Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2024, Vol. 18 Issue (4) : 690-707    https://doi.org/10.1007/s11684-024-1081-7
Single-cell RNA-seq reveals the transcriptional program underlying tumor progression and metastasis in neuroblastoma
Zhe Nian1, Dan Wang1, Hao Wang1, Wenxu Liu1, Zhenyi Ma2, Jie Yan3, Yanna Cao3, Jie Li3, Qiang Zhao3(), Zhe Liu1,2,4()
1. Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
2. Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
3. Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
4. Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
 Download: PDF(9334 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Neuroblastoma (NB) is one of the most common childhood malignancies. Sixty percent of patients present with widely disseminated clinical signs at diagnosis and exhibit poor outcomes. However, the molecular mechanisms triggering NB metastasis remain largely uncharacterized. In this study, we generated a transcriptomic atlas of 15 447 NB cells from eight NB samples, including paired samples of primary tumors and bone marrow metastases. We used time-resolved analysis to chart the evolutionary trajectory of NB cells from the primary tumor to the metastases in the same patient and identified a common ‘starter’ subpopulation that initiates tumor development and metastasis. The ‘starter’ population exhibited high expression levels of multiple cell cycle-related genes, indicating the important role of cell cycle upregulation in NB tumor progression. In addition, our evolutionary trajectory analysis demonstrated the involvement of partial epithelial-to-mesenchymal transition (p-EMT) along the metastatic route from the primary site to the bone marrow. Our study provides insights into the program driving NB metastasis and presents a signature of metastasis-initiating cells as an independent prognostic indicator and potential therapeutic target to inhibit the initiation of NB metastasis.

Keywords single-cell RNA sequencing      metastasis      neuroblastoma      epithelial-to-mesenchymal transition     
Corresponding Author(s): Qiang Zhao,Zhe Liu   
Just Accepted Date: 29 May 2024   Online First Date: 16 July 2024    Issue Date: 30 August 2024
 Cite this article:   
Zhe Nian,Dan Wang,Hao Wang, et al. Single-cell RNA-seq reveals the transcriptional program underlying tumor progression and metastasis in neuroblastoma[J]. Front. Med., 2024, 18(4): 690-707.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-024-1081-7
https://academic.hep.com.cn/fmd/EN/Y2024/V18/I4/690
Fig.1  Single-cell RNA sequencing of NB cells. (A) Overview of the experimental workflow. Eight NB samples (six primary NB tissues and two matched bone marrow tissues) were collected from six NB patients. Single DAPICD45 human tumor cells were isolated by flow cytometry, and single-cell cDNA libraries were prepared using 10x Genomics technology (upper). NB samples with molecular and clinical annotations (bottom). (B–D) UMAP plots of the 15 447 high-quality cells showing the sample origin (B), transcriptomic clusters (C), and histological category (D). (E) Inferred CNV profiling (upper) and WGS (bottom) were performed to identify malignant and nonmalignant cells in scRNA-seq data for T57. (F) UMAP plots of the 15 447 high-quality cells showing the cell type classification based on the CNV classification. (G) UMAP plots showing the fibroblast signature scores (COL1A1, COL1A2, COL3A1, TAGLN) (upper), the immune-cell signature scores (PTPRC, CD74, SRGN, LAPTM5) (middle), and the neuroendocrine signature scores (PHOX2A, PHOX2B, CHGA, SYP, NPY) (bottom) (gray to red). (H) UMAP plots of the 15 447 high-quality cells showing the cell type based on marker gene expression shown in Fig. 1G. (I) The proportion of each cell type in the eight samples.
Fig.2  Trajectory modeling of malignant NB cells identifies a ‘starter’ cluster in T57. (A) UMAP plots of 9121 malignant NB cells from T57 and T62 colored by the sample origin. (B) UMAP plots of 9121 malignant NB cells from T57 and T62 colored by the transcriptomic cluster (left). The proportions of cell clusters within each sample (right). (C) UMAP plots of 3060 malignant NB cells from T57 colored by the transcriptomic cluster. (D) UMAP plots split by the sample origin in T57. (E) Heatmap showing the top ten differentially expressed genes in each cluster based on the UMAP plots shown in Fig. 2B. (F) UMAP plots showing the RNA velocity analysis of the malignant NB cells in T57. (G) UMAP plots showing the separate RNA velocity analyses of the malignant NB cells in the primary tumor and metastases of T57. The velocity of cells is shown by black arrows indicating the predicted direction of development. (H–J) Pseudotime analysis of malignant NB cells from T57 by Monocle 2 showing the timing sequence of tumor cell progression colored by pseudotime (H), colored by intratumoral subpopulation (I), and split by the sample origin in T57 (J). (K) NB cell state trajectories during tumor progression in T57 were inferred by Slingshot and are shown using UMAP plots according to the slingPseudotime score.
Fig.3  Tracing of the Cluster 3 cells in T57. (A and B) Unrooted phylogenetic tree of matched pairs of primary (A) and metastatic (B) samples based on the nine selected mutations shown in Fig. 3C. Every cluster of unique cell mutation types is displayed in the same color shown in each branch. Bases were extracted from the reference genome as the contrast branch (Reference). (C) Heatmap showing the nine selected mutations in T57. Dark orange and light orange represent homozygous and heterozygous mutations, respectively. Blue represents wild type (WT). (D) Boxplot showing the mutation number in each cell from paired primary and metastatic samples in T57. P < 0.0001 (Wilcoxon test). (E and F) Pseudotime analysis of malignant NB cells from Cluster 3 in T57 by Monocle 2, showing the timing sequence of tumor cell progression colored by pseudotime (E) and sample origin (F). (G) RNA velocity analysis of malignant NB cells from Cluster 3 in the primary tumor and metastases of T57. (H) PCA of every cell subcluster based on the nine selected mutations shown in Fig. 3C. (I) The dynamically expressed genes and enriched gene signatures were significantly associated with pseudotime from P3 to M3 in T57. (J) The expression levels (upper) and the densities in Monocle space (bottom) of epithelial and mesenchymal signatures along the pseudotime trajectory from P3 to M3 in T57. (K) Representative immunofluorescence staining of (primary and metastatic) human NB sections for EPCAM and VIM expression (upper), and NCAM1 and VIM expression (bottom) in patient 1. Scale bars, 20 μm.
Fig.4  Characterization of the ‘starter’ populations. (A) Functional enrichment analysis showing the ten enriched pathways positively correlated with cells in Cluster 3. Normalized enrichment scores (NES) were shown below. (B) UMAP plots showing the cell cycle states of the tumor cells in T57 and T62 (color code in the right). (C) Heatmap showing the scaled expression values of genes upregulated in Cluster 3 of T57 and T62. Biologically important genes are listed on the left. (D) Heatmap of the highest-scoring TFs inferred by DoRothEA in each cluster in T57. Genes colored in red are the TFs of interest. (E) UMAP plots showing the expression levels and distribution of TFs in T57 (gray to red) based on Fig. 4D. (F) Expression of the four TFs in individual cells ordered by pseudotime along the arms of the trajectory shown in Fig. 2I. (G and H) UMAP plots of 15 307 malignant NB cells from scRNA-seq data for the eight NB samples colored by the transcriptomic cluster (G), and sample origin (H). (I) UMAP plots showing the expression levels and distribution of the ‘starter’-cell signature (gray to red). (J) The proportions of cell clusters within each sample.
Fig.5  Cell–cell interactions between the microenvironment and NB cells. (A) UMAP plots of scRNA-seq data from GSE137804 data set colored by cell types. (B) Schematic diagram illustrating the number of receptor-ligand interactions between the microenvironment and the ‘starter’ cells or between the microenvironment and the other tumor cells; the arrows indicate the direction of the interaction. (C and D) Relative contribution of each signaling pathway to the outgoing communication (C) and the incoming communication (D) network in the ‘starter’ cells. (E and F) The inferred TGFβ signaling networks from NB cells to the microenvironment (E) and from the microenvironment to NB cells (F). Circle sizes are proportional to the number of cells in each cell group and edge width represents the communication probability. (G and H) Dot plot showing the receptor-ligand pairs of the TGFβ pathway from NB cells to the microenvironment (G) and from the microenvironment to NB cells (H). The dot color and size represent the calculated communication probability and P-values. P-values are computed from the one-sided permutation test. (I) Dot plot showing the expression levels of representative receptor-ligand pair genes of TGFβ pathway in our scRNA-seq data from the eight NB samples. (J and K) Multilayer intercellular/intracellular TGFβ signaling network between the ‘starter’ cells and the microenvironment both in forward (NB to microenvironment) (J) and in backward (microenvironment to NB) (K) directions in the GSE137804 data set.
Fig.6  Validation of the ‘starter’-cell signature. (A) The proportion of high- or low-expression groups within major clinical subgroups in the 16 NB patients of previous study (GSE137804). (B) Boxplots depict the expression of the ‘starter’-cell signature in patients of the R2 data set (E-MTAB-8248), categorized based on MYCN status (amplified versus non-amplified), INSS staging (stage 4 versus stages 1, 2, 3, and 4S) or TERT status (TERT rearrangement versus TERT wild-type). Boxplot of the ‘starter’-cell signature expression in patients of the GSE16476 data set, categorized based on the distant metastasis. The P values are reported from two-sided t-tests. (C and D) Kaplan?Meier plots of event-free survival (C) and overall survival (D) for 222 NB patients from the previously published R2 data sets (E-MTAB-8248) based on the expression levels of the ‘starter’-cell signature. Patients were divided into two groups by the median expression level of the signature (n = 111 and 111 tumors in the two groups). P values were determined using the log-rank test to compare both groups. (E) The Cox proportional regression analysis of the data set described in Fig. 6C and 6D, with the ‘starter’-cell signature included.
1 A Zafar, W Wang, G Liu, X Wang, W Xian, F McKeon, J Foster, J Zhou, R Zhang. Molecular targeting therapies for neuroblastoma: progress and challenges. Med Res Rev 2021; 41(2): 961–1021
https://doi.org/10.1002/med.21750
2 A Furlan, I Adameyko. Schwann cell precursor: a neural crest cell in disguise?. Dev Biol 2018; 444(Suppl 1): S25–S35
https://doi.org/10.1016/j.ydbio.2018.02.008
3 GM Brodeur, R Iyer, JL Croucher, T Zhuang, M Higashi, V Kolla. Therapeutic targets for neuroblastomas. Expert Opin Ther Targets 2014; 18(3): 277–292
https://doi.org/10.1517/14728222.2014.867946
4 S Ackermann, M Cartolano, B Hero, A Welte, Y Kahlert, A Roderwieser, C Bartenhagen, E Walter, J Gecht, L Kerschke, R Volland, R Menon, JM Heuckmann, M Gartlgruber, S Hartlieb, KO Henrich, K Okonechnikov, J Altmüller, P Nürnberg, S Lefever, Wilde B de, F Sand, F Ikram, C Rosswog, J Fischer, J Theissen, F Hertwig, AD Singhi, T Simon, W Vogel, S Perner, B Krug, M Schmidt, S Rahmann, V Achter, U Lang, C Vokuhl, M Ortmann, R Büttner, A Eggert, F Speleman, RJ O’Sullivan, RK Thomas, F Berthold, J Vandesompele, A Schramm, F Westermann, JH Schulte, M Peifer, M Fischer. A mechanistic classification of clinical phenotypes in neuroblastoma. Science 2018; 362(6419): 1165–1170
https://doi.org/10.1126/science.aat6768
5 IV Kholodenko, DV Kalinovsky, II Doronin, SM Deyev, RV Kholodenko. Neuroblastoma origin and therapeutic targets for immunotherapy. J Immunol Res 2018; 2018: 7394268
https://doi.org/10.1155/2018/7394268
6 KK Matthay, JM Maris, G Schleiermacher, A Nakagawara, CL Mackall, L Diller, WA Weiss. Neuroblastoma. Nat Rev Dis Primers 2016; 2(1): 16078
https://doi.org/10.1038/nrdp.2016.78
7 T Teitz, M Inoue, MB Valentine, K Zhu, JE Rehg, W Zhao, D Finkelstein, YD Wang, MD Johnson, C Calabrese, M Rubinstein, R Hakem, WA Weiss, JM Lahti. Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis. Cancer Res 2013; 73(13): 4086–4097
https://doi.org/10.1158/0008-5472.CAN-12-2681
8 T Zheng, M Ménard, WA Weiss. Neuroblastoma metastases: leveraging the avian neural crest. Cancer Cell 2017; 32(4): 395–397
https://doi.org/10.1016/j.ccell.2017.09.012
9 S Zhu, X Zhang, N Weichert-Leahey, Z Dong, C Zhang, G Lopez, T Tao, S He, AC Wood, D Oldridge, CY Ung, JH van Ree, A Khan, BM Salazar, E Lummertz da Rocha, MW Zimmerman, F Guo, H Cao, X Hou, SJ Weroha, AR Perez-Atayde, DS Neuberg, A Meves, MA McNiven, JM van Deursen, H Li, JM Maris, AT Look. LMO1 synergizes with MYCN to promote neuroblastoma initiation and metastasis. Cancer Cell 2017; 32(3): 310–323.e5
https://doi.org/10.1016/j.ccell.2017.08.002
10 J Massagué, AC Obenauf. Metastatic colonization by circulating tumour cells. Nature 2016; 529(7586): 298–306
https://doi.org/10.1038/nature17038
11 J Peng, BF Sun, CY Chen, JY Zhou, YS Chen, H Chen, L Liu, D Huang, J Jiang, GS Cui, Y Yang, W Wang, D Guo, M Dai, J Guo, T Zhang, Q Liao, Y Liu, YL Zhao, DL Han, Y Zhao, YG Yang, W Wu. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res 2019; 29(9): 725–738
https://doi.org/10.1038/s41422-019-0195-y
12 SV Puram, I Tirosh, AS Parikh, AP Patel, K Yizhak, S Gillespie, C Rodman, CL Luo, EA Mroz, KS Emerick, DG Deschler, MA Varvares, R Mylvaganam, O Rozenblatt-Rosen, JW Rocco, WC Faquin, DT Lin, A Regev, BE Bernstein. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 2017; 171(7): 1611–1624.e24
https://doi.org/10.1016/j.cell.2017.10.044
13 T Kan, S Zhang, S Zhou, Y Zhang, Y Zhao, Y Gao, T Zhang, F Gao, X Wang, L Zhao, M Yang. Single-cell RNA-seq recognized the initiator of epithelial ovarian cancer recurrence. Oncogene 2022; 41(6): 895–906
https://doi.org/10.1038/s41388-021-02139-z
14 R Dong, R Yang, Y Zhan, HD Lai, CJ Ye, XY Yao, WQ Luo, XM Cheng, JJ Miao, JF Wang, BH Liu, XQ Liu, LL Xie, Y Li, M Zhang, L Chen, WC Song, W Qian, WQ Gao, YH Tang, CY Shen, W Jiang, G Chen, W Yao, KR Dong, XM Xiao, S Zheng, K Li, J Wang. Single-cell characterization of malignant phenotypes and developmental trajectories of adrenal neuroblastoma. Cancer Cell 2020; 38(5): 716–733.e6
https://doi.org/10.1016/j.ccell.2020.08.014
15 S Jansky, AK Sharma, V Körber, A Quintero, UH Toprak, EM Wecht, M Gartlgruber, A Greco, E Chomsky, TGP Grünewald, KO Henrich, A Tanay, C Herrmann, T Höfer, F Westermann. Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nat Genet 2021; 53(5): 683–693
https://doi.org/10.1038/s41588-021-00806-1
16 G Kildisiute, WM Kholosy, MD Young, K Roberts, R Elmentaite, SR van Hooff, CN Pacyna, E Khabirova, A Piapi, C Thevanesan, E Bugallo-Blanco, C Burke, L Mamanova, KM Keller, KPS Langenberg-Ververgaert, P Lijnzaad, T Margaritis, FCP Holstege, ML Tas, M Wijnen, MM van Noesel, I Del Valle, G Barone, R van der Linden, C Duncan, J Anderson, JC Achermann, M Haniffa, SA Teichmann, D Rampling, NJ Sebire, X He, RR de Krijger, RA Barker, KB Meyer, O Bayraktar, K Straathof, JJ Molenaar, S Behjati. Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell. Sci Adv 2021; 7(6): eabd3311
https://doi.org/10.1126/sciadv.abd3311
17 ES Hanemaaijer, T Margaritis, K Sanders, FL Bos, T Candelli, H Al-Saati, MM van Noesel, FAG Meyer-Wentrup, M van de Wetering, FCP Holstege, H Clevers. Single-cell atlas of developing murine adrenal gland reveals relation of Schwann cell precursor signature to neuroblastoma phenotype. Proc Natl Acad Sci USA 2021; 118(5): e2022350118
https://doi.org/10.1073/pnas.2022350118
18 OC Bedoya-Reina, W Li, M Arceo, M Plescher, P Bullova, H Pui, M Kaucka, P Kharchenko, T Martinsson, J Holmberg, I Adameyko, Q Deng, C Larsson, CC Juhlin, P Kogner, S Schlisio. Single-nuclei transcriptomes from human adrenal gland reveal distinct cellular identities of low and high-risk neuroblastoma tumors. Nat Commun 2021; 12(1): 5309
https://doi.org/10.1038/s41467-021-24870-7
19 P Kameneva, AV Artemov, ME Kastriti, L Faure, TK Olsen, J Otte, A Erickson, B Semsch, ER Andersson, M Ratz, J Frisén, AS Tischler, Krijger RR de, T Bouderlique, N Akkuratova, M Vorontsova, O Gusev, K Fried, E Sundström, S Mei, P Kogner, N Baryawno, PV Kharchenko, I Adameyko. Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin. Nat Genet 2021; 53(5): 694–706
https://doi.org/10.1038/s41588-021-00818-x
20 X Yuan, JA Seneviratne, S Du, Y Xu, Y Chen, Q Jin, X Jin, A Balachandran, S Huang, Y Xu, Y Zhai, L Lu, M Tang, Y Dong, BB Cheung, GM Marshall, W Shi, DR Carter, C Zhang. Single-cell profiling of peripheral neuroblastic tumors identifies an aggressive transitional state that bridges an adrenergic-mesenchymal trajectory. Cell Rep 2022; 41(1): 111455
https://doi.org/10.1016/j.celrep.2022.111455
21 IS Fetahu, W Esser-Skala, R Dnyansagar, S Sindelar, F Rifatbegovic, A Bileck, L Skos, E Bozsaky, D Lazic, L Shaw, M Tötzl, D Tarlungeanu, M Bernkopf, M Rados, W Weninger, EM Tomazou, C Bock, C Gerner, R Ladenstein, M Farlik, N Fortelny, S Taschner-Mandl. Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis. Nat Commun 2023; 14(1): 3620
https://doi.org/10.1038/s41467-023-39210-0
22 CS McGinnis, LM Murrow, ZJ Gartner. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 2019; 8(4): 329–337.e4
https://doi.org/10.1016/j.cels.2019.03.003
23 I Korsunsky, N Millard, J Fan, K Slowikowski, F Zhang, K Wei, Y Baglaenko, M Brenner, PR Loh, S Raychaudhuri. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods 2019; 16(12): 1289–1296
https://doi.org/10.1038/s41592-019-0619-0
24 I Tirosh, AS Venteicher, C Hebert, LE Escalante, AP Patel, K Yizhak, JM Fisher, C Rodman, C Mount, MG Filbin, C Neftel, N Desai, J Nyman, B Izar, CC Luo, JM Francis, AA Patel, ML Onozato, N Riggi, KJ Livak, D Gennert, R Satija, BV Nahed, WT Curry, RL Martuza, R Mylvaganam, AJ Iafrate, MP Frosch, TR Golub, MN Rivera, G Getz, O Rozenblatt-Rosen, DP Cahill, M Monje, BE Bernstein, DN Louis, A Regev, ML Suvà. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 2016; 539(7628): 309–313
https://doi.org/10.1038/nature20123
25 H Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34(18): 3094–3100
https://doi.org/10.1093/bioinformatics/bty191
26 FJ Sedlazeck, P Rescheneder, M Smolka, H Fang, M Nattestad, A von Haeseler, MC Schatz. Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods 2018; 15(6): 461–468
https://doi.org/10.1038/s41592-018-0001-7
27 D Aran, AP Looney, L Liu, E Wu, V Fong, A Hsu, S Chak, RP Naikawadi, PJ Wolters, AR Abate, AJ Butte, M Bhattacharya. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20(2): 163–172
https://doi.org/10.1038/s41590-018-0276-y
28 Q Zhang, Y He, N Luo, SJ Patel, Y Han, R Gao, M Modak, S Carotta, C Haslinger, D Kind, GW Peet, G Zhong, S Lu, W Zhu, Y Mao, M Xiao, M Bergmann, X Hu, SP Kerkar, AB Vogt, S Pflanz, K Liu, J Peng, X Ren, Z Zhang. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 2019; 179(4): 829–845.e20
https://doi.org/10.1016/j.cell.2019.10.003
29 C Trapnell, D Cacchiarelli, J Grimsby, P Pokharel, S Li, M Morse, NJ Lennon, KJ Livak, TS Mikkelsen, JL Rinn. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014; 32(4): 381–386
https://doi.org/10.1038/nbt.2859
30 K Street, D Risso, RB Fletcher, D Das, J Ngai, N Yosef, E Purdom, S Dudoit. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 2018; 19(1): 477
https://doi.org/10.1186/s12864-018-4772-0
31 L Garcia-Alonso, CH Holland, MM Ibrahim, D Turei, J Saez-Rodriguez. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res 2019; 29(8): 1363–1375
https://doi.org/10.1101/gr.240663.118
32 MJ Alvarez, Y Shen, FM Giorgi, A Lachmann, BB Ding, BH Ye, A Califano. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat Genet 2016; 48(8): 838–847
https://doi.org/10.1038/ng.3593
33 CH Holland, J Tanevski, J Perales-Patón, J Gleixner, MP Kumar, E Mereu, BA Joughin, O Stegle, DA Lauffenburger, H Heyn, B Szalai, J Saez-Rodriguez. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biol 2020; 21(1): 36
https://doi.org/10.1186/s13059-020-1949-z
34 BM Verhoeven, S Mei, TK Olsen, K Gustafsson, A Valind, A Lindström, D Gisselsson, SS Fard, C Hagerling, PV Kharchenko, P Kogner, JI Johnsen, N Baryawno. The immune cell atlas of human neuroblastoma. Cell Rep Med 2022; 3(6): 100657
https://doi.org/10.1016/j.xcrm.2022.100657
35 S Jin, CF Guerrero-Juarez, L Zhang, I Chang, R Ramos, CH Kuan, P Myung, MV Plikus, Q Nie. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021; 12(1): 1088
https://doi.org/10.1038/s41467-021-21246-9
36 J Zhang, M Guan, Q Wang, J Zhang, T Zhou, X Sun. Single-cell transcriptome-based multilayer network biomarker for predicting prognosis and therapeutic response of gliomas. Brief Bioinform 2020; 21(3): 1080–1097
https://doi.org/10.1093/bib/bbz040
37 AP Patel, I Tirosh, JJ Trombetta, AK Shalek, SM Gillespie, H Wakimoto, DP Cahill, BV Nahed, WT Curry, RL Martuza, DN Louis, O Rozenblatt-Rosen, ML Suvà, A Regev, BE Bernstein. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014; 344(6190): 1396–1401
https://doi.org/10.1126/science.1254257
38 GM Brodeur. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 2003; 3(3): 203–216
https://doi.org/10.1038/nrc1014
39 XW Pan, H Zhang, D Xu, JX Chen, WJ Chen, SS Gan, FJ Qu, CM Chu, JW Cao, YH Fan, X Song, JQ Ye, W Zhou, XG Cui. Identification of a novel cancer stem cell subpopulation that promotes progression of human fatal renal cell carcinoma by single-cell RNA-seq analysis. Int J Biol Sci 2020; 16(16): 3149–3162
https://doi.org/10.7150/ijbs.46645
40 Manno G La, R Soldatov, A Zeisel, E Braun, H Hochgerner, V Petukhov, K Lidschreiber, ME Kastriti, P Lönnerberg, A Furlan, J Fan, LE Borm, Z Liu, Bruggen D van, J Guo, X He, R Barker, E Sundström, G Castelo-Branco, P Cramer, I Adameyko, S Linnarsson, PV Kharchenko. RNA velocity of single cells. Nature 2018; 560(7719): 494–498
https://doi.org/10.1038/s41586-018-0414-6
41 B Spanjaard, B Hu, N Mitic, P Olivares-Chauvet, S Janjuha, N Ninov, JP Junker. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat Biotechnol 2018; 36(5): 469–473
https://doi.org/10.1038/nbt.4124
42 L Kester, A van Oudenaarden. Single-cell transcriptomics meets lineage tracing. Cell Stem Cell 2018; 23(2): 166–179
https://doi.org/10.1016/j.stem.2018.04.014
43 H Lee-Six, NF Øbro, MS Shepherd, S Grossmann, K Dawson, M Belmonte, RJ Osborne, BJP Huntly, I Martincorena, E Anderson, L O’Neill, MR Stratton, E Laurenti, AR Green, DG Kent, PJ Campbell. Population dynamics of normal human blood inferred from somatic mutations. Nature 2018; 561(7724): 473–478
https://doi.org/10.1038/s41586-018-0497-0
44 TE Miller, CA Lareau, JA Verga, EAK DePasquale, V Liu, D Ssozi, K Sandor, Y Yin, LS Ludwig, CA El Farran, DM Morgan, AT Satpathy, GK Griffin, AA Lane, JC Love, BE Bernstein, VG Sankaran, P van Galen. Mitochondrial variant enrichment from high-throughput single-cell RNA sequencing resolves clonal populations. Nat Biotechnol 2022; 40(7): 1030–1034
https://doi.org/10.1038/s41587-022-01210-8
45 B Nguyen, C Fong, A Luthra, SA Smith, RG DiNatale, S Nandakumar, H Walch, WK Chatila, R Madupuri, R Kundra, CM Bielski, B Mastrogiacomo, MTA Donoghue, A Boire, S Chandarlapaty, K Ganesh, JJ Harding, CA Iacobuzio-Donahue, P Razavi, E Reznik, CM Rudin, D Zamarin, W Abida, GK Abou-Alfa, C Aghajanian, A Cercek, P Chi, D Feldman, AL Ho, G Iyer, YY Janjigian, M Morris, RJ Motzer, EM O’Reilly, MA Postow, NP Raj, GJ Riely, ME Robson, JE Rosenberg, A Safonov, AN Shoushtari, W Tap, MY Teo, AM Varghese, M Voss, R Yaeger, MG Zauderer, N Abu-Rustum, J Garcia-Aguilar, B Bochner, A Hakimi, WR Jarnagin, DR Jones, D Molena, L Morris, E Rios-Doria, P Russo, S Singer, VE Strong, D Chakravarty, LH Ellenson, A Gopalan, JS Reis-Filho, B Weigelt, M Ladanyi, M Gonen, SP Shah, J Massague, J Gao, A Zehir, MF Berger, DB Solit, SF Bakhoum, F Sanchez-Vega, N Schultz. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 2022; 185(3): 563–575.e11
https://doi.org/10.1016/j.cell.2022.01.003
46 AW Lambert, DR Pattabiraman, RA Weinberg. Emerging biological principles of metastasis. Cell 2017; 168(4): 670–691
https://doi.org/10.1016/j.cell.2016.11.037
47 K Lundgren, B Nordenskjöld, G Landberg. Hypoxia, Snail and incomplete epithelial-mesenchymal transition in breast cancer. Br J Cancer 2009; 101(10): 1769–1781
https://doi.org/10.1038/sj.bjc.6605369
48 MA Nieto, RY Huang, RA Jackson, JP Thiery. EMT: 2016. Cell 2016; 166(1): 21–45
https://doi.org/10.1016/j.cell.2016.06.028
49 M Li, C Sun, X Bu, Y Que, L Zhang, Y Zhang, L Zhang, S Lu, J Huang, J Zhu, J Wang, F Sun, Y Zhang. ISL1 promoted tumorigenesis and EMT via Aurora kinase A-induced activation of PI3K/AKT signaling pathway in neuroblastoma. Cell Death Dis 2021; 12(6): 620
https://doi.org/10.1038/s41419-021-03894-3
50 T Ferronha, MA Rabadán, E Gil-Guiñon, Dréau G Le, Torres C de, E Martí. LMO4 is an essential cofactor in the Snail2-mediated epithelial-to-mesenchymal transition of neuroblastoma and neural crest cells. J Neurosci 2013; 33(7): 2773–2783
https://doi.org/10.1523/JNEUROSCI.4511-12.2013
51 P Missios, EL da Rocha, DS Pearson, J Philipp, MM Aleman, M Pirouz, D Farache, JW Franses, C Kubaczka, KM Tsanov, DK Jha, B Pepe-Mooney, JT Powers, RI Gregory, AS Lee, D Dominguez, DT Ting, GQ Daley. LIN28B alters ribosomal dynamics to promote metastasis in MYCN-driven malignancy. J Clin Invest 2021; 131(22): e145142
https://doi.org/10.1172/JCI145142
52 CY Tan, CL Chang. NDPKA is not just a metastasis suppressor—be aware of its metastasis-promoting role in neuroblastoma. Lab Invest 2018; 98(2): 219–227
https://doi.org/10.1038/labinvest.2017.105
53 SK Das, S Maji, SL Wechman, P Bhoopathi, AK Pradhan, S Talukdar, D Sarkar, J Landry, C Guo, XY Wang, WK Cavenee, L Emdad, PB Fisher. MDA-9/Syntenin (SDCBP): novel gene and therapeutic target for cancer metastasis. Pharmacol Res 2020; 155: 104695
https://doi.org/10.1016/j.phrs.2020.104695
54 LN Kent, G Leone. The broken cycle: E2F dysfunction in cancer. Nat Rev Cancer 2019; 19(6): 326–338
https://doi.org/10.1038/s41568-019-0143-7
55 CJ Barger, C Branick, L Chee, AR Karpf. Pan-cancer analyses reveal genomic features of FOXM1 overexpression in cancer. Cancers (Basel) 2019; 11(2): 251
https://doi.org/10.3390/cancers11020251
56 J Musa, MM Aynaud, O Mirabeau, O Delattre, TG Grünewald. MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis. Cell Death Dis 2017; 8(6): e2895
https://doi.org/10.1038/cddis.2017.244
57 S Polager, D Ginsberg. E2F—at the crossroads of life and death. Trends Cell Biol 2008; 18(11): 528–535
https://doi.org/10.1016/j.tcb.2008.08.003
58 LR Bandara, EW Lam, TS Sørensen, M Zamanian, R Girling, Thangue NB La. DP-1: a cell cycle-regulated and phosphorylated component of transcription factor DRTF1/E2F which is functionally important for recognition by pRb and the adenovirus E4 orf 6/7 protein. EMBO J 1994; 13(13): 3104–3114
https://doi.org/10.1002/j.1460-2075.1994.tb06609.x
59 E Fang, X Wang, F Yang, A Hu, J Wang, D Li, H Song, M Hong, Y Guo, Y Liu, H Li, K Huang, L Zheng, Q Tong. Therapeutic targeting of MZF1–AS1/PARP1/E2F1 axis inhibits proline synthesis and neuroblastoma progression. Adv Sci (Weinh) 2019; 6(19): 1900581
https://doi.org/10.1002/advs.201900581
60 Z Wang, HJ Park, JR Carr, YJ Chen, Y Zheng, J Li, AL Tyner, RH Costa, S Bagchi, P Raychaudhuri. FoxM1 in tumorigenicity of the neuroblastoma cells and renewal of the neural progenitors. Cancer Res 2011; 71(12): 4292–4302
https://doi.org/10.1158/0008-5472.CAN-10-4087
61 G Raschellà, V Cesi, R Amendola, A Negroni, B Tanno, P Altavista, GP Tonini, Bernardi B De, B Calabretta. Expression of B-myb in neuroblastoma tumors is a poor prognostic factor independent from MYCN amplification. Cancer Res 1999; 59(14): 3365–3368
62 J Xu, S Lamouille, R Derynck. TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009; 19(2): 156–172
https://doi.org/10.1038/cr.2009.5
63 D Padua, J Massagué. Roles of TGFbeta in metastasis. Cell Res 2009; 19(1): 89–102
https://doi.org/10.1038/cr.2008.316
64 R Derynck, SJ Turley, RJ Akhurst. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2021; 18(1): 9–34
https://doi.org/10.1038/s41571-020-0403-1
65 J Cheng, J Zhang, Z Wu, X Sun. Inferring microenvironmental regulation of gene expression from single-cell RNA sequencing data using scMLnet with an application to COVID-19. Brief Bioinform 2021; 22(2): 988–1005
https://doi.org/10.1093/bib/bbaa327
66 J Luo, M Deng, X Zhang, X Sun. ESICCC as a systematic computational framework for evaluation, selection, and integration of cell-cell communication inference methods. Genome Res 2023; 33(10): 1788–1805
https://doi.org/10.1101/gr.278001.123
67 X HeX Sun Y Shao. Multicellular network-informed survival model for identification of drug targets of gliomas. IEEE J Biomed Health Inform 2023; [Epub ahead of print] doi: 10.1109/JBHI.2023.3309825
68 M Huang, WA Weiss. Neuroblastoma and MYCN. Cold Spring Harb Perspect Med 2013; 3(10): a014415
https://doi.org/10.1101/cshperspect.a014415
69 GM Brodeur, J Pritchard, F Berthold, NL Carlsen, V Castel, RP Castelberry, B De Bernardi, AE Evans, M Favrot, F Hedborg. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 1993; 11(8): 1466–1477
https://doi.org/10.1200/JCO.1993.11.8.1466
70 WB London, RP Castleberry, KK Matthay, AT Look, RC Seeger, H Shimada, P Thorner, G Brodeur, JM Maris, CP Reynolds, SL Cohn. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J Clin Oncol 2005; 23(27): 6459–6465
https://doi.org/10.1200/JCO.2005.05.571
71 S Turajlic, C Swanton. Metastasis as an evolutionary process. Science 2016; 352(6282): 169–175
https://doi.org/10.1126/science.aaf2784
72 JP Thiery, H Acloque, RY Huang, MA Nieto. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5): 871–890
https://doi.org/10.1016/j.cell.2009.11.007
73 X Ye, RA Weinberg. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol 2015; 25(11): 675–686
https://doi.org/10.1016/j.tcb.2015.07.012
74 Q Zhang, L Fei, R Han, R Huang, Y Wang, H Chen, B Yao, N Qiao, Z Wang, Z Ma, Z Ye, Y Zhang, W Wang, Y Wang, L Kong, X Shou, X Cao, X Zhou, M Shen, H Cheng, Z Yao, C Zhang, G Guo, Y Zhao. Single-cell transcriptome reveals cellular hierarchies and guides p-EMT-targeted trial in skull base chordoma. Cell Discov 2022; 8(1): 94
https://doi.org/10.1038/s41421-022-00459-2
75 EM Grasset, M Dunworth, G Sharma, M Loth, J Tandurella, A Cimino-Mathews, M Gentz, S Bracht, M Haynes, EJ Fertig, AJ Ewald. Triple-negative breast cancer metastasis involves complex epithelial-mesenchymal transition dynamics and requires vimentin. Sci Transl Med 2022; 14(656): eabn7571
https://doi.org/10.1126/scitranslmed.abn7571
76 I Pastushenko, C Blanpain. EMT transition states during tumor progression and metastasis. Trends Cell Biol 2019; 29(3): 212–226
https://doi.org/10.1016/j.tcb.2018.12.001
77 AM Krebs, J Mitschke, M Lasierra Losada, O Schmalhofer, M Boerries, H Busch, M Boettcher, D Mougiakakos, W Reichardt, P Bronsert, VG Brunton, C Pilarsky, TH Winkler, S Brabletz, MP Stemmler, T Brabletz. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 2017; 19(5): 518–529
https://doi.org/10.1038/ncb3513
78 Y Hao, D Baker, P Ten Dijke. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci 2019; 20(11): 2767
https://doi.org/10.3390/ijms20112767
79 Y Zhang, X Zou, W Qian, X Weng, L Zhang, L Zhang, S Wang, X Cao, L Ma, G Wei, Y Wu, Z Hou. Enhanced PAPSS2/VCAN sulfation axis is essential for Snail-mediated breast cancer cell migration and metastasis. Cell Death Differ 2019; 26(3): 565–579
https://doi.org/10.1038/s41418-018-0147-y
80 JL Carstens, S Yang, P Correa de Sampaio, X Zheng, S Barua, KM McAndrews, A Rao, JK Burks, AD Rhim, R Kalluri. Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver metastasis in pancreatic cancer. Cell Rep 2021; 35(2): 108990
https://doi.org/10.1016/j.celrep.2021.108990
81 MV Sepporta, V Praz, Bourloud K Balmas, JM Joseph, N Jauquier, N Riggi, K Nardou-Auderset, A Petit, JY Scoazec, H Sartelet, R Renella, A Mühlethaler-Mottet. TWIST1 expression is associated with high-risk neuroblastoma and promotes primary and metastatic tumor growth. Commun Biol 2022; 5(1): 42
https://doi.org/10.1038/s42003-021-02958-6
[1] FMD-24023-of-LZ_suppl_1 Download
[1] Miaomiao Zhu, Huamin Liang, Zhe Zhang, Hao Jiang, Jingwen Pu, Xiaoyi Hang, Qian Zhou, Jiacheng Xiang, Ximiao He. Distinct mononuclear diploid cardiac subpopulation with minimal cell–cell communications persists in embryonic and adult mammalian heart[J]. Front. Med., 2023, 17(5): 939-956.
[2] Pengfei Zhao, Yating Wang, Xiao Yu, Yabing Nan, Shi Liu, Bin Li, Zhumei Cui, Zhihua Liu. Long noncoding RNA LOC646029 functions as a ceRNA to suppress ovarian cancer progression through the miR-627-3p/SPRED1 axis[J]. Front. Med., 2023, 17(5): 924-938.
[3] Danhui Weng, Huihua Xiong, Changkun Zhu, Xiaoyun Wan, Yaxia Chen, Xinyu Wang, Youzhong Zhang, Jie Jiang, Xi Zhang, Qinglei Gao, Gang Chen, Hui Xing, Changyu Wang, Kezhen Li, Yaheng Chen, Yuyan Mao, Dongxiao Hu, Zimin Pan, Qingqin Chen, Baoxia Cui, Kun Song, Cunjian Yi, Guangcai Peng, Xiaobing Han, Ruifang An, Liangsheng Fan, Wei Wang, Tingchuan Xiong, Yile Chen, Zhenzi Tang, Lin Li, Xingsheng Yang, Xiaodong Cheng, Weiguo Lu, Hui Wang, Beihua Kong, Xing Xie, Ding Ma. Adjuvant chemotherapy versus adjuvant concurrent chemoradiotherapy after radical surgery for early-stage cervical cancer: a randomized, non-inferiority, multicenter trial[J]. Front. Med., 2023, 17(1): 93-104.
[4] Hongyi Wang, Zhuochao Liu, Jun Wang, Fangqiong Hu, Qi Zhou, Li Wei, Qiyuan Bao, Jizhuang Wang, Jing Liang, Zhihong Liu, Weibin Zhang. Superenhancers activate the autophagy-related genes Beclin1 and LC3B to drive metastasis and drug resistance in osteosarcoma[J]. Front. Med., 2022, 16(6): 883-895.
[5] Jingyue Zhang, Yawen Song, Qianqian Shi, Li Fu. Research progress on FASN and MGLL in the regulation of abnormal lipid metabolism and the relationship between tumor invasion and metastasis[J]. Front. Med., 2021, 15(5): 649-656.
[6] Jianpeng Liu, Xinhua Chen, Shusen Zheng. Immune response triggered by the ablation of hepatocellular carcinoma with nanosecond pulsed electric field[J]. Front. Med., 2021, 15(2): 170-177.
[7] Yun Zhang, Robert A. Weinberg. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities[J]. Front. Med., 2018, 12(4): 361-373.
[8] Bo Zhou, Hongbin Xu, Meng Xia, Chaoyang Sun, Na Li, Ensong Guo, Lili Guo, Wanying Shan, Hao Lu, Yifan Wu, Yuan Li, Degui Yang, Danhui Weng, Li Meng, Junbo Hu, Ding Ma, Gang Chen, Kezhen Li. Overexpressed miR-9 promotes tumor metastasis via targeting E-cadherin in serous ovarian cancer[J]. Front. Med., 2017, 11(2): 214-222.
[9] Yugang Cheng,Hanxiang Zhan,Lei Wang,Jianwei Xu,Guangyong Zhang,Zongli Zhang,Sanyuan Hu. Analysis of 100 consecutive cases of resectable pancreatic neuroendocrine neoplasms: clinicopathological characteristics and long-term outcomes[J]. Front. Med., 2016, 10(4): 444-450.
[10] Chunxiao Li,Haijuan Wang,Feng Lin,Hui Li,Tao Wen,Haili Qian,Qimin Zhan. Bioinformatic exploration of MTA1-regulated gene networks in colon cancer[J]. Front. Med., 2016, 10(2): 178-182.
[11] Jiangnan Liu,Bin Yi,Zhe Zhang,Yi Cao. CD176 single-chain variable antibody fragment inhibits the adhesion of cancer cells to endothelial cells and hepatocytes[J]. Front. Med., 2016, 10(2): 204-211.
[12] Felice Ho-Ching Tsang,Sandy Leung-Kuen Au,Lai Wei,Dorothy Ngo-Yin Fan,Joyce Man-Fong Lee,Carmen Chak-Lui Wong,Irene Oi-Lin Ng,Chun-Ming Wong. MicroRNA-142-3p and microRNA-142-5p are downregulated in hepatocellular carcinoma and exhibit synergistic effects on cell motility[J]. Front. Med., 2015, 9(3): 331-343.
[13] Tian Wang, Yan Li, Abidan Tuerhanjiang, Wenwen Wang, Zhangying Wu, Ming Yuan, Shixuan Wang. Correlation of Twist upregulation and senescence bypass during the progression and metastasis of cervical cancer[J]. Front Med, 2014, 8(1): 106-112.
[14] Lunxiu Qin. Osteopontin is a promoter for hepatocellular carcinoma metastasis: a summary of 10 years of studies[J]. Front Med, 2014, 8(1): 24-32.
[15] Carmen Chak-Lui Wong, Alan Ka-Lun Kai, Irene Oi-Lin Ng. The impact of hypoxia in hepatocellular carcinoma metastasis[J]. Front Med, 2014, 8(1): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed