Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2024, Vol. 18 Issue (1) : 180-191    https://doi.org/10.1007/s11684-023-1003-0
Haploinsufficiency of Lipin3 leads to hypertriglyceridemia and obesity by disrupting the expression and nucleocytoplasmic localization of Lipin1
Fang Wang1, Yuxing Liu1,2, Yi Dong2, Meifang Zhao2, Hao Huang2, Jieyuan Jin2, Liangliang Fan1,2(), Rong Xiang1,2()
1. Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
2. Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha 410013, China
 Download: PDF(4480 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lipin proteins including Lipin 1–3 act as transcriptional co-activators and phosphatidic acid phosphohydrolase enzymes, which play crucial roles in lipid metabolism. However, little is known about the function of Lipin3 in triglyceride (TG) metabolism. Here, we identified a novel mutation (NM_001301860: p.1835A>T/p.D612V) of Lipin3 in a large family with hypertriglyceridemia (HTG) and obesity through whole-exome sequencing and Sanger sequencing. Functional studies revealed that the novel variant altered the half-life and stability of the Lipin3 protein. Hence, we generated Lipin3 heterozygous knockout (Lipin3-heKO) mice and cultured primary hepatocytes to explore the pathophysiological roles of Lipin3 in TG metabolism. We found that Lipin3-heKO mice exhibited obvious obesity, HTG, and non-alcoholic fatty liver disorder. Mechanistic study demonstrated that the haploinsufficiency of Lipin3 in primary hepatocytes may induce the overexpression and abnormal distribution of Lipin1 in cytosol and nucleoplasm. The increased expression of Lipin1 in cytosol may contribute to TG anabolism, and the decreased Lipin1 in nucleoplasm can reduce PGC1α, further leading to mitochondrial dysfunction and reduced TG catabolism. Our study suggested that Lipin3 was a novel disease-causing gene inducing obesity and HTG. We also established a relationship between Lipin3 and mitochondrial dysfunction.

Keywords Lipin3      Lipin1      hypertriglyceridemia      obesity      mitochondrial dysfunction     
Corresponding Author(s): Liangliang Fan,Rong Xiang   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Just Accepted Date: 31 August 2023   Online First Date: 10 October 2023    Issue Date: 22 April 2024
 Cite this article:   
Fang Wang,Yuxing Liu,Yi Dong, et al. Haploinsufficiency of Lipin3 leads to hypertriglyceridemia and obesity by disrupting the expression and nucleocytoplasmic localization of Lipin1[J]. Front. Med., 2024, 18(1): 180-191.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-023-1003-0
https://academic.hep.com.cn/fmd/EN/Y2024/V18/I1/180
Fig.1  Whole-exome sequencing identified a novel mutation of Lipin3 in a family with obesity and hypertriglyceridemia. (A) Pedigree of the family. Black circles/squares are affected, white circles/squares are unaffected. Arrow indicates the proband. (B) Overlapping filter strategy. Asterisks denote the remaining variants for further analysis that are present in two affected members (II-8 and III-3) but not in the normal control (III-2). (C) Schematic of the filter strategies used in our study. (D) Sanger DNA sequencing chromatogram demonstrates the heterozygosity for a Lipin3 missense mutation (p.1835A>T/p.D612V).
No. Age (year) TG (mmol/L) TC (mmol/L) LDL (mmol/L) HDL (mmol/L) AS/CHD BMI (kg/m2)
I-1 60 (D) CHD
I-2 94 1.97 4.97 3.10 0.82
II-1 78 1.74 4.20 3.67 1.33 23.4
II-2 75 13.9 4.23 2.96 1.17 25.1
II-3 70 (D) CHD
II-4 73 21.9
II-5 62 (D) CHD
II-6 60 (D) CHD
II-7 60 (D) 11.76 4.73 3.85 1.21 AS 24.9
II-8 66 14.6 4.25 2.61 1.22 25.3
III-1 55 1.62 4.17 3.00 0.94 21.4
III-2 51 1.88 3.45 3.67 1.02 22.7
III-3 49 11.20 4.02 3.49 1.15 AS 24.7
III-4 48 12.03 3.77 2.47 1.38 25.3
VI-1 22 1.33 3.07 2.66 0.91 20.8
VI-2 23 7.40 4.12 3.05 0.96 24.0
V-1 2 1.45 3.75 2.88 1.29
Tab.1  Characteristics and serum lipid levels of the family members
Fig.2  The novel mutation (p.D612V) may disrupt the stability of Lipin3 protein and lead to triglyceride accumulation. (A) Conservation analysis of the D612 amino acid was conducted with ConSurf Server software. (B) Structure prediction of the mutant protein. The wild-type Lipin3 (Lipin3-WT) protein structure and the p.D612V mutant Lipin3 (Lipin3-p.D612V) protein structure were predicted using SWISS-MODEL online software. (C) WB detected the expression of total Lipin3 and transfected Lipin3 (Flag) in the WT and Lipin3-mutated groups. (D,E) WB detected the degradation rate of transfected Lipin3 (Flag) in mutated and WT groups.
Fig.3  Haploinsufficiency of Lipin3 leads to obesity and hypertriglyceridemia in mice. (A) Sanger sequencing and WB confirmed that Lipin3-KO mice were generated successfully. (B,C) Body shape and weight of WT mice (n = 5) and Lipin3-heKO mice (n = 5). Weight of epididymal fat tissue (D) and liver tissue (E) in WT mice (n = 5) and Lipin3-heKO mice (n = 5). (F) Peripheral blood TG levels of WT mice (n = 5) and Lipin3-heKO mice (n = 5). (G) HE staining analysis showing the size of fat cells in WT mice and Lipin3-heKO mice. (H) Oil red O staining showing the lipid accumulation in liver tissues of WT mice and Lipin3-heKO mice. (I) TG levels in WT and Lipin3-heKO mouse primary cultured hepatocytes.
Fig.4  Lipin3-heKO mice exhibited a severe overweight phenotype underlie high-diet feeding. (A,B) Body shape and weight of HFD-WT mice (n = 5) and HFD-Lipin3-heKO mice (n = 5). Weight of epididymal fat tissue (C) and liver tissue (D) in HFD-WT mice (n = 5) and HFD-Lipin3-heKO mice (n = 5). (E) Peripheral blood TG levels of HFD-WT mice (n = 5) and HFD-Lipin3-heKO mice (n = 5). (F) HE staining analysis showing the size of fat cells in HFD-WT mice and HFD-Lipin3-heKO mice. (G) HE staining and analysis of NAS score for the hepatic lipid accumulation in HFD-WT mice and HFD-Lipin3-heKO mice.
Fig.5  Haploinsufficiency of Lipin3 may disrupt the nucleocytoplasmic localization of Lipin1 and induce mitochondrial dysfunction. (A) WB analysis revealed the expression of Lipin3 in the primary hepatocytes of WT and Lipin3-heKO. (B) WB analysis detected the levels of Lipin3, GAPDH, and histone in the cytoplasm and nucleus of primary cultured hepatocytes from WT and Lipin3-heKO mice. (C) WB analysis revealed the expression of PGC1α, PPARα, and cleaved PPARα in the primary hepatocytes of WT and Lipin3-heKO. (D) WB detected the expressions of mitochondrial electronic respiratory chain-related proteins. (E) JC-1 staining in WT and Lipin3-heKO mouse primary-cultured hepatocytes. (F) TEM analysis shows the mitochondria structures in primary cultured hepatocytes of WT and Lipin3-heKO mice. (G) Expression of Mfn2, Opa1, and Fis1 in WT and Lipin3-heKO mouse primary-cultured hepatocytes. ATP (H) and ROS (I) levels in WT and Lipin3-heKO mouse primary cultured hepatocytes.
Fig.6  Potential mechanism of how haploinsufficiency of Lipin3 induced TG accumulation.
1 SA Polyzos, J Kountouras, CS Mantzoros. Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics. Metabolism 2019; 92: 82–97
https://doi.org/10.1016/j.metabol.2018.11.014
2 M Blüher. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 2019; 15(5): 288–298
https://doi.org/10.1038/s41574-019-0176-8
3 ME Piché, A Tchernof, JP Després. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res 2020; 126(11): 1477–1500
https://doi.org/10.1161/CIRCRESAHA.120.316101
4 AG Tsai, DH Bessesen. Obesity. Ann Intern Med 2019; 170(5): ITC33–ITC48
https://doi.org/10.7326/AITC201903050
5 MO Goodarzi. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol 2018; 6(3): 223–236
https://doi.org/10.1016/S2213-8587(17)30200-0
6 M Claussnitzer, SN Dankel, KH Kim, G Quon, W Meuleman, C Haugen, V Glunk, IS Sousa, JL Beaudry, V Puviindran, NA Abdennur, J Liu, PA Svensson, YH Hsu, DJ Drucker, G Mellgren, CC Hui, H Hauner, M Kellis. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med 2015; 373(10): 895–907
https://doi.org/10.1056/NEJMoa1502214
7 R Xiang, LL Fan, H Huang, YQ Chen, W He, S Guo, JJ Li, JY Jin, R Du, R Yan, K Xia. Increased reticulon 3 (RTN3) leads to obesity and hypertriglyceridemia by interacting with heat shock protein family A (Hsp70) member 5 (HSPA5). Circulation 2018; 138(17): 1828–1838
https://doi.org/10.1161/CIRCULATIONAHA.117.030718
8 C Chen, H Wang, B Chen, D Chen, C Lu, H Li, Y Qian, Y Tan, H Weng, L Cai. Pex11a deficiency causes dyslipidaemia and obesity in mice. J Cell Mol Med 2019; 23(3): 2020–2031
https://doi.org/10.1111/jcmm.14108
9 X Lei, GW Wong. C1q/TNF-related protein 2 (CTRP2) deletion promotes adipose tissue lipolysis and hepatic triglyceride secretion. J Biol Chem 2019; 294(43): 15638–15649
https://doi.org/10.1074/jbc.RA119.009230
10 A Moslehi, Z Hamidi-Zad. Role of SREBPs in liver diseases: a mini-review. J Clin Transl Hepatol 2018; 6(3): 332–338
https://doi.org/10.14218/JCTH.2017.00061
11 AK Hauck, Y Huang, AV Hertzel, DA Bernlohr. Adipose oxidative stress and protein carbonylation. J Biol Chem 2019; 294(4): 1083–1088
https://doi.org/10.1074/jbc.R118.003214
12 AH de Mello, AB Costa, JDG Engel, GT Rezin. Mitochondrial dysfunction in obesity. Life Sci 2018; 192: 26–32
https://doi.org/10.1016/j.lfs.2017.11.019
13 L Han, WJ Shen, S Bittner, FB Kraemer, S Azhar. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α. Future Cardiol 2017; 13(3): 259–278
https://doi.org/10.2217/fca-2016-0059
14 K Reue. The lipin family: mutations and metabolism. Curr Opin Lipidol 2009; 20(3): 165–170
https://doi.org/10.1097/MOL.0b013e32832adee5
15 BN Finck, MC Gropler, Z Chen, TC Leone, MA Croce, TE Harris, JC Jr Lawrence, DP Kelly. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab 2006; 4(3): 199–210
https://doi.org/10.1016/j.cmet.2006.08.005
16 Y Chen, BB Rui, LY Tang, CM Hu. Lipin family proteins-key regulators in lipid metabolism. Ann Nutr Metab 2015; 66(1): 10–18
https://doi.org/10.1159/000368661
17 P Romani, I Brian, G Santinon, A Pocaterra, M Audano, S Pedretti, S Mathieu, M Forcato, S Bicciato, JB Manneville, N Mitro, S Dupont. Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP. Nat Cell Biol 2019; 21(3): 338–347
https://doi.org/10.1038/s41556-018-0270-5
18 J Casas, C Meana, JR López-López, J Balsinde, MA Balboa. Lipin-1-derived diacylglycerol activates intracellular TRPC3 which is critical for inflammatory signaling. Cell Mol Life Sci 2021; 78(24): 8243–8260
https://doi.org/10.1007/s00018-021-03999-0
19 M Chae, JY Jung, IH Bae, HJ Kim, TR Lee, DW Shin. Lipin-1 expression is critical for keratinocyte differentiation. J Lipid Res 2016; 57(4): 563–573
https://doi.org/10.1194/jlr.M062588
20 K Reue, P Zhang. The lipin protein family: dual roles in lipid biosynthesis and gene expression. FEBS Lett 2008; 582(1): 90–96
https://doi.org/10.1016/j.febslet.2007.11.014
21 LL Fan, DB Ding, H Huang, YQ Chen, JY Jin, K Xia, R Xiang. A de novo mutation of SMYD1 (p. F272L) is responsible for hypertrophic cardiomyopathy in a Chinese patient. Clin Chem Lab Med 2019; 57(4): 532–539
https://doi.org/10.1515/cclm-2018-0578
22 H Huang, S Guo, YQ Chen, YX Liu, JY Jin, Y Liang, LL Fan, R Xiang. Increased RTN3 phenocopies nonalcoholic fatty liver disease by inhibiting the AMPK-IDH2 pathway. MedComm (2020) 2023; 4(2): e226
23 Q Shi, Y Ge, MG Sharoar, W He, R Xiang, Z Zhang, X Hu, R Yan. Impact of RTN3 deficiency on expression of BACE1 and amyloid deposition. J Neurosci 2014; 34(42): 13954–13962
https://doi.org/10.1523/JNEUROSCI.1588-14.2014
24 LS Csaki, JR Dwyer, X Li, MH Nguyen, J Dewald, DN Brindley, AJ Lusis, Y Yoshinaga, P de Jong, L Fong, SG Young, K Reue. Lipin-1 and lipin-3 together determine adiposity in vivo. Mol Metab 2014; 3(2): 145–154
https://doi.org/10.1016/j.molmet.2013.11.008
25 M Péterfy, J Phan, P Xu, K Reue. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet 2001; 27(1): 121–124
https://doi.org/10.1038/83685
26 L Bi, Z Jiang, J Zhou. The role of lipin-1 in the pathogenesis of alcoholic fatty liver. Alcohol Alcohol 2015; 50(2): 146–151
https://doi.org/10.1093/alcalc/agu102
27 E BarrosoAM AstudilloJ BalsindeM Vázquez-Carrera. PPARβ/δ Activation prevents hypertriglyceridemia caused by a high fat diet. Involvement of AMPK and PGC-1α-Lipin1-PPARα pathway. Clin Investig Arterioscler 2013; 25(2): 63–73 (in Spanish)
pmid: 23849213
28 HL Kim, J Park, H Park, Y Jung, DH Youn, J Kang, MY Jeong, JY Um. Platycodon grandiflorum A. De Candolle ethanolic extract inhibits adipogenic regulators in 3T3-L1 cells and induces mitochondrial biogenesis in primary brown preadipocytes. J Agric Food Chem 2015; 63(35): 7721–7730
https://doi.org/10.1021/acs.jafc.5b01908
29 L Bi, Z Jiang, J Zhou. The role of lipin-1 in the pathogenesis of alcoholic fatty liver. Alcohol Alcohol 2015; 50(2): 146–151
https://doi.org/10.1093/alcalc/agu102
30 D De Rasmo, A Signorile, E De Leo, EV Polishchuk, A Ferretta, R Raso, S Russo, R Polishchuk, F Emma, F Bellomo. Mitochondrial dynamics of proximal tubular epithelial cells in nephropathic cystinosis. Int J Mol Sci 2019; 21(1): 192
https://doi.org/10.3390/ijms21010192
31 MN Serasinghe, JE Chipuk. Mitochondrial fission in human diseases. Handb Exp Pharmacol 2017; 240: 159–188
https://doi.org/10.1007/164_2016_38
32 C Michot, L Hubert, NB Romero, A Gouda, A Mamoune, S Mathew, E Kirk, L Viollet, S Rahman, S Bekri, H Peters, J McGill, E Glamuzina, M Farrar, M von der Hagen, IE Alexander, B Kirmse, M Barth, P Laforet, P Benlian, A Munnich, M JeanPierre, O Elpeleg, O Pines, A Delahodde, Y de Keyzer, P de Lonlay. Study of LPIN1, LPIN2 and LPIN3 in rhabdomyolysis and exercise-induced myalgia. J Inherit Metab Dis 2012; 35(6): 1119–1128
https://doi.org/10.1007/s10545-012-9461-6
33 EM Pennisi, M Garibaldi, G Antonini. Lipid myopathies. J Clin Med 2018; 7(12): 472
https://doi.org/10.3390/jcm7120472
34 K Reue, DN Brindley. Thematic Review Series: Glycerolipids. Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. J Lipid Res 2008; 49(12): 2493–2503
https://doi.org/10.1194/jlr.R800019-JLR200
35 T Rashid, I Nemazanyy, C Paolini, T Tatsuta, P Crespin, D de Villeneuve, S Brodesser, P Benit, P Rustin, MA Baraibar, O Agbulut, A Olivier, F Protasi, T Langer, R Chrast, P de Lonlay, H de Foucauld, B Blaauw, M Pende. Lipin1 deficiency causes sarcoplasmic reticulum stress and chaperone-responsive myopathy. EMBO J 2019; 38(1): e99576
https://doi.org/10.15252/embj.201899576
36 A Watahiki, S Hoshikawa, M Chiba, H Egusa, S Fukumoto, H Inuzuka. Deficiency of Lipin2 results in enhanced NF-κB signaling and osteoclast formation in RAW-D murine macrophages. Int J Mol Sci 2021; 22(6): 2893
https://doi.org/10.3390/ijms22062893
37 M Bou Khalil, A Blais, D Figeys, Z Yao. Lipin — the bridge between hepatic glycerolipid biosynthesis and lipoprotein metabolism. Biochim Biophys Acta 2010; 1801(12): 1249–1259
https://doi.org/10.1016/j.bbalip.2010.07.008
38 P Zhang, LS Csaki, E Ronquillo, LJ Baufeld, JY Lin, A Gutierrez, JR Dwyer, DN Brindley, LG Fong, P Tontonoz, SG Young, K Reue. Lipin 2/3 phosphatidic acid phosphatases maintain phospholipid homeostasis to regulate chylomicron synthesis. J Clin Invest 2019; 129(1): 281–295
https://doi.org/10.1172/JCI122595
39 ICM Simões, A Fontes, P Pinton, H Zischka, MR Wieckowski. Mitochondria in non-alcoholic fatty liver disease. Int J Biochem Cell Biol 2018; 95: 93–99
https://doi.org/10.1016/j.biocel.2017.12.019
40 JP Mazat, A Devin, S Ransac. Modelling mitochondrial ROS production by the respiratory chain. Cell Mol Life Sci 2020; 77(3): 455–465
https://doi.org/10.1007/s00018-019-03381-1
41 C Rives, A Fougerat, S Ellero-Simatos, N Loiseau, H Guillou, L Gamet-Payrastre, W Wahli. Oxidative stress in NAFLD: role of nutrients and food contaminants. Biomolecules 2020; 10(12): 1702
https://doi.org/10.3390/biom10121702
42 S Kakehi, Y Tamura, SI Ikeda, N Kaga, H Taka, N Ueno, T Shiuchi, A Kubota, K Sakuraba, R Kawamori, H Watada. Short-term physical inactivity induces diacylglycerol accumulation and insulin resistance in muscle via lipin1 activation. Am J Physiol Endocrinol Metab 2021; 321(6): E766–E781
https://doi.org/10.1152/ajpendo.00254.2020
43 P Zhang, K Takeuchi, LS Csaki, K Reue. Lipin-1 phosphatidic phosphatase activity modulates phosphatidate levels to promote peroxisome proliferator-activated receptor γ (PPARγ) gene expression during adipogenesis. J Biol Chem 2012; 287(5): 3485–3494
https://doi.org/10.1074/jbc.M111.296681
44 A Kauppinen, T Suuronen, J Ojala, K Kaarniranta, A Salminen. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 2013; 25(10): 1939–1948
https://doi.org/10.1016/j.cellsig.2013.06.007
45 N Bougarne, B Weyers, SJ Desmet, J Deckers, DW Ray, B Staels, K De Bosscher. Molecular actions of PPARα in lipid metabolism and inflammation. Endocr Rev 2018; 39(5): 760–802
https://doi.org/10.1210/er.2018-00064
[1] FMD-23022-OF-FLL_suppl_1 Download
[1] Yalin Liu, Xianghang Luo. New practice in semaglutide on type-2 diabetes and obesity: clinical evidence and expectation[J]. Front. Med., 2022, 16(1): 17-24.
[2] Lingli Cai, Jun Yin, Xiaojing Ma, Yifei Mo, Cheng Li, Wei Lu, Yuqian Bao, Jian Zhou, Weiping Jia. Low-carbohydrate diets lead to greater weight loss and better glucose homeostasis than exercise: a randomized clinical trial[J]. Front. Med., 2021, 15(3): 460-471.
[3] So Jung Yang, Hun-Sung Kim, Kun-Ho Yoon. Analyzing the distinguishing factors that affect childhood obesity in South Korea[J]. Front. Med., 2018, 12(6): 707-716.
[4] Tiange Wang, Min Xu, Yufang Bi, Guang Ning. Interplay between diet and genetic susceptibility in obesity and related traits[J]. Front. Med., 2018, 12(6): 601-607.
[5] Ruiting Han, Junli Ma, Houkai Li. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota[J]. Front. Med., 2018, 12(6): 645-657.
[6] Eun Young Lee, Kun-Ho Yoon. Epidemic obesity in children and adolescents: risk factors and prevention[J]. Front. Med., 2018, 12(6): 658-666.
[7] Meng Dong, Jun Lin, Wonchung Lim, Wanzhu Jin, Hyuek Jong Lee. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia[J]. Front. Med., 2018, 12(2): 130-138.
[8] Tianhua Xu, Zitong Sheng, Li Yao. Obesity-related glomerulopathy: pathogenesis, pathologic, clinical characteristics and treatment[J]. Front. Med., 2017, 11(3): 340-348.
[9] Rahim Ullah, Yan Su, Yi Shen, Chunlu Li, Xiaoqin Xu, Jianwei Zhang, Ke Huang, Naveed Rauf, Yang He, Jingjing Cheng, Huaping Qin, Yu-Dong Zhou, Junfen Fu. Postnatal feeding with high-fat diet induces obesity and precocious puberty in C57BL/6J mouse pups: a novel model of obesity and puberty[J]. Front. Med., 2017, 11(2): 266-276.
[10] Lixia Gan,Wei Xiang,Bin Xie,Liqing Yu. Molecular mechanisms of fatty liver in obesity[J]. Front. Med., 2015, 9(3): 275-287.
[11] Tao Wang,Weiping Jia,Cheng Hu. Advancement in genetic variants conferring obesity susceptibility from genome-wide association studies[J]. Front. Med., 2015, 9(2): 146-161.
[12] Jianping Ye. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes[J]. Front. Med., 2015, 9(2): 139-145.
[13] Shuwen Qian,Haiyan Huang,Qiqun Tang. Brown and beige fat: the metabolic function, induction, and therapeutic potential[J]. Front. Med., 2015, 9(2): 162-172.
[14] Jichun Yang, Jihong Kang, Youfei Guan. The mechanisms linking adiposopathy to type 2 diabetes[J]. Front Med, 2013, 7(4): 433-444.
[15] Yingjiang Zhou, Liangyou Rui. Leptin signaling and leptin resistance[J]. Front Med, 2013, 7(2): 207-222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed