laszik, DM Benbrook, MH Hanigan, RD Cummings. Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res 2008; 68( 6): 1636– 1646
https://doi.org/10.1158/0008-5472.CAN-07-2345
54 K Yamada, N Kobayashi, T Ikeda, Y Suzuki, T Tsuge, S Horikoshi, SN Emancipator, Y Tomino. Down-regulation of core 1 β1,3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1. Nephrol Dial Transplant 2010; 25( 12): 3890– 3897
https://doi.org/10.1093/ndt/gfq325
55 M Thurnher, S Rusconi, EG Berger. Persistent repression of a functional allele can be responsible for galactosyltransferase deficiency in Tn syndrome. J Clin Invest 1993; 91( 5): 2103– 2110
https://doi.org/10.1172/JCI116434
56 DJ Gill, J Chia, J Senewiratne, F Bard. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. J Cell Biol 2010; 189( 5): 843– 858
https://doi.org/10.1083/jcb.201003055
57 A Rivinoja, A Hassinen, N Kokkonen, A Kauppila, S Kellokumpu. Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J Cell Physiol 2009; 220( 1): 144– 154
https://doi.org/10.1002/jcp.21744
58 S Julien, E Adriaenssens, K Ottenberg, A Furlan, G Courtand, AS Vercoutter-Edouart, FG Hanisch, P Delannoy, X Le Bourhis. ST6GalNAc I expression in MDA-MB-231 breast cancer cells greatly modifies their O-glycosylation pattern and enhances their tumourigenicity. Glycobiology 2006; 16( 1): 54– 64
https://doi.org/10.1093/glycob/cwj033
59 R Kabuß, A Ashikov, S Oelmann, R Gerardy-Schahn, H Bakker. Endoplasmic reticulum retention of the large splice variant of the UDP-galactose transporter is caused by a dilysine motif. Glycobiology 2005; 15( 10): 905– 911
https://doi.org/10.1093/glycob/cwi085
60 A Hassinen, A Rivinoja, A Kauppila, S Kellokumpu. Golgi N-glycosyltransferases form both homo- and heterodimeric enzyme complexes in live cells. J Biol Chem 2010; 285( 23): 17771– 17777
https://doi.org/10.1074/jbc.M110.103184
61 C Steentoft, M Fuhrmann, F Battisti, J Van Coillie, TD Madsen, D Campos, A Halim, SY Vakhrushev, HJ Joshi, H Schreiber, U Mandel, Y Narimatsu. A strategy for generating cancer-specific monoclonal antibodies to aberrant O-glycoproteins: identification of a novel dysadherin-Tn antibody. Glycobiology 2019; 29( 4): 307– 319
https://doi.org/10.1093/glycob/cwz004
62 Y Ino, M Gotoh, M Sakamoto, K Tsukagoshi, S Hirohashi. Dysadherin, a cancer-associated cell membrane glycoprotein, down-regulates E-cadherin and promotes metastasis. Proc Natl Acad Sci USA 2002; 99( 1): 365– 370
https://doi.org/10.1073/pnas.012425299
63 X Huang, B Wang, D Yang, X Shi, J Hong, S Wang, X Dai, X Zhou, YJ Geng. Reduced expression of FXYD domain containing ion transport regulator 5 in association with hypertension. Int J Mol Med 2012; 29( 2): 231– 238
64 FC Thistlethwaite, DE Gilham, RD Guest, DG Rothwell, M Pillai, DJ Burt, AJ Byatte, N Kirillova, JW Valle, SK Sharma, KA Chester, NB Westwood, SER Halford, S Nabarro, S Wan, E Austin, RE Hawkins. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol Immunother 2017; 66( 11): 1425– 1436
https://doi.org/10.1007/s00262-017-2034-7
65 C Zheng, J Feng, D Lu, P Wang, S Xing, JL Coll, D Yang, X Yan. A novel anti-CEACAM5 monoclonal antibody, CC4, suppresses colorectal tumor growth and enhances NK cells-mediated tumor immunity. PLoS One 2011; 6( 6): e21146
https://doi.org/10.1371/journal.pone.0021146
66 C Ordoñez, RA Screaton, C Ilantzis, CP Stanners. Human carcinoembryonic antigen functions as a general inhibitor of anoikis. Cancer Res 2000; 60( 13): 3419– 3424
67 Y Sato, H Tateno, J Adachi, H Okuyama, H Endo, T Tomonaga, M Inoue. Generation of a monoclonal antibody recognizing the CEACAM glycan structure and inhibiting adhesion using cancer tissue-originated spheroid as an antigen. Sci Rep 2016; 6( 1): 24823
https://doi.org/10.1038/srep24823
68 Y Maezawa D Cina SE Quaggin. Glomerular cell biology. In: Alpern RJ, Moe OW, Caplan M. Seldin and Giebisch’s The Kidney. 5th ed. Cambridge, USA: Academic Press, 2013. 721– 755
69 CW Lin, MS Sun, HC Wu. Podocalyxin-like 1 is associated with tumor aggressiveness and metastatic gene expression in human oral squamous cell carcinoma. Int J Oncol 2014; 45( 2): 710– 718
https://doi.org/10.3892/ijo.2014.2427
70 N Hayatsu, MK Kaneko, K Mishima, R Nishikawa, M Matsutani, JE Price, Y Kato. Podocalyxin expression in malignant astrocytic tumors. Biochem Biophys Res Commun 2008; 374( 2): 394– 398
https://doi.org/10.1016/j.bbrc.2008.07.049
71 A Larsson, ME Johansson, S Wangefjord, A Gaber, B Nodin, P Kucharzewska, C Welinder, M Belting, J Eberhard, A Johnsson, M Uhlén, K Jirström. Overexpression of podocalyxin-like protein is an independent factor of poor prognosis in colorectal cancer. Br J Cancer 2011; 105( 5): 666– 672
https://doi.org/10.1038/bjc.2011.295
72 TN Flores-Téllez, TV Lopez, Garzón VR Vásquez, S Villa-Treviño. Co-expression of Ezrin-CLIC5-podocalyxin is associated with migration and invasiveness in hepatocellular carcinoma. PLoS One 2015; 10( 7): e0131605
https://doi.org/10.1371/journal.pone.0131605
73 KA Snyder, MR Hughes, B Hedberg, J Brandon, DC Hernaez, P Bergqvist, F Cruz, K Po, ML Graves, ME Turvey, JS Nielsen, JA Wilkins, SR McColl, JS Babcook, CD Roskelley, KM McNagny. Podocalyxin enhances breast tumor growth and metastasis and is a target for monoclonal antibody therapy. Breast Cancer Res 2015; 17( 1): 46
https://doi.org/10.1186/s13058-015-0562-7
74 MK Kaneko, T Ohishi, M Kawada, Y Kato. A cancer-specific anti-podocalyxin monoclonal antibody (60-mG2a-f) exerts antitumor effects in mouse xenograft models of pancreatic carcinoma. Biochem Biophys Rep 2020; 24 : 100826
https://doi.org/10.1016/j.bbrep.2020.100826
75 S Yamada, S Itai, MK Kaneko, Y Kato. Anti-podocalyxin monoclonal antibody 47-mG2a detects lung cancers by immunohistochemistry. Monoclon Antib Immunodiagn Immunother 2018; 37( 2): 91– 94
https://doi.org/10.1089/mab.2018.0002
76 V Schacht, SS Dadras, LA Johnson, DG Jackson, YK Hong, M Detmar. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 2005; 166( 3): 913– 921
https://doi.org/10.1016/S0002-9440(10)62311-5
77 S Shiina, M Ohno, F Ohka, S Kuramitsu, A Yamamichi, A Kato, K Motomura, K Tanahashi, T Yamamoto, R Watanabe, I Ito, T Senga, M Hamaguchi, T Wakabayashi, MK Kaneko, Y Kato, V Chandramohan, DD Bigner, A Natsume. CAR T cells targeting podoplanin reduce orthotopic glioblastomas in mouse brains. Cancer Immunol Res 2016; 4( 3): 259– 268
https://doi.org/10.1158/2326-6066.CIR-15-0060
78 K Mishima, Y Kato, MK Kaneko, R Nishikawa, T Hirose, M Matsutani. Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression. Acta Neuropathol 2006; 111( 5): 483– 488
https://doi.org/10.1007/s00401-006-0063-y
79 S Abe, MK Kaneko, Y Tsuchihashi, T Izumi, S Ogasawara, N Okada, C Sato, M Tobiume, K Otsuka, L Miyamoto, K Tsuchiya, K Kawazoe, Y Kato, Y Nishioka. Antitumor effect of novel anti-podoplanin antibody NZ-12 against malignant pleural mesothelioma in an orthotopic xenograft model. Cancer Sci 2016; 107( 9): 1198– 1205
https://doi.org/10.1111/cas.12985
80 Y He, K Schreiber, SP Wolf, F Wen, C Steentoft, J Zerweck, M Steiner, P Sharma, HM Shepard, A Posey, CH June, U Mandel, H Clausen, M Leisegang, SC Meredith, DM Kranz, H Schreiber. Multiple cancer-specific antigens are targeted by a chimeric antigen receptor on a single cancer cell. JCI Insight 2019; 4( 23): e135306
https://doi.org/10.1172/jci.insight.135306
81 Y Kato, MK Kaneko. A cancer-specific monoclonal antibody recognizes the aberrantly glycosylated podoplanin. Sci Rep 2014; 4 : 5924
https://doi.org/10.1038/srep05924
82 S Nath, P Mukherjee. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 2014; 20( 6): 332– 342
https://doi.org/10.1016/j.molmed.2014.02.007
83 Z Mei, K Zhang, AK Lam, J Huang, F Qiu, B Qiao, Y Zhang. MUC1 as a target for CAR-T therapy in head and neck squamous cell carinoma. Cancer Med 2020; 9( 2): 640– 652
https://doi.org/10.1002/cam4.2733
84 R Zhou, M Yazdanifar, LD Roy, LM Whilding, A Gavrill, J Maher, P Mukherjee. CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth. Front Immunol 2019; 10 : 1149
https://doi.org/10.3389/fimmu.2019.01149
85 F Rahbarizadeh, MJ Rasaee, M Forouzandeh Moghadam, AA Allameh, E Sadroddiny. Production of novel recombinant single-domain antibodies against tandem repeat region of MUC1 mucin. Hybrid Hybridomics 2004; 23( 3): 151– 159
https://doi.org/10.1089/1536859041224334
86 F Rahbarizadeh, MJ Rasaee, M Forouzandeh, A Allameh, R Sarrami, H Nasiry, M Sadeghizadeh. The production and characterization of novel heavy-chain antibodies against the tandem repeat region of MUC1 mucin. Immunol Invest 2005; 34( 4): 431– 452
https://doi.org/10.1080/08820130500265356
87 S Wilkie, G Picco, J Foster, DM Davies, S Julien, L Cooper, S Arif, SJ Mather, J Taylor-Papadimitriou, JM Burchell, J Maher. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol 2008; 180( 7): 4901– 4909
https://doi.org/10.4049/jimmunol.180.7.4901
88 F You, L Jiang, B Zhang, Q Lu, Q Zhou, X Liao, H Wu, K Du, Y Zhu, H Meng, Z Gong, Y Zong, L Huang, M Lu, J Tang, Y Li, X Zhai, X Wang, S Ye, D Chen, L Yuan, L Qi, L Yang. Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified anti-MUC1 chimeric antigen receptor transduced T cells. Sci China Life Sci 2016; 59( 4): 386– 397
https://doi.org/10.1007/s11427-016-5024-7
89 R Zhou, M Yazdanifar, LD Roy, LM Whilding, A Gavrill, J Maher, P Mukherjee. Corrigendum: CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth. Front Immunol 2020; 11 : 628776
https://doi.org/10.3389/fimmu.2020.628776
90 AD Jr Posey, RD Schwab, AC Boesteanu, C Steentoft, U Mandel, B Engels, JD Stone, TD Madsen, K Schreiber, KM Haines, AP Cogdill, TJ Chen, D Song, J Scholler, DM Kranz, MD Feldman, R Young, B Keith, H Schreiber, H Clausen, LA Johnson, CH June. Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 2016; 44( 6): 1444– 1454
https://doi.org/10.1016/j.immuni.2016.05.014
91 J Maher, S Wilkie, DM Davies, S Arif, G Picco, S Julien, J Foster, J Burchell, J Taylor-Papadimitriou. Targeting of tumor-associated glycoforms of MUC1 with CAR T cells. Immunity 2016; 45( 5): 945– 946
https://doi.org/10.1016/j.immuni.2016.10.014
92 N Berry, DB Jones, J Smallwood, I Taylor, N Kirkham, J Taylor-Papadimitriou. The prognostic value of the monoclonal antibodies HMFG1 and HMFG2 in breast cancer. Br J Cancer 1985; 51( 2): 179– 186
https://doi.org/10.1038/bjc.1985.27
93 A Athanassiou, D Pectasides, K Pateniotis, L Tzimis, P Natsis, A Lafi, P Arapantoni, P Koutsiouba, J Taylor-Papadimitriou, A Epenetos. Immunoscintigraphy with 131I-labelled HMFG2 and HMFG2 F(ab′)2 in the pre-operative detection of clinical and subclinical lymph node metastases in breast cancer patients. Int J Cancer 1988; 41( S3): 89– 95
https://doi.org/10.1002/ijc.2910410818
94 A Bamias, MJ Bowles, T Krausz, G Williams, AA Epenetos. Intravesical administration of indium-111-labelled HMFG2 monoclonal antibody in superficial bladder carcinomas. Int J Cancer 1993; 54( 6): 899– 903
https://doi.org/10.1002/ijc.2910540604
95 M Bose P Mukherjee. Abstract 2052: A novel antibody blocks anti-apoptotic activity of MUC1 in pancreatic cancer cell lines. Cancer Res 2019; 79(13 Supplement): 2052
96 JM Curry, KJ Thompson, SG Rao, DM Besmer, AM Murphy, VZ Grdzelishvili, WA Ahrens, IH McKillop, D Sindram, DA Iannitti, JB Martinie, P Mukherjee. The use of a novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer. J Surg Oncol 2013; 107( 7): 713– 722
https://doi.org/10.1002/jso.23316
97 ST Wu, CD Williams, PA Grover, LJ Moore, P Mukherjee. Early detection of pancreatic cancer in mouse models using a novel antibody, TAB004. PLoS One 2018; 13( 2): e0193260
https://doi.org/10.1371/journal.pone.0193260
98 LJ Moore, LD Roy, R Zhou, P Grover, ST Wu, JM Curry, LM Dillon, PM Puri, M Yazdanifar, R Puri, P Mukherjee, D Dréau. Antibody-guided in vivo imaging for early detection of mammary gland tumors. Transl Oncol 2016; 9( 4): 295– 305
https://doi.org/10.1016/j.tranon.2016.05.001
99 LD Roy, LM Dillon, R Zhou, LJ Moore, C Livasy, JM El-Khoury, R Puri, P Mukherjee. A tumor specific antibody to aid breast cancer screening in women with dense breast tissue. Genes Cancer 2017; 8( 3-4): 536– 549
https://doi.org/10.18632/genesandcancer.134
100 K Lavrsen, CB Madsen, MG Rasch, A Woetmann, N Ødum, U Mandel, H Clausen, AE Pedersen, HH Wandall. Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity. Glycoconj J 2013; 30( 3): 227– 236
https://doi.org/10.1007/s10719-012-9437-7
101 A Hombach, C Heuser, R Sircar, T Tillmann, V Diehl, W Kruis, C Pohl, H Abken. T cell targeting of TAG72+ tumor cells by a chimeric receptor with antibody-like specificity for a carbohydrate epitope. Gastroenterology 1997; 113( 4): 1163– 1170
https://doi.org/10.1053/gast.1997.v113.pm9322511
102 Y Qi, T Moyana, R Bresalier, J Xiang. Antibody-targeted lymphokine-activated killer cells inhibit liver micrometastases in severe combined immunodeficient mice. Gastroenterology 1995; 109( 6): 1950– 1957
https://doi.org/10.1016/0016-5085(95)90763-7
103 KS Metcalf, PJ Selby, LK Trejdosiewicz, J Southgate. Culture of ascitic ovarian cancer cells as a clinically-relevant ex vivo model for the assessment of biological therapies. Eur J Gynaecol Oncol 1998; 19( 2): 113– 119
104 E Myriokefalitaki, G Vorgias, G Vlahos, A Rodolakis. Prognostic value of preoperative Ca125 and Tag72 serum levels and their correlation to disease relapse and survival in endometrial cancer. Arch Gynecol Obstet 2015; 292( 3): 647– 654
https://doi.org/10.1007/s00404-015-3675-4
105 A Hombach, R Sircar, C Heuser, T Tillmann, V Diehl, W Kruis, C Pohl, H Abken. Chimeric anti-TAG72 receptors with immunoglobulin constant Fc domains and gamma or zeta signalling chains. Int J Mol Med 1998; 2( 1): 99– 103
https://doi.org/10.3892/ijmm.2.1.99
106 KM Hege, EK Bergsland, GA Fisher, JJ Nemunaitis, RS Warren, JG McArthur, AA Lin, J Schlom, CH June, SA Sherwin. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J Immunother Cancer 2017; 5( 1): 22
https://doi.org/10.1186/s40425-017-0222-9
107 JP Murad, AK Kozlowska, HJ Lee, M Ramamurthy, WC Chang, P Yazaki, D Colcher, J Shively, M Cristea, SJ Forman, SJ Priceman. Effective targeting of TAG72+ peritoneal ovarian tumors via regional delivery of CAR-engineered T cells. Front Immunol 2018; 9 : 2268
https://doi.org/10.3389/fimmu.2018.02268
108 CA Reis, T Sørensen, U Mandel, L David, E Mirgorodskaya, P Roepstorff, J Kihlberg, JE Hansen, H Clausen. Development and characterization of an antibody directed to an α-N-acetyl-D-galactosamine glycosylated MUC2 peptide. Glycoconj J 1998; 15( 1): 51– 62
https://doi.org/10.1023/A:1006939432665
109 JW Pedersen, O Blixt, EP Bennett, MA Tarp, I Dar, U Mandel, SS Poulsen, AE Pedersen, S Rasmussen, P Jess, H Clausen, HH Wandall. Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int J Cancer 2011; 128( 8): 1860– 1871
https://doi.org/10.1002/ijc.25778
110 P Tassone, H Bond, P Bonelli, F Tuccillo, G Valerio, A Petrella, A Lamberti, L Cecco, MC Turco, M Cerra, S Montagnani, G Morrone, S Venuta. UN1, a murine monoclonal antibody recognizing a novel human thymic antigen. Tissue Antigens 1994; 44( 2): 73– 82
https://doi.org/10.1111/j.1399-0039.1994.tb02362.x
111 A de Laurentiis, M Gaspari, C Palmieri, C Falcone, E Iaccino, G Fiume, O Massa, M Masullo, FM Tuccillo, L Roveda, U Prati, O Fierro, I Cozzolino, G Troncone, P Tassone, G Scala, I Quinto. Mass spectrometry-based identification of the tumor antigen UN1 as the transmembrane CD43 sialoglycoprotein. Mol Cell Proteomics 2011; 10( 5): M111.007898
https://doi.org/10.1074/mcp.M111.007898
112 H Matsuura, S Hakomori. The oncofetal domain of fibronectin defined by monoclonal antibody FDC-6: its presence in fibronectins from fetal and tumor tissues and its absence in those from normal adult tissues and plasma. Proc Natl Acad Sci USA 1985; 82( 19): 6517– 6521
https://doi.org/10.1073/pnas.82.19.6517
113 Y He, K Schreiber, SP Wolf, F Wen, C Steentoft, J Zerweck, M Steiner, P Sharma, HM Shepard, A Posey, CH June, U Mandel, H Clausen, M Leisegang, SC Meredith, DM Kranz, H Schreiber. Multiple cancer-specific antigens are targeted by a chimeric antigen receptor on a single cancer cell. JCI Insight 2019; 4( 23): e135306
https://doi.org/10.1172/jci.insight.135306
114 A Schietinger, M Philip, BA Yoshida, P Azadi, H Liu, SC Meredith, H Schreiber. A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 2006; 314( 5797): 304– 308
https://doi.org/10.1126/science.1129200
115 J Burchell, S Gendler, J Taylor-Papadimitriou, A Girling, A Lewis, R Millis, D Lamport. Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res 1987; 47( 20): 5476– 5482
116 A Danielczyk, R Stahn, D Faulstich, A Löffler, A Märten, U Karsten, S Goletz. PankoMab: a potent new generation anti-tumour MUC1 antibody. Cancer Immunol Immunother 2006; 55( 11): 1337– 1347
https://doi.org/10.1007/s00262-006-0135-9
117 MA Tarp, AL Sørensen, U Mandel, H Paulsen, J Burchell, J Taylor-Papadimitriou, H Clausen. Identification of a novel cancer-specific immunodominant glycopeptide epitope in the MUC1 tandem repeat. Glycobiology 2007; 17( 2): 197– 209
https://doi.org/10.1093/glycob/cwl061
118 M Yamamoto, VP Bhavanandan, S Nakamori, T Irimura. A novel monoclonal antibody specific for sialylated MUC1 mucin. Jpn J Cancer Res 1996; 87( 5): 488– 496
https://doi.org/10.1111/j.1349-7006.1996.tb00250.x
119 H Takeuchi, K Kato, K Denda-Nagai, FG Hanisch, H Clausen, T Irimura. The epitope recognized by the unique anti-MUC1 monoclonal antibody MY.1E12 involves sialylα2-3galactosylβ1-3N-acetylgalactosaminide linked to a distinct threonine residue in the MUC1 tandem repeat. J Immunol Methods 2002; 270( 2): 199– 209
https://doi.org/10.1016/S0022-1759(02)00298-3
120 K Ryuko, DJ Schol, FG Snijdewint, S von Mensdorff-Pouilly, RJ Poort-Keesom, YA Karuntu-Wanamarta, RA Verstraeten, K Miyazaki, P Kenemans, J Hilgers. Characterization of a new MUC1 monoclonal antibody (VU-2-G7) directed to the glycosylated PDTR sequence of MUC1. Tumour Biol 2000; 21( 4): 197– 210
https://doi.org/10.1159/000030126
121 AL Sørensen, CA Reis, MA Tarp, U Mandel, K Ramachandran, V Sankaranarayanan, T Schwientek, R Graham, J Taylor-Papadimitriou, MA Hollingsworth, J Burchell, H Clausen. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology 2006; 16( 2): 96– 107
https://doi.org/10.1093/glycob/cwj044
122 CM Nicolet, DH Siegel, JE Surfus, PM Sondel. TAG-72-reactive antibody CC49 recognizes molecules expressed by hematopoietic cell lines. Tumour Biol 1997; 18( 6): 356– 366
https://doi.org/10.1159/000218050
123 H Dai, Z Wu, H Jia, C Tong, Y Guo, D Ti, X Han, Y Liu, W Zhang, C Wang, Y Zhang, M Chen, Q Yang, Y Wang, W Han. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. J Hematol Oncol 2020; 13( 1): 30
https://doi.org/10.1186/s13045-020-00856-8
[1] Hongyun Zhao, Fan Luo, Jinhui Xue, Su Li, Rui-Hua Xu. Emerging immunological strategies: recent advances and future directions[J]. Front. Med., 2021, 15(6): 805-828.
[2] Houli Zhao, Yiyun Wang, Elaine Tan Su Yin, Kui Zhao, Yongxian Hu, He Huang. A giant step forward: chimeric antigen receptor T-cell therapy for lymphoma[J]. Front. Med., 2020, 14(6): 711-725.
[3] Lili Zhou, Ping Li, Shiguang Ye, Xiaochen Tang, Junbang Wang, Jie Liu, Aibin Liang. Different sites of extranodal involvement may affect the survival of patients with relapsed or refractory non-Hodgkin lymphoma after chimeric antigen receptor T cell therapy[J]. Front. Med., 2020, 14(6): 786-791.
[4] Ping Li, Ningxin Dong, Yu Zeng, Jie Liu, Xiaochen Tang, Junbang Wang, Wenjun Zhang, Shiguang Ye, Lili Zhou, Alex Hongsheng Chang, Aibin Liang. Chimeric antigen receptor T-cell therapy: a promising treatment modality for relapsed/refractory mantle cell lymphoma[J]. Front. Med., 2020, 14(6): 811-815.
[5] Qiaoshuai Lan, Shuai Xia, Qian Wang, Wei Xu, Haiyan Huang, Shibo Jiang, Lu Lu. Development of oncolytic virotherapy: from genetic modification to combination therapy[J]. Front. Med., 2020, 14(2): 160-184.
[6] Hongli Chen, Fangxia Wang, Pengyu Zhang, Yilin Zhang, Yinxia Chen, Xiaohu Fan, Xingmei Cao, Jie Liu, Yun Yang, Baiyan Wang, Bo Lei, Liufang Gu, Ju Bai, Lili Wei, Ruili Zhang, Qiuchuan Zhuang, Wanggang Zhang, Wanhong Zhao, Aili He. Management of cytokine release syndrome related to CAR-T cell therapy[J]. Front. Med., 2019, 13(5): 610-617.
[7] Synat Kang, Yanyan Li, Yifeng Bao, Yi Li. High-affinity T cell receptors redirect cytokine-activated T cells (CAT) to kill cancer cells[J]. Front. Med., 2019, 13(1): 69-82.
[8] Renyu Zhang, Zhao Zhang, Zekun Liu, Ding Wei, Xiaodong Wu, Huijie Bian, Zhinan Chen. Adoptive cell transfer therapy for hepatocellular carcinoma[J]. Front. Med., 2019, 13(1): 3-11.
[9] Zhao Zhang, Jun Jiang, Xiaodong Wu, Mengyao Zhang, Dan Luo, Renyu Zhang, Shiyou Li, Youwen He, Huijie Bian, Zhinan Chen. Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy[J]. Front. Med., 2019, 13(1): 57-68.
[10] Yanfang Pan,Lijun Xia. Emerging roles of podoplanin in vascular development and homeostasis[J]. Front. Med., 2015, 9(4): 421-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed