Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2024, Vol. 18 Issue (5) : 850-861    https://doi.org/10.1007/s11684-024-1070-x
Prevalence of anemia of varying severity, geographic variations, and association with metabolic factors among women of reproductive age in China: a nationwide, population-based study
Heling Bao1, Yuanyuan Huang1, Yi Sun1, Yunli Chen1, Yan Luo1, Liping Yan1, Sailimai Man2,3,4,5, Canqing Yu2,4,5,6, Jun Lv2,4,5,6, Meili Ge7, Linhong Wang8, Liming Li2,4,5,6(), Bo Wang3,4,6(), Hui Liu1(), Xiaoxi Liu1()
. Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China
. Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
. Meinian Institute of Health, Beijing 100044, China
. Peking University Health Science Center Meinian Public Health Institute, Beijing 100191, China
. Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
. Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing 100191, China
. Anaemia Diagnosis and Treatment Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300052, China
. National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
 Download: PDF(5953 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To investigate the epidemiological characteristics of anemia of varying severity among women of reproductive age, we conducted a nationwide, cross-sectional study between January 1, 2019 and December 31, 2019, including 4 184 547 nonpregnant women aged 18–49 years from all 31 provinces in the mainland of China. Anemia was defined as having hemoglobin concentration < 120.0 g/L and categorized as mild, moderate, and severe. Multivariate logistic models with cluster effect were used to explore the association of anemia and metabolic risk factors. The standardized prevalence of anemia and moderate and worse anemia among women of reproductive age in China was 15.8% (95% CI 15.1%–16.6%) and 6.6% (6.3%–7.0%), respectively. The prevalence of anemia and the proportion of moderate and worse anemia significantly increased with age. We also observed great geographic variations in the prevalence of anemia, with a high likelihood in south, central, and northwest China. Moderate and/or severe anemia was positively associated with overweight and obesity, diabetes, and impaired kidney function. In conclusion, anemia remains a significant challenge for women of reproductive age in China. Geographic variations and metabolic risk factors should be considered in the comprehensive and targeting strategy for anemia reduction.

Keywords anemia      prevalence      women of reproductive age      metabolic factor      body mass index      China     
Corresponding Author(s): Liming Li,Bo Wang,Hui Liu,Xiaoxi Liu   
Just Accepted Date: 04 June 2024   Online First Date: 31 July 2024    Issue Date: 29 October 2024
 Cite this article:   
Heling Bao,Yuanyuan Huang,Yi Sun, et al. Prevalence of anemia of varying severity, geographic variations, and association with metabolic factors among women of reproductive age in China: a nationwide, population-based study[J]. Front. Med., 2024, 18(5): 850-861.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-024-1070-x
https://academic.hep.com.cn/fmd/EN/Y2024/V18/I5/850
  Overall Unanemic Anemic Severity of anemia
Mild Moderate Severe Moderate and worse
N 4 184 547 3 522 620 661 927 386 818 256 498 18 610 275 108
Age (years) 35.4±8.3 35.1±8.3 37.0±7.8 36.2±7.9 38.0±7.6 40.4±7.1 38.2±7.6
Age group            
18–24 507 447 (12.1) 454 248 (12.9) 53 199 (8.0) 35 981 (9.3) 16 500 (6.4) 718 (3.9) 17 218(6.3)
25–29 631 059 (15.1) 559 515 (15.9) 71 544 (10.8) 48 191 (12.5) 22 424 (8.7) 929 (5.0) 23 353(8.5)
30–34 877 056 (21.0) 747 429 (21.2) 129 627 (19.6) 82 468 (21.3) 44 955 (17.5) 2203 (11.8) 47 159(17.1)
35–39 699 362 (16.7) 570 795 (16.2) 128 566 (19.4) 74 387 (19.2) 50 897 (19.8) 3282 (17.6) 54 179(19.7)
40–44 657 574 (15.7) 526 232 (14.9) 131 341 (19.8) 69 974 (18.1) 56 657 (22.1) 4710 (25.3) 61 367(22.3)
45–49 812 050 (19.4) 664 401 (18.9) 147 649 (22.3) 75 817 (19.6) 65 064 (25.4) 6768 (36.4) 71 832(26.1)
P value NA NA < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Body mass index            
< 18.5 325 585 (7.8) 279 377 (7.9) 46 208 (7.0) 30 548 (7.9) 14 964 (5.8) 696 (3.7) 15 660 (5.7)
18.5–23.9 2 629 606 (62.8) 2 200 595 (62.5) 429 011 (64.8) 256 683 (66.4) 161 230 (62.9) 11 098 (59.6) 172 328 (62.6)
24.0–27.9 941 997 (22.5) 794 540 (22.6) 147 456 (22.3) 79 044 (20.4) 63 098 (24.6) 5314 (28.6) 68 412 (24.9)
≥ 28.0 287 360 (6.9) 248 108 (7.0) 39 251 (5.9) 20 542 (5.3) 17 206 (6.7) 1502 (8.1) 18 709 (6.8)
P value NA NA < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Hypertension            
No 3 890 797 (93.0) 3 273 408 (92.9) 617 389 (93.3) 364 324 (94.2) 235 937 (92.0) 17 129 (92.0) 253 065 (92.0)
Yes 293 750 (7.0) 249 212 (7.1) 42 077 (6.7) 22 495 (5.8) 20 562 (8.0) 1482 (8.0) 22 043 (8.0)
P value NA NA 0.0008 < 0.0001 < 0.0001 0.0002 < 0.0001
Diabetes            
No 4 132 727 (98.8) 3 476 836 (98.7) 655 892 (99.1) 383 811 (99.2) 253 744 (98.9) 18 336 (98.5) 272 080 (98.9)
Yes 51 820 (1.2) 45 784 (1.3) 6035 (0.9) 3007 (0.8) 2754 (1.1) 274 (1.5) 3028 (1.1)
P value NA NA < 0.0001 < 0.0001 < 0.0001 0.08 < 0.0001
High total cholesterol            
No 3 308 125 (79.1) 2747 138 (78.0) 560 986 (84.8) 322 625 (83.4) 220 668 (86.0) 17 693 (95.1) 238 361 (86.6)
Yes 876 422 (20.9) 775 482 (22.0) 100 941 (15.2) 64 193 (16.6) 35 830 (14.0) 917 (4.9) 36 747 (13.4)
P value NA NA < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
High triglyceride            
No 3 668 817 (87.7) 3070 575 (87.2) 598 242 (90.4) 350 161 (90.5) 231 086 (90.1) 16 995 (91.3) 248 081(90.2)
Yes 515 730 (12.3) 452 045 (12.8) 63 685 (9.6) 36 657 (9.5) 25 412 (9.9) 1615 (8.7) 27 028 (9.8)
P value NA NA < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Hyperuricemia            
No 3 843 648 (91.9) 3213 550 (91.2) 630 098 (95.2) 365 676 (94.5) 246 350 (96.0) 18 071 (97.1) 264 421(96.1)
Yes 340 899 (8.1) 309 070 (8.8) 31 829 (4.8) 21 142 (5.5) 10 148 (4.0) 539 (2.9) 10 687 (3.9)
P value NA NA < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Impaired kidney function            
No 4 179 685 (99.9) 3519 307 (99.9) 660 378 (99.8) 385 810 (99.7) 256 017 (99.8) 18551(99.7) 274 568(99.8)
Yes 4 862 (0.1) 3314 (0.1) 1549 (0.2) 1008 (0.3) 481 (0.2) 59 (0.3) 540 (0.2)
P value NA NA < 0.0001 0.0009 < 0.0001 < 0.0001 0.0025
History of cesarean delivery
No 3931 813 (94.0) 3316 126 (94.1) 615 686 (93.0) 360 436 (93.2) 238 041 (92.8) 17 209 (92.5) 255 250 (92.8)
Yes 252 735 (6.0) 206 494 (5.9) 46 241 (7.0) 26 382 (6.8) 18 457 (7.2) 1401 (7.5) 19 859 (7.2)
P value NA NA < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Geographic region            
North 533 236 (12.7) 451 438 (12.8) 81 798 (12.4) 43 399 (11.2) 35 886 (14.0) 2513 (13.5) 38 399 (14.0)
East 1 327 314 (31.7) 1 114 428 (31.6) 212 886 (32.2) 122 880 (31.8) 83 681 (32.6) 6325 (34.0) 90 006 (32.7)
Central 610 892 (14.6) 507 817 (14.4) 103 076 (15.6) 61 152 (15.8) 38 971 (15.2) 2953 (15.9) 41 924 (15.2)
South 566 412 (13.5) 466 625 (13.3) 99 787 (15.1) 62 160 (16.1) 35 555 (13.9) 2071 (11.1) 37 626 (13.7)
Southwest 544 950 (13.0) 480 102 (13.6) 64 848 (9.8) 39 937 (10.3) 23 278 (9.1) 1633 (8.8) 24 911 (9.1)
Northwest 282 513 (6.8) 234 518 (6.7) 47 995 (7.3) 26 031 (6.7) 20 104 (7.8) 1860 (10.0) 21 964 (8.0)
Northeast 319 230 (7.6) 267 693 (7.6) 51 538 (7.8) 31 260 (8.1) 19 023 (7.4) 1255 (6.7) 20 278 (7.4)
P value NA NA < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Tab.1  Characteristics of participants and anemic patients stratified by severity
Fig.1  Prevalence of anemia among women of reproductive age in China stratified by age and severity. (A) Crude and weighted prevalence of anemia, overall and by severity. (B) Age-specific prevalence of overall, mild anemia, and moderate and worse anemia. (C) Proportion of anemia of varying severity. (D) Proportion of anemia of varying severity stratified by age. Error bars represent the 95% CI. Moderate and worse includes moderate and severe anemia.
  Anemia (95% CI) Severity of anemia (95% CI)
Mild Moderate Severe Moderate and worse
Overall 15.8 (15.1–16.6) 9.2 (8.8–9.7) 6.1 (5.8–6.5) 0.44 (0.41–0.48) 6.6 (6.3–7.0)
Body mass index          
< 18.5 14.2 (13.4–15.0) 9.4 (8.8–9.9) 4.6 (4.3–4.9) 0.21 (0.18–0.24) 4.8 (4.5–5.2)
18.5–23.9 16.3 (15.5–17.1) 9.8 (9.3–10.3) 6.1 (5.8–6.5) 0.42 (0.39–0.46) 6.6 (6.2–7.0)
24.0–27.9 15.7 (15.0–16.3) 8.4 (8.0–8.8) 6.7 (6.4–7.0) 0.56 (0.52–0.61) 7.3 (6.9–7.7)
≥ 28.0 13.7 (13.0–14.3) b 7.2 (6.8–7.5) b 6.0 (5.7–6.3) b 0.52 (0.47–0.57) b 6.5 (6.2–6.9) b
Hypertension          
No 15.9 (15.1–16.6) 9.4 (8.9–9.8) 6.1 (5.7–6.4) 0.44 (0.40–0.48) 6.5 (6.2–6.9)
Yes 15.2 (14.6–15.7) a 7.7 (7.4–8.0) b 7.0 (6.7–7.3) b 0.50 (0.47–0.54) b 7.5 (7.2–7.9) b
Diabetes        
No 15.9 (15.1–16.6) 9.3 (8.8–9.7) 6.1 (5.8–6.5) 0.44 (0.41–0.48) 6.6 (6.3–7.0)
Yes 11.6 (11.1–12.2) b 5.4 (5.1–5.8) b 5.3 (5.0–5.6) b 0.53 (0.45–0.61) a 5.9 (5.5–6.2) b
High total cholesterol          
No 17.0 (16.2–17.8) 9.8 (9.3–10.2) 6.7 (6.3–7.0) 0.53 (0.49–0.58) 7.2 (6.8–7.6)
Yes 11.5 (10.9–12.1) b 7.3 (6.9–7.7) b 4.1 (3.9–4.3) b 0.10 (0.09–0.12) b 4.2 (4.0–4.4) b
High triglyceride          
No 16.3 (15.6–17.1) 9.5 (9.1–10.0) 6.3 (6.0–6.6) 0.46 (0.43–0.50) 6.8 (6.4–7.1)
Yes 12.4 (11.7–13.0) b 7.1 (6.6–7.6) b 4.9 (4.7–5.2) b 0.31 (0.29–0.34) b 5.2 (5.0–5.5) b
Hyperuricemia          
No 16.4 (15.7–17.1) 9.5 (9.1–10.0) 6.4 (6.1–6.8) 0.47 (0.43–0.51) 6.9 (6.5–7.3)
Yes 9.3 (8.7–10.0) b 6.2 (5.7–6.7) b 3.0 (2.8–3.2) b 0.16 (0.14–0.18) b 3.1 (2.9–3.4) b
History of cesarean delivery
No 15.7 (14.9–16.4) 9.2 (8.7–9.6) 6.1 (5.7–6.4) 0.44 (0.40–0.47) 6.5 (6.2–6.9)
Yes 18.3 (17.0–19.6) b 10.4 (9.7–11.2) a 7.3 (6.7–7.9) a 0.55 (0.49–0.62) b 7.9 (7.3–8.6) b
Impaired kidney function        
No 15.8 (15.1–16.5) 9.2 (8.8–9.7) 6.1 (5.8–6.5) 0.44 (0.41–0.48) 6.6 (6.2–6.9)
Yes 31.9 (24.3–39.4) b 20.7 (9.4–32.1) a 9.9 (4.7–15.1) 1.22 (0.47–1.97) a 11.1 (5.3–17.0)
Tab.2  Prevalence of anemia among women of reproductive age in China
Fig.2  Geographic variations in the standardized prevalence of anemia of varying severity among women of reproductive age and correlation with urbanization and per capita annual consumption of main food. The top panels show the provincial prevalence of anemia of varying severity among (A) all women, (B) women aged 18–34 years, and (C) women aged 35–49 years. Error bars represent the 95% CI of anemia. Vertical dashed lines indicate the threshold (20%) of moderate public health significance recommended by WHO. The middle panels present the variations by seven geographic regions among (D) all women, (E) women aged 18–34 years, and (F) women aged 35–49 years. The bottom panels show the ecological correlation between anemia and (G) urbanization and the proportion of per capita annual consumption of main food, including (H) meat, fish, and egg, (I) vegetables and fruits, (J) cereal, and (K) sugar. Linear regression was used to estimate the relationship coefficients.
Independent variables Anemia Moderate and worse anemia
OR (95% CI) P value OR (95% CI) P value
Age (per 5 years) 1.20 (1.19–1.21) < 0.0001 1.31 (1.29–1.31) < 0.0001
Body mass index
< 18.5 0.99 (0.97–1.00) 0.07 0.92 (0.90–0.94) < 0.0001
18.5–23.9 Reference   Reference
24.0–27.9 0.93 (0.92–0.94) < 0.0001 1.02 (1.00–1.04) 0.04
≥ 28.0 0.91 (0.88–0.94) < 0.0001 1.04 (1.01–1.07) 0.02
Hypertension    
No Reference   Reference
Yes 0.89 (0.87–0.91) < 0.0001 0.96 (0.94–0.98) 0.0001
Diabetes  
No Reference   Reference
Yes 0.75 (0.72–0.79) < 0.0001 0.82 (0.79–0.85) < 0.0001
High total cholesterol  
No Reference   Reference
Yes 0.59 (0.57–0.61) < 0.0001 0.47 (0.46–0.49) < 0.0001
High triglyceride    
No Reference   Reference
Yes 0.78 (0.75–0.82) < 0.0001 0.75 (0.73–0.77) < 0.0001
Hyperuricemia    
No Reference   Reference
Yes 0.62 (0.59–0.64) < 0.0001 0.51 (0.48–0.53) < 0.0001
Impaired kidney function  
No Reference   Reference
Yes 2.38 (1.76–3.22) < 0.0001 2.00 (1.02–3.95) 0.045
History of cesarean delivery  
No Reference Reference
Yes 1.16 (1.09–1.23) < 0.0001 1.17 (1.10–1.25) < 0.0001
Tab.3  Multivariable-adjusted odds ratio for anemia among women of reproductive age in China
Fig.3  Difference in the nonlinear associations of (A) anemia, (B) mild anemia, (C) moderate anemia, and (D) severe anemia with BMI. Lines represent odd ratios estimated from a logistic regression between anemia and BMI, adjusted for hypertension, diabetes, high total cholesterol, high triglyceride, hyperuricemia, impaired kidney function, city-level per capita GDP, province-level unemployment, and province-level education. BMI was fitted as a four-knot restricted cubic spline as the 5th, 35th, 65th, and 95th percentiles to allow for nonlinearity. P values for overall association and nonlinearity were less than 0.0001 for all outcomes. Vertical lines represent BMI category thresholds of 18.5 kg/m2 (underweight to healthy), 24 kg/m2 (healthy weight to overweight), and 28 kg/m2 (overweight to obese).
1 World Health Organization. Accelerating anaemia reduction—a comprehensive framework for action. 2023
2 2021 Anaemia Collaborators GBD. Prevalence, years lived with disability, and trends in anaemia burden by severity and cause, 1990–2021: findings from the Global Burden of Disease Study 2021. Lancet Haematol 2023; 10(9): e713–e734
https://doi.org/10.1016/S2352-3026(23)00160-6
3 World Health Organization. Sixty-fifth World Health Assembly: resolutions and decisions annexes. 2012
4 GA Stevens, CJ Paciorek, MC Flores-Urrutia, E Borghi, S Namaste, JP Wirth, PS Suchdev, M Ezzati, F Rohner, SR Flaxman, LM Rogers. National, regional, and global estimates of anaemia by severity in women and children for 2000–19: a pooled analysis of population-representative data. Lancet Glob Health 2022; 10(5): e627–e639
https://doi.org/10.1016/S2214-109X(22)00084-5
5 RA Saad, HM Qutob. The relationship between anemia and obesity. Expert Rev Hematol 2022; 15(10): 911–926
https://doi.org/10.1080/17474086.2022.2131521
6 Y Wu, H Ye, J Liu, Q Ma, Y Yuan, Q Pang, J Liu, C Kong, M Liu. Prevalence of anemia and sociodemographic characteristics among pregnant and non-pregnant women in southwest China: a longitudinal observational study. BMC Pregnancy Childbirth 2020; 20(1): 535
https://doi.org/10.1186/s12884-020-03222-1
7 Y Hu, J Chen, M Li, W Li, Y Yang, L Yang, R Wang, J Piao. Study on the anemia status of Chinese urban residents in 2010–2012. Chin J Prev Med (Zhonghua Yu Fang Yi Xue Za Zhi) 2016; 50(3): 213–216
8 Q Ma, S Zhang, J Liu, Q Wang, H Shen, Y Zhang, M Liu. Study on the prevalence of severe anemia among non-pregnant women of reproductive age in rural China: a large population-based cross-sectional study. Nutrients 2017; 9(12): 1298
https://doi.org/10.3390/nu9121298
9 L Wang, B Zhou, Z Zhao, L Yang, M Zhang, Y Jiang, Y Li, M Zhou, L Wang, Z Huang, X Zhang, L Zhao, D Yu, C Li, M Ezzati, Z Chen, J Wu, G Ding, X Li. Body-mass index and obesity in urban and rural China: findings from consecutive nationally representative surveys during 2004–18. Lancet 2021; 398(10294): 53–63
https://doi.org/10.1016/S0140-6736(21)00798-4
10 HL Bao, C Jin, S Wang, Y Song, ZY Xu, XJ Yan, LM Li, Y Ning, HJ Wang. Prevalence of cervicovaginal human papillomavirus infection and genotypes in the pre-vaccine era in China: a nationwide population-based study. J Infect 2021; 82(4): 75–83
https://doi.org/10.1016/j.jinf.2021.02.017
11 World Health Organization. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and mineral nutrition information system. 2011
12 E Beutler, J Waalen. The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration. Blood 2006; 107(5): 1747–1750
https://doi.org/10.1182/blood-2005-07-3046
13 National Bureau of Statistics of China. China Statistical Yearbook. 2020. Available at the website of National Bureau of Statistics of China (in Chinese)
14 EF Dunne, ER Unger, M Sternberg, G McQuillan, DC Swan, SS Patel, LE Markowitz. Prevalence of HPV infection among females in the United States. JAMA 2007; 297(8): 813–819
https://doi.org/10.1001/jama.297.8.813
15 National Bureau of Statistics of China. China Statistical Yearbook. Per capita consumption of main food products by household by subregion. 2019. Available at the website of National Bureau of Statistics of China (in Chinese)
16 DJ Benjamin, JO Berger, M Johannesson, BA Nosek, EJ Wagenmakers, R Berk, KA Bollen, B Brembs, L Brown, C Camerer, D Cesarini, CD Chambers, M Clyde, TD Cook, Boeck P De, Z Dienes, A Dreber, K Easwaran, C Efferson, E Fehr, F Fidler, AP Field, M Forster, EI George, R Gonzalez, S Goodman, E Green, DP Green, AG Greenwald, JD Hadfield, LV Hedges, L Held, Ho T Hua, H Hoijtink, DJ Hruschka, K Imai, G Imbens, JPA Ioannidis, M Jeon, JH Jones, M Kirchler, D Laibson, J List, R Little, A Lupia, E Machery, SE Maxwell, M McCarthy, DA Moore, SL Morgan, M Munafó, S Nakagawa, B Nyhan, TH Parker, L Pericchi, M Perugini, J Rouder, J Rousseau, V Savalei, FD Schönbrodt, T Sellke, B Sinclair, D Tingley, Zandt T Van, S Vazire, DJ Watts, C Winship, RL Wolpert, Y Xie, C Young, J Zinman, VE Johnson. Redefine statistical significance. Nat Hum Behav 2018; 2(1): 6–10
https://doi.org/10.1038/s41562-017-0189-z
17 MM Hasan, RJ Soares Magalhaes, SP Garnett, Y Fatima, M Tariqujjaman, S Pervin, S Ahmed, AA Mamun. Anaemia in women of reproductive age in low- and middle-income countries: progress towards the 2025 global nutrition target. Bull World Health Organ 2022; 100(3): 196–204
https://doi.org/10.2471/BLT.20.280180
18 H Hu, A Huang, Q Yang, W Zhao, Y Ma, J Di. Prevalence and risk factors of anemia of pregnant women—6 provinces in China, 2014–2018. China CDC Wkly 2020; 2(14): 225–229
https://doi.org/10.46234/ccdcw2020.058
19 J Tan, G He, Y Qi, H Yang, Y Xiong, C Liu, W Wang, K Zou, AH Lee, X Sun, X Liu. Prevalence of anemia and iron deficiency anemia in Chinese pregnant women (IRON WOMEN): a national cross-sectional survey. BMC Pregnancy Childbirth 2020; 20(1): 670
https://doi.org/10.1186/s12884-020-03359-z
20 N Kozuki, AC Lee, J; Child Health Epidemiology Reference Group Katz. Moderate to severe, but not mild, maternal anaemia is associated with increased risk of small-for-gestational-age outcomes. J Nutr 2012; 142(2): 358–362
https://doi.org/10.3945/jn.111.149237
21 The State Council the People’s Republic of China. Program for the development of Chinese women (2021–2030). 2020. Available at the website of the State Council the People’s Republic of China (in Chinese)
22 R Halawi, H Moukhadder, A Taher. Anemia in the elderly: a consequence of aging. Expert Rev Hematol 2017; 10(4): 327–335
https://doi.org/10.1080/17474086.2017.1285695
23 H Shi, L Chen, Y Wang, M Sun, Y Guo, S Ma, X Wang, H Jiang, X Wang, J Lu, L Ge, S Dong, Y Zhuang, Y Zhao, Y Wei, X Ma, J Qiao. Severity of anaemia during pregnancy and adverse maternal and fetal outcomes. JAMA Netw Open 2022; 5(2): e2147046
https://doi.org/10.1001/jamanetworkopen.2021.47046
24 P Steer, MA Alam, J Wadsworth, A Welch. Relation between maternal haemoglobin concentration and birth weight in different ethnic groups. BMJ 1995; 310(6978): 489–491
https://doi.org/10.1136/bmj.310.6978.489
25 Q Zhang, Y Wan, Z Huang. Analysis on the prevalence and factors associated with anaemia during pregnancy in Yunnan Province. Chin J Women Child Health (Zhongguo Fu You Wei Sheng Za Zhi) 2022; 13(4): 29–34
26 N Petry, I Olofin, RF Hurrell, E Boy, JP Wirth, M Moursi, M Donahue Angel, F Rohner. The proportion of anaemia associated with iron deficiency in low, medium, and high human development index countries: a systematic analysis of national surveys. Nutrients 2016; 8(11): 693
https://doi.org/10.3390/nu8110693
27 WD Wang, F Hu, DH Zhou, RP Gale, YR Lai, HX Yao, C Li, BY Wu, Z Chen, JP Fang, SJ Chen, Y Liang. Thalassaemia in China. Blood Rev 2023; 60: 101074
https://doi.org/10.1016/j.blre.2023.101074
28 Guizhou Provincial People’s Government. The Implementation Plan of the National Nutrition Plan of Guizhou Province (2018–2030). 2018. Available at the website of Guizhou Provincial People’s Government
29 Y Qin, A Melse-Boonstra, X Pan, B Yuan, Y Dai, J Zhao, MB Zimmermann, FJ Kok, M Zhou, Z Shi. Anemia in relation to body mass index and waist circumference among Chinese women. Nutr J 2013; 12(1): 10
https://doi.org/10.1186/1475-2891-12-10
30 K Kordas, Centeno ZY Fonseca, H Pachón, Soto AZ Jimenez. Being overweight or obese is associated with lower prevalence of anemia among Colombian women of reproductive age. J Nutr 2013; 143(2): 175–181
https://doi.org/10.3945/jn.112.167767
31 F Atsma, I Veldhuizen, W de Kort, M van Kraaij, P Pasker-de Jong, J Deinum. Hemoglobin level is positively associated with blood pressure in a large cohort of healthy individuals. Hypertension 2012; 60(4): 936–941
https://doi.org/10.1161/HYPERTENSIONAHA.112.193565
32 M Shirvani, M Vakili Sadeghi, SR Hosseini, A Bijani, R Ghadimi. Does serum lipid profile differ in anemia and non-anemic older subjects. Caspian J Intern Med 2017; 8(4): 305–310
33 M Bardyn, J Chen, M Dussiot, D Crettaz, L Schmid, E Längst, P Amireault, JD Tissot, M Jolicoeur, M Prudent. Restoration of physiological levels of uric acid and ascorbic acid reroutes the metabolism of stored red blood cells. Metabolites 2020; 10(6): 226
https://doi.org/10.3390/metabo10060226
34 K Iseki, K Kohagura. Anemia as a risk factor for chronic kidney disease. Kidney Int Suppl 2007; 72(Supplement 107): S4–S9
https://doi.org/10.1038/sj.ki.5002481
35 S Antwi-Bafour, S Hammond, JK Adjei, R Kyeremeh, A Martin-Odoom, I Ekem. A case-control study of prevalence of anemia among patients with type 2 diabetes. J Med Case Rep 2016; 10(1): 110
https://doi.org/10.1186/s13256-016-0889-4
36 TM El-Achkar, SE Ohmit, PA McCullough, ED Crook, WW Brown, R Grimm, GL Bakris, WF Keane, JM; Kidney Early Evaluation Program Flack. Higher prevalence of anemia with diabetes mellitus in moderate kidney insufficiency: The Kidney Early Evaluation Program. Kidney Int 2005; 67(4): 1483–1488
https://doi.org/10.1111/j.1523-1755.2005.00226.x
[1] FMD-24012-OF-LXX_suppl_1 Download
[1] Hongyan Qi, Chunyan Hu, Jie Zhang, Lin Lin, Shuangyuan Wang, Hong Lin, Xiaojing Jia, Yuanyue Zhu, Yi Zhang, Xueyan Wu, Mian Li, Min Xu, Yu Xu, Tiange Wang, Zhiyun Zhao, Weiqing Wang, Yufang Bi, Meng Dai, Yuhong Chen, Jieli Lu. Early-life famine exposure, adulthood obesity patterns, and risk of low-energy fracture[J]. Front. Med., 2024, 18(1): 192-203.
[2] Jie Jin, Zhihua Ran, Emanuele Noseda, Bernard Roubert, Matthieu Marty, Anna Mezzacasa, Udo Michael Göring. A randomized, controlled, open label non-inferiority trial of intravenous ferric carboxymaltose versus iron sucrose in patients with iron deficiency anemia in China[J]. Front. Med., 2024, 18(1): 98-108.
[3] Jun Feng, Li Zhang, Zhigui Xia, Shuisen Zhou, Ning Xiao, Xiao-Nong Zhou. Achievements of the national malaria control and elimination program in the People’s Republic of China: the Atlas of Malaria Transmission in China[J]. Front. Med., 2023, 17(1): 85-92.
[4] Chuansong Quan, Zhenjie Zhang, Guoyong Ding, Fengwei Sun, Hengxia Zhao, Qinghua Liu, Chuanmin Ma, Jing Wang, Liang Wang, Wenbo Zhao, Jinjie He, Yu Wang, Qian He, Michael J. Carr, Dayan Wang, Qiang Xiao, Weifeng Shi. Seroprevalence of influenza viruses in Shandong, Northern China during the COVID-19 pandemic[J]. Front. Med., 2022, 16(6): 984-990.
[5] Kaili Yang, Jiarui Li, Lin Zhao, Zhao Sun, Chunmei Bai. Estimating the number of Chinese cancer patients eligible for and benefit from immune checkpoint inhibitors[J]. Front. Med., 2022, 16(5): 773-783.
[6] Daijing Nie, Jing Zhang, Fang Wang, Xvxin Li, Lili Liu, Wei Zhang, Panxiang Cao, Xue Chen, Yang Zhang, Jiaqi Chen, Xiaoli Ma, Xiaosu Zhou, Qisheng Wu, Ming Liu, Mingyue Liu, Wenjun Tian, Hongxing Liu. Fanconi anemia gene-associated germline predisposition in aplastic anemia and hematologic malignancies[J]. Front. Med., 2022, 16(3): 459-466.
[7] Jianhai Yin, Mei Li, He Yan, Shuisen Zhou, Zhigui Xia. Laboratory diagnosis for malaria in the elimination phase in China: efforts and challenges[J]. Front. Med., 2022, 16(1): 10-16.
[8] Fang Huang, Yanwen Cui, He Yan, Hui Liu, Xiangrui Guo, Guangze Wang, Shuisen Zhou, Zhigui Xia. Prevalence of antifolate drug resistance markers in Plasmodium vivax in China[J]. Front. Med., 2022, 16(1): 83-92.
[9] Hongchen Liu, Xiaoli Zheng, Chengtao Zhang, Jiajun Xie, Beibei Gao, Jing Shao, Yan Yang, Hengxiang Wang, Jinsong Yan. Outcomes of haploidentical bone marrow transplantation in patients with severe aplastic anemia-II that progressed from non-severe acquired aplastic anemia[J]. Front. Med., 2021, 15(5): 718-727.
[10] Ruijie Chang, Huwen Wang, Shuxian Zhang, Zezhou Wang, Yinqiao Dong, Lhakpa Tsamlag, Xiaoyue Yu, Chen Xu, Yuelin Yu, Rusi Long, Ning-Ning Liu, Qiao Chu, Ying Wang, Gang Xu, Tian Shen, Suping Wang, Xiaobei Deng, Jinyan Huang, Xinxin Zhang, Hui Wang, Yong Cai. Phase- and epidemic region-adjusted estimation of the number of coronavirus disease 2019 cases in China[J]. Front. Med., 2020, 14(2): 199-209.
[11] Honglu Zhou, Songmei Wang, Lorenz von Seidlein, Xuanyi Wang. The epidemiology of norovirus gastroenteritis in China: disease burden and distribution of genotypes[J]. Front. Med., 2020, 14(1): 1-7.
[12] So Jung Yang, Hun-Sung Kim, Kun-Ho Yoon. Analyzing the distinguishing factors that affect childhood obesity in South Korea[J]. Front. Med., 2018, 12(6): 707-716.
[13] N.V. Vasilyeva, E.R. Raush, M.V. Rudneva, T.S. Bogomolova, A.E. Taraskina, Yong Fang, Fengmin Zhang, N.N. Klimko. Etiology of invasive candidosis agents in Russia: a multicenter epidemiological survey[J]. Front. Med., 2018, 12(1): 84-91.
[14] Min Chen, Yuan Xu, Nan Hong, Yali Yang, Wenzhi Lei, Lin Du, Jingjun Zhao, Xia Lei, Lin Xiong, Langqi Cai, Hui Xu, Weihua Pan, Wanqing Liao. Epidemiology of fungal infections in China[J]. Front. Med., 2018, 12(1): 58-75.
[15] Jikai Liu, Li Bai, Weiwei Li, Haihong Han, Ping Fu, Xiaochen Ma, Zhenwang Bi, Xiaorong Yang, Xiuli Zhang, Shiqi Zhen, Xiaoling Deng, Xiumei Liu, Yunchang Guo. Trends of foodborne diseases in China: lessons from laboratory-based surveillance since 2011[J]. Front. Med., 2018, 12(1): 48-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed