|
|
Early-life famine exposure, adulthood obesity patterns, and risk of low-energy fracture |
Hongyan Qi, Chunyan Hu, Jie Zhang, Lin Lin, Shuangyuan Wang, Hong Lin, Xiaojing Jia, Yuanyue Zhu, Yi Zhang, Xueyan Wu, Mian Li, Min Xu, Yu Xu, Tiange Wang, Zhiyun Zhao, Weiqing Wang, Yufang Bi, Meng Dai( ), Yuhong Chen( ), Jieli Lu( ) |
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China |
|
|
Abstract Malnutrition in early life increases the risk of osteoporosis, but the association of early-life undernutrition combined with adulthood obesity patterns with low-energy fracture remains unknown. This study included 5323 community-dwelling subjects aged ≥40 years from China. Early-life famine exposure was identified based on the participants’ birth dates. General obesity was assessed using the body mass index (BMI), and abdominal obesity was evaluated with the waist-to-hip ratio (WHR). Low-energy fracture was defined as fracture occurring after the age of 40 typically caused by falls from standing height or lower. Compared to the nonexposed group, the group with fetal, childhood, and adolescence famine exposure was associated with an increased risk of fracture in women with odds ratios (ORs) and 95% confidence intervals (CIs) of 3.55 (1.57–8.05), 3.90 (1.57–9.71), and 3.53 (1.05–11.88), respectively, but not in men. Significant interactions were observed between fetal famine exposure and general obesity with fracture among women (P for interaction = 0.0008). Furthermore, compared with the groups with normal BMI and WHR, the group of women who underwent fetal famine exposure and had both general and abdominal obesity had the highest risk of fracture (OR, 95% CI: 3.32, 1.17–9.40). These results indicate that early-life famine exposure interacts with adulthood general obesity and significantly increases the risk of low-energy fracture later in life in women.
|
Keywords
famine
obesity
body mass index
waist-to-hip ratio
low-energy fracture
|
Corresponding Author(s):
Meng Dai,Yuhong Chen,Jieli Lu
|
About author: Li Liu and Yanqing Liu contributed equally to this work. |
Just Accepted Date: 22 September 2023
Online First Date: 31 October 2023
Issue Date: 22 April 2024
|
|
1 |
P Chen, Z Li, Y Hu. Prevalence of osteoporosis in China: a meta-analysis and systematic review. BMC Public Health 2016; 16(1): 1039
https://doi.org/10.1186/s12889-016-3712-7
|
2 |
N Li, D Cornelissen, S Silverman, D Pinto, L Si, I Kremer, S Bours, R de Bot, A Boonen, S Evers, J van den Bergh, JY Reginster, M Hiligsmann. An updated systematic review of cost-effectiveness analyses of drugs for osteoporosis. Pharmacoeconomics 2021; 39(2): 181–209
https://doi.org/10.1007/s40273-020-00965-9
|
3 |
Y Zhang, H Qi, C Hu, S Wang, Y Zhu, H Lin, L Lin, J Zhang, T Wang, Z Zhao, M Li, Y Xu, M Xu, Y Bi, W Wang, Y Chen, J Lu, G Ning. Association between early life famine exposure and risk of metabolic syndrome in later life. J Diabetes 2022; 14(10): 685–694
https://doi.org/10.1111/1753-0407.13319
|
4 |
SR de Rooij, RC Painter, F Holleman, PM Bossuyt, TJ Roseboom. The metabolic syndrome in adults prenatally exposed to the Dutch famine. Am J Clin Nutr 2007; 86(4): 1219–1224
https://doi.org/10.1093/ajcn/86.4.1219
|
5 |
J Lu, M Li, Y Xu, Y Bi, Y Qin, Q Li, T Wang, R Hu, L Shi, Q Su, M Xu, Z Zhao, Y Chen, X Yu, L Yan, R Du, C Hu, G Qin, Q Wan, G Chen, M Dai, D Zhang, Z Gao, G Wang, F Shen, Z Luo, L Chen, Y Huo, Z Ye, X Tang, Y Zhang, C Liu, Y Wang, S Wu, T Yang, H Deng, D Li, S Lai, ZT Bloomgarden, L Chen, J Zhao, Y Mu, G Ning, W; 4C Study Group Wang. Early life famine exposure, ideal cardiovascular health metrics, and risk of incident diabetes: findings from the 4C Study. Diabetes Care 2020; 43(8): 1902–1909
https://doi.org/10.2337/dc19-2325
|
6 |
Y Li, Y He, L Qi, VW Jaddoe, EJ Feskens, X Yang, G Ma, FB Hu. Exposure to the Chinese famine in early life and the risk of hyperglycemia and type 2 diabetes in adulthood. Diabetes 2010; 59(10): 2400–2406
https://doi.org/10.2337/db10-0385
|
7 |
C Hu, R Du, L Lin, R Zheng, H Qi, Y Zhu, R Wei, X Wu, Y Zhang, M Li, T Wang, Z Zhao, M Xu, Y Xu, Y Bi, G Ning, W Wang, Y Chen, J Lu. The association between early-life famine exposure and adulthood obesity on the risk of dyslipidemia. Nutr Metab Cardiovasc Dis 2022; 32(9): 2177–2186
https://doi.org/10.1016/j.numecd.2022.06.005
|
8 |
H Qi, C Hu, S Wang, Y Zhang, R Du, J Zhang, L Lin, T Wang, Z Zhao, M Li, Y Xu, M Xu, Y Bi, W Wang, Y Chen, J Lu. Early life famine exposure, adulthood obesity patterns and the risk of nonalcoholic fatty liver disease. Liver Int 2020; 40(11): 2694–2705
https://doi.org/10.1111/liv.14572
|
9 |
LA Hughes, den Brandt PA van, Bruïne AP de, KA Wouters, S Hulsmans, A Spiertz, RA Goldbohm, Goeij AF de, JG Herman, MP Weijenberg, Engeland M van. Early life exposure to famine and colorectal cancer risk: a role for epigenetic mechanisms. PLoS One 2009; 4(11): e7951
https://doi.org/10.1371/journal.pone.0007951
|
10 |
C Cooper, K Javaid, S Westlake, N Harvey, E Dennison. Developmental origins of osteoporotic fracture: the role of maternal vitamin D insufficiency. J Nutr 2005; 135(11): 2728S–2734S
https://doi.org/10.1093/jn/135.11.2728S
|
11 |
CND Balasuriya, KAI Evensen, MP Mosti, AM Brubakk, GW Jacobsen, MS Indredavik, B Schei, AK Stunes, U Syversen. Peak bone mass and bone microarchitecture in adults born with low birth weight preterm or at term: a cohort study. J Clin Endocrinol Metab 2017; 102(7): 2491–2500
https://doi.org/10.1210/jc.2016-3827
|
12 |
TM Mikkola, MB von Bonsdorff, C Osmond, MK Salonen, E Kajantie, JG Eriksson. Association of body size at birth and childhood growth with hip fractures in older age: an exploratory follow-up of the Helsinki Birth Cohort Study. J Bone Miner Res 2017; 32(6): 1194–1200
https://doi.org/10.1002/jbmr.3100
|
13 |
LJ Zhao, YJ Liu, PY Liu, J Hamilton, RR Recker, HW Deng. Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 2007; 92(5): 1640–1646
https://doi.org/10.1210/jc.2006-0572
|
14 |
TL Radak. Caloric restriction and calcium’s effect on bone metabolism and body composition in overweight and obese premenopausal women. Nutr Rev 2004; 62(12): 468–481
https://doi.org/10.1111/j.1753-4887.2004.tb00019.x
|
15 |
LJ Zhao, H Jiang, CJ Papasian, D Maulik, B Drees, J Hamilton, HW Deng. Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 2008; 23(1): 17–29
https://doi.org/10.1359/jbmr.070813
|
16 |
Z Shi, X Shi, AF Yan. Exposure to Chinese famine during early life increases the risk of fracture during adulthood. Nutrients 2022; 14(5): 1060
https://doi.org/10.3390/nu14051060
|
17 |
B Wang, M Li, Z Zhao, S Wang, J Lu, Y Chen, M Xu, W Wang, G Ning, Y Bi, T Wang, Y Xu. Glycemic measures and development and resolution of nonalcoholic fatty liver disease in nondiabetic individuals. J Clin Endocrinol Metab 2020; 105(5): 1416–1426
https://doi.org/10.1210/clinem/dgaa112
|
18 |
PH Lee, DJ Macfarlane, TH Lam, SM Stewart. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): a systematic review. Int J Behav Nutr Phys Act 2011; 8: 115
https://doi.org/10.1186/1479-5868-8-115
|
19 |
R Du, R Zheng, Y Xu, Y Zhu, X Yu, M Li, X Tang, R Hu, Q Su, T Wang, Z Zhao, M Xu, Y Chen, L Shi, Q Wan, G Chen, M Dai, D Zhang, Z Gao, G Wang, F Shen, Z Luo, Y Qin, L Chen, Y Huo, Q Li, Z Ye, Y Zhang, C Liu, Y Wang, S Wu, T Yang, H Deng, L Chen, J Zhao, Y Mu, D Li, G Qin, W Wang, G Ning, L Yan, Y Bi, J Lu. Early-life famine exposure and risk of cardiovascular diseases in later life: findings from the REACTION Study. J Am Heart Assoc 2020; 9(7): e014175
https://doi.org/10.1161/JAHA.119.014175
|
20 |
C Li, EW Tobi, BT Heijmans, LH Lumey. The effect of the Chinese famine on type 2 diabetes mellitus epidemics. Nat Rev Endocrinol 2019; 15(6): 313–314
https://doi.org/10.1038/s41574-019-0195-5
|
21 |
S Yang, ND Nguyen, JR Center, JA Eisman, TV Nguyen. Association between abdominal obesity and fracture risk: a prospective study. J Clin Endocrinol Metab 2013; 98(6): 2478–2483
https://doi.org/10.1210/jc.2012-2958
|
22 |
CM Nielson, P Srikanth, ES Orwoll. Obesity and fracture in men and women: an epidemiologic perspective. J Bone Miner Res 2012; 27(1): 1–10
https://doi.org/10.1002/jbmr.1486
|
23 |
R Meng, J Lv, C Yu, Y Guo, Z Bian, L Yang, Y Chen, H Zhang, X Chen, J Chen, Z Chen, L Qi, L; China Kadoorie Biobank Collaborative Group Li. Prenatal famine exposure, adulthood obesity patterns and risk of type 2 diabetes. Int J Epidemiol 2018; 47(2): 399–408
https://doi.org/10.1093/ije/dyx228
|
24 |
E Ito, Y Sato, T Kobayashi, S Nakamura, Y Kaneko, T Soma, T Matsumoto, A Kimura, K Miyamoto, H Matsumoto, M Matsumoto, M Nakamura, K Sato, T Miyamoto. Food restriction reduces cortical bone mass and serum insulin-like growth factor-1 levels and promotes uterine atrophy in mice. Biochem Biophys Res Commun 2021; 534: 165–171
https://doi.org/10.1016/j.bbrc.2020.11.122
|
25 |
R Pando, M Masarwi, B Shtaif, A Idelevich, E Monsonego-Ornan, R Shahar, M Phillip, G Gat-Yablonski. Bone quality is affected by food restriction and by nutrition-induced catch-up growth. J Endocrinol 2014; 223(3): 227–239
https://doi.org/10.1530/JOE-14-0486
|
26 |
CF Kin, WS Shan, LJ Shun, LP Chung, W Jean. Experience of famine and bone health in post-menopausal women. Int J Epidemiol 2007; 36(5): 1143–1150
https://doi.org/10.1093/ije/dym149
|
27 |
L Zong, L Cai, J Liang, W Lin, J Yao, H Huang, K Tang, L Chen, L Li, L Lin, H Chen, M Li, J Lu, Y Bi, W Wang, J Wen, G Chen. Exposure to famine in early life and the risk of osteoporosis in adulthood: a prospective study. Endocr Pract 2019; 25(4): 299–305
https://doi.org/10.4158/EP-2018-0419
|
28 |
G Mehta, HI Roach, S Langley-Evans, P Taylor, I Reading, RO Oreffo, A Aihie-Sayer, NM Clarke, C Cooper. Intrauterine exposure to a maternal low protein diet reduces adult bone mass and alters growth plate morphology in rats. Calcif Tissue Int 2002; 71(6): 493–498
https://doi.org/10.1007/s00223-001-2104-9
|
29 |
T Winzenberg, G Jones. Vitamin D and bone health in childhood and adolescence. Calcif Tissue Int 2013; 92(2): 140–150
https://doi.org/10.1007/s00223-012-9615-4
|
30 |
A Ganpule, CS Yajnik, CH Fall, S Rao, DJ Fisher, A Kanade, C Cooper, S Naik, N Joshi, H Lubree, V Deshpande, C Joglekar. Bone mass in Indian children—relationships to maternal nutritional status and diet during pregnancy: the Pune Maternal Nutrition Study. J Clin Endocrinol Metab 2006; 91(8): 2994–3001
https://doi.org/10.1210/jc.2005-2431
|
31 |
T Chevalley, R Rizzoli. Acquisition of peak bone mass. Best Pract Res Clin Endocrinol Metab 2022; 36(2): 101616
https://doi.org/10.1016/j.beem.2022.101616
|
32 |
WY Yao, L Li, HR Jiang, YF Yu, WH Xu. Transgenerational associations of parental famine exposure in early life with offspring risk of adult obesity in China. Obesity (Silver Spring) 2023; 31(1): 279–289
https://doi.org/10.1002/oby.23593
|
33 |
Y Zhang, Y Ying, L Zhou, J Fu, Y Shen, C Ke. Exposure to Chinese famine in early life modifies the association between hyperglycaemia and cardiovascular disease. Nutr Metab Cardiovasc Dis 2019; 29(11): 1230–1236
https://doi.org/10.1016/j.numecd.2019.07.004
|
34 |
EW Tobi, LH Lumey, RP Talens, D Kremer, H Putter, AD Stein, PE Slagboom, BT Heijmans. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009; 18(21): 4046–4053
https://doi.org/10.1093/hmg/ddp353
|
35 |
VS Tanwar, S Ghosh, S Sati, S Ghose, L Kaur, KA Kumar, KV Shamsudheen, A Patowary, M Singh, V Jyothi, P Kommineni, S Sivasubbu, V Scaria, M Raghunath, R Mishra, GR Chandak, S Sengupta. Maternal vitamin B12 deficiency in rats alters DNA methylation in metabolically important genes in their offspring. Mol Cell Biochem 2020; 468(1–2): 83–96
https://doi.org/10.1007/s11010-020-03713-x
|
36 |
Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 1962; 14(4): 353–362
pmid: 13937884
|
37 |
P Bateson, D Barker, T Clutton-Brock, D Deb, B D’Udine, RA Foley, P Gluckman, K Godfrey, T Kirkwood, MM Lahr, J McNamara, NB Metcalfe, P Monaghan, HG Spencer, SE Sultan. Developmental plasticity and human health. Nature 2004; 430(6998): 419–421
https://doi.org/10.1038/nature02725
|
38 |
J Delgado-Calle, AF Fernández, J Sainz, MT Zarrabeitia, C Sañudo, R García-Renedo, MI Pérez-Núñez, C García-Ibarbia, MF Fraga, JA Riancho. Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum 2013; 65(1): 197–205
https://doi.org/10.1002/art.37753
|
39 |
N Slopen, A Non, DR Williams, AL Roberts, MA Albert. Childhood adversity, adult neighborhood context, and cumulative biological risk for chronic diseases in adulthood. Psychosom Med 2014; 76(7): 481–489
https://doi.org/10.1097/PSY.0000000000000081
|
40 |
GE Miller, E Chen, AK Fok, H Walker, A Lim, EF Nicholls, S Cole, MS Kobor. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc Natl Acad Sci USA 2009; 106(34): 14716–14721
https://doi.org/10.1073/pnas.0902971106
|
41 |
M Das, O Cronin, DM Keohane, EM Cormac, H Nugent, M Nugent, C Molloy, PW O’Toole, F Shanahan, MG Molloy, IB Jeffery. Gut microbiota alterations associated with reduced bone mineral density in older adults. Rheumatology (Oxford) 2019; 58(12): 2295–2304
https://doi.org/10.1093/rheumatology/kez302
|
42 |
C Caffarelli, C Alessi, R Nuti, S Gonnelli. Divergent effects of obesity on fragility fractures. Clin Interv Aging 2014; 9: 1629–1636
|
43 |
Laet C De, JA Kanis, A Odén, H Johanson, O Johnell, P Delmas, JA Eisman, H Kroger, S Fujiwara, P Garnero, EV McCloskey, D Mellstrom, LJ 3rd Melton, PJ Meunier, HA Pols, J Reeve, A Silman, A Tenenhouse. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 2005; 16(11): 1330–1338
https://doi.org/10.1007/s00198-005-1863-y
|
44 |
HE Meyer, WC Willett, AJ Flint, D Feskanich. Abdominal obesity and hip fracture: results from the Nurses’ Health Study and the Health Professionals Follow-up Study. Osteoporos Int 2016; 27(6): 2127–2136
https://doi.org/10.1007/s00198-016-3508-8
|
45 |
M Kauppi, S Stenholm, O Impivaara, J Mäki, M Heliövaara, A Jula. Fall-related risk factors and heel quantitative ultrasound in the assessment of hip fracture risk: a 10-year follow-up of a nationally representative adult population sample. Osteoporos Int 2014; 25(6): 1685–1695
https://doi.org/10.1007/s00198-014-2674-9
|
46 |
V Benetou, P Orfanos, IS Benetos, V Pala, A Evangelista, G Frasca, MC Giurdanella, PH Peeters, IT van der Schouw, S Rohrmann, J Linseisen, H Boeing, C Weikert, U Pettersson, B Van Guelpen, HB Bueno de Mesquita, J Altzibar, P Boffetta, A Trichopoulou. Anthropometry, physical activity and hip fractures in the elderly. Injury 2011; 42(2): 188–193
https://doi.org/10.1016/j.injury.2010.08.022
|
47 |
V Zarulli, JA Barthold Jones, A Oksuzyan, R Lindahl-Jacobsen, K Christensen, JW Vaupel. Women live longer than men even during severe famines and epidemics. Proc Natl Acad Sci USA 2018; 115(4): E832–E840
https://doi.org/10.1073/pnas.1701535115
|
48 |
R Mu, X Zhang. Why does the great Chinese famine affect the male and female survivors differently? Mortality selection versus son preference. Econ Hum Biol 2011; 9(1): 92–105
https://doi.org/10.1016/j.ehb.2010.07.003
|
49 |
Y Wang, H Wan, C Chen, Y Chen, F Xia, B Han, Q Li, N Wang, Y Lu. Association between famine exposure in early life with insulin resistance and beta cell dysfunction in adulthood. Nutr Diabetes 2020; 10(1): 18
https://doi.org/10.1038/s41387-020-0121-x
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|