|
|
Single-cell RNA-seq reveals the transcriptional program underlying tumor progression and metastasis in neuroblastoma |
Zhe Nian1, Dan Wang1, Hao Wang1, Wenxu Liu1, Zhenyi Ma2, Jie Yan3, Yanna Cao3, Jie Li3, Qiang Zhao3( ), Zhe Liu1,2,4( ) |
1. Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China 2. Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China 3. Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China 4. Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China |
|
|
Abstract Neuroblastoma (NB) is one of the most common childhood malignancies. Sixty percent of patients present with widely disseminated clinical signs at diagnosis and exhibit poor outcomes. However, the molecular mechanisms triggering NB metastasis remain largely uncharacterized. In this study, we generated a transcriptomic atlas of 15 447 NB cells from eight NB samples, including paired samples of primary tumors and bone marrow metastases. We used time-resolved analysis to chart the evolutionary trajectory of NB cells from the primary tumor to the metastases in the same patient and identified a common ‘starter’ subpopulation that initiates tumor development and metastasis. The ‘starter’ population exhibited high expression levels of multiple cell cycle-related genes, indicating the important role of cell cycle upregulation in NB tumor progression. In addition, our evolutionary trajectory analysis demonstrated the involvement of partial epithelial-to-mesenchymal transition (p-EMT) along the metastatic route from the primary site to the bone marrow. Our study provides insights into the program driving NB metastasis and presents a signature of metastasis-initiating cells as an independent prognostic indicator and potential therapeutic target to inhibit the initiation of NB metastasis.
|
Keywords
single-cell RNA sequencing
metastasis
neuroblastoma
epithelial-to-mesenchymal transition
|
Corresponding Author(s):
Qiang Zhao,Zhe Liu
|
Just Accepted Date: 29 May 2024
Online First Date: 16 July 2024
Issue Date: 30 August 2024
|
|
1 |
A Zafar, W Wang, G Liu, X Wang, W Xian, F McKeon, J Foster, J Zhou, R Zhang. Molecular targeting therapies for neuroblastoma: progress and challenges. Med Res Rev 2021; 41(2): 961–1021
https://doi.org/10.1002/med.21750
|
2 |
A Furlan, I Adameyko. Schwann cell precursor: a neural crest cell in disguise?. Dev Biol 2018; 444(Suppl 1): S25–S35
https://doi.org/10.1016/j.ydbio.2018.02.008
|
3 |
GM Brodeur, R Iyer, JL Croucher, T Zhuang, M Higashi, V Kolla. Therapeutic targets for neuroblastomas. Expert Opin Ther Targets 2014; 18(3): 277–292
https://doi.org/10.1517/14728222.2014.867946
|
4 |
S Ackermann, M Cartolano, B Hero, A Welte, Y Kahlert, A Roderwieser, C Bartenhagen, E Walter, J Gecht, L Kerschke, R Volland, R Menon, JM Heuckmann, M Gartlgruber, S Hartlieb, KO Henrich, K Okonechnikov, J Altmüller, P Nürnberg, S Lefever, Wilde B de, F Sand, F Ikram, C Rosswog, J Fischer, J Theissen, F Hertwig, AD Singhi, T Simon, W Vogel, S Perner, B Krug, M Schmidt, S Rahmann, V Achter, U Lang, C Vokuhl, M Ortmann, R Büttner, A Eggert, F Speleman, RJ O’Sullivan, RK Thomas, F Berthold, J Vandesompele, A Schramm, F Westermann, JH Schulte, M Peifer, M Fischer. A mechanistic classification of clinical phenotypes in neuroblastoma. Science 2018; 362(6419): 1165–1170
https://doi.org/10.1126/science.aat6768
|
5 |
IV Kholodenko, DV Kalinovsky, II Doronin, SM Deyev, RV Kholodenko. Neuroblastoma origin and therapeutic targets for immunotherapy. J Immunol Res 2018; 2018: 7394268
https://doi.org/10.1155/2018/7394268
|
6 |
KK Matthay, JM Maris, G Schleiermacher, A Nakagawara, CL Mackall, L Diller, WA Weiss. Neuroblastoma. Nat Rev Dis Primers 2016; 2(1): 16078
https://doi.org/10.1038/nrdp.2016.78
|
7 |
T Teitz, M Inoue, MB Valentine, K Zhu, JE Rehg, W Zhao, D Finkelstein, YD Wang, MD Johnson, C Calabrese, M Rubinstein, R Hakem, WA Weiss, JM Lahti. Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis. Cancer Res 2013; 73(13): 4086–4097
https://doi.org/10.1158/0008-5472.CAN-12-2681
|
8 |
T Zheng, M Ménard, WA Weiss. Neuroblastoma metastases: leveraging the avian neural crest. Cancer Cell 2017; 32(4): 395–397
https://doi.org/10.1016/j.ccell.2017.09.012
|
9 |
S Zhu, X Zhang, N Weichert-Leahey, Z Dong, C Zhang, G Lopez, T Tao, S He, AC Wood, D Oldridge, CY Ung, JH van Ree, A Khan, BM Salazar, E Lummertz da Rocha, MW Zimmerman, F Guo, H Cao, X Hou, SJ Weroha, AR Perez-Atayde, DS Neuberg, A Meves, MA McNiven, JM van Deursen, H Li, JM Maris, AT Look. LMO1 synergizes with MYCN to promote neuroblastoma initiation and metastasis. Cancer Cell 2017; 32(3): 310–323.e5
https://doi.org/10.1016/j.ccell.2017.08.002
|
10 |
J Massagué, AC Obenauf. Metastatic colonization by circulating tumour cells. Nature 2016; 529(7586): 298–306
https://doi.org/10.1038/nature17038
|
11 |
J Peng, BF Sun, CY Chen, JY Zhou, YS Chen, H Chen, L Liu, D Huang, J Jiang, GS Cui, Y Yang, W Wang, D Guo, M Dai, J Guo, T Zhang, Q Liao, Y Liu, YL Zhao, DL Han, Y Zhao, YG Yang, W Wu. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res 2019; 29(9): 725–738
https://doi.org/10.1038/s41422-019-0195-y
|
12 |
SV Puram, I Tirosh, AS Parikh, AP Patel, K Yizhak, S Gillespie, C Rodman, CL Luo, EA Mroz, KS Emerick, DG Deschler, MA Varvares, R Mylvaganam, O Rozenblatt-Rosen, JW Rocco, WC Faquin, DT Lin, A Regev, BE Bernstein. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 2017; 171(7): 1611–1624.e24
https://doi.org/10.1016/j.cell.2017.10.044
|
13 |
T Kan, S Zhang, S Zhou, Y Zhang, Y Zhao, Y Gao, T Zhang, F Gao, X Wang, L Zhao, M Yang. Single-cell RNA-seq recognized the initiator of epithelial ovarian cancer recurrence. Oncogene 2022; 41(6): 895–906
https://doi.org/10.1038/s41388-021-02139-z
|
14 |
R Dong, R Yang, Y Zhan, HD Lai, CJ Ye, XY Yao, WQ Luo, XM Cheng, JJ Miao, JF Wang, BH Liu, XQ Liu, LL Xie, Y Li, M Zhang, L Chen, WC Song, W Qian, WQ Gao, YH Tang, CY Shen, W Jiang, G Chen, W Yao, KR Dong, XM Xiao, S Zheng, K Li, J Wang. Single-cell characterization of malignant phenotypes and developmental trajectories of adrenal neuroblastoma. Cancer Cell 2020; 38(5): 716–733.e6
https://doi.org/10.1016/j.ccell.2020.08.014
|
15 |
S Jansky, AK Sharma, V Körber, A Quintero, UH Toprak, EM Wecht, M Gartlgruber, A Greco, E Chomsky, TGP Grünewald, KO Henrich, A Tanay, C Herrmann, T Höfer, F Westermann. Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nat Genet 2021; 53(5): 683–693
https://doi.org/10.1038/s41588-021-00806-1
|
16 |
G Kildisiute, WM Kholosy, MD Young, K Roberts, R Elmentaite, SR van Hooff, CN Pacyna, E Khabirova, A Piapi, C Thevanesan, E Bugallo-Blanco, C Burke, L Mamanova, KM Keller, KPS Langenberg-Ververgaert, P Lijnzaad, T Margaritis, FCP Holstege, ML Tas, M Wijnen, MM van Noesel, I Del Valle, G Barone, R van der Linden, C Duncan, J Anderson, JC Achermann, M Haniffa, SA Teichmann, D Rampling, NJ Sebire, X He, RR de Krijger, RA Barker, KB Meyer, O Bayraktar, K Straathof, JJ Molenaar, S Behjati. Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell. Sci Adv 2021; 7(6): eabd3311
https://doi.org/10.1126/sciadv.abd3311
|
17 |
ES Hanemaaijer, T Margaritis, K Sanders, FL Bos, T Candelli, H Al-Saati, MM van Noesel, FAG Meyer-Wentrup, M van de Wetering, FCP Holstege, H Clevers. Single-cell atlas of developing murine adrenal gland reveals relation of Schwann cell precursor signature to neuroblastoma phenotype. Proc Natl Acad Sci USA 2021; 118(5): e2022350118
https://doi.org/10.1073/pnas.2022350118
|
18 |
OC Bedoya-Reina, W Li, M Arceo, M Plescher, P Bullova, H Pui, M Kaucka, P Kharchenko, T Martinsson, J Holmberg, I Adameyko, Q Deng, C Larsson, CC Juhlin, P Kogner, S Schlisio. Single-nuclei transcriptomes from human adrenal gland reveal distinct cellular identities of low and high-risk neuroblastoma tumors. Nat Commun 2021; 12(1): 5309
https://doi.org/10.1038/s41467-021-24870-7
|
19 |
P Kameneva, AV Artemov, ME Kastriti, L Faure, TK Olsen, J Otte, A Erickson, B Semsch, ER Andersson, M Ratz, J Frisén, AS Tischler, Krijger RR de, T Bouderlique, N Akkuratova, M Vorontsova, O Gusev, K Fried, E Sundström, S Mei, P Kogner, N Baryawno, PV Kharchenko, I Adameyko. Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin. Nat Genet 2021; 53(5): 694–706
https://doi.org/10.1038/s41588-021-00818-x
|
20 |
X Yuan, JA Seneviratne, S Du, Y Xu, Y Chen, Q Jin, X Jin, A Balachandran, S Huang, Y Xu, Y Zhai, L Lu, M Tang, Y Dong, BB Cheung, GM Marshall, W Shi, DR Carter, C Zhang. Single-cell profiling of peripheral neuroblastic tumors identifies an aggressive transitional state that bridges an adrenergic-mesenchymal trajectory. Cell Rep 2022; 41(1): 111455
https://doi.org/10.1016/j.celrep.2022.111455
|
21 |
IS Fetahu, W Esser-Skala, R Dnyansagar, S Sindelar, F Rifatbegovic, A Bileck, L Skos, E Bozsaky, D Lazic, L Shaw, M Tötzl, D Tarlungeanu, M Bernkopf, M Rados, W Weninger, EM Tomazou, C Bock, C Gerner, R Ladenstein, M Farlik, N Fortelny, S Taschner-Mandl. Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis. Nat Commun 2023; 14(1): 3620
https://doi.org/10.1038/s41467-023-39210-0
|
22 |
CS McGinnis, LM Murrow, ZJ Gartner. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 2019; 8(4): 329–337.e4
https://doi.org/10.1016/j.cels.2019.03.003
|
23 |
I Korsunsky, N Millard, J Fan, K Slowikowski, F Zhang, K Wei, Y Baglaenko, M Brenner, PR Loh, S Raychaudhuri. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods 2019; 16(12): 1289–1296
https://doi.org/10.1038/s41592-019-0619-0
|
24 |
I Tirosh, AS Venteicher, C Hebert, LE Escalante, AP Patel, K Yizhak, JM Fisher, C Rodman, C Mount, MG Filbin, C Neftel, N Desai, J Nyman, B Izar, CC Luo, JM Francis, AA Patel, ML Onozato, N Riggi, KJ Livak, D Gennert, R Satija, BV Nahed, WT Curry, RL Martuza, R Mylvaganam, AJ Iafrate, MP Frosch, TR Golub, MN Rivera, G Getz, O Rozenblatt-Rosen, DP Cahill, M Monje, BE Bernstein, DN Louis, A Regev, ML Suvà. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 2016; 539(7628): 309–313
https://doi.org/10.1038/nature20123
|
25 |
H Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34(18): 3094–3100
https://doi.org/10.1093/bioinformatics/bty191
|
26 |
FJ Sedlazeck, P Rescheneder, M Smolka, H Fang, M Nattestad, A von Haeseler, MC Schatz. Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods 2018; 15(6): 461–468
https://doi.org/10.1038/s41592-018-0001-7
|
27 |
D Aran, AP Looney, L Liu, E Wu, V Fong, A Hsu, S Chak, RP Naikawadi, PJ Wolters, AR Abate, AJ Butte, M Bhattacharya. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20(2): 163–172
https://doi.org/10.1038/s41590-018-0276-y
|
28 |
Q Zhang, Y He, N Luo, SJ Patel, Y Han, R Gao, M Modak, S Carotta, C Haslinger, D Kind, GW Peet, G Zhong, S Lu, W Zhu, Y Mao, M Xiao, M Bergmann, X Hu, SP Kerkar, AB Vogt, S Pflanz, K Liu, J Peng, X Ren, Z Zhang. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 2019; 179(4): 829–845.e20
https://doi.org/10.1016/j.cell.2019.10.003
|
29 |
C Trapnell, D Cacchiarelli, J Grimsby, P Pokharel, S Li, M Morse, NJ Lennon, KJ Livak, TS Mikkelsen, JL Rinn. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014; 32(4): 381–386
https://doi.org/10.1038/nbt.2859
|
30 |
K Street, D Risso, RB Fletcher, D Das, J Ngai, N Yosef, E Purdom, S Dudoit. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 2018; 19(1): 477
https://doi.org/10.1186/s12864-018-4772-0
|
31 |
L Garcia-Alonso, CH Holland, MM Ibrahim, D Turei, J Saez-Rodriguez. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res 2019; 29(8): 1363–1375
https://doi.org/10.1101/gr.240663.118
|
32 |
MJ Alvarez, Y Shen, FM Giorgi, A Lachmann, BB Ding, BH Ye, A Califano. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat Genet 2016; 48(8): 838–847
https://doi.org/10.1038/ng.3593
|
33 |
CH Holland, J Tanevski, J Perales-Patón, J Gleixner, MP Kumar, E Mereu, BA Joughin, O Stegle, DA Lauffenburger, H Heyn, B Szalai, J Saez-Rodriguez. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biol 2020; 21(1): 36
https://doi.org/10.1186/s13059-020-1949-z
|
34 |
BM Verhoeven, S Mei, TK Olsen, K Gustafsson, A Valind, A Lindström, D Gisselsson, SS Fard, C Hagerling, PV Kharchenko, P Kogner, JI Johnsen, N Baryawno. The immune cell atlas of human neuroblastoma. Cell Rep Med 2022; 3(6): 100657
https://doi.org/10.1016/j.xcrm.2022.100657
|
35 |
S Jin, CF Guerrero-Juarez, L Zhang, I Chang, R Ramos, CH Kuan, P Myung, MV Plikus, Q Nie. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021; 12(1): 1088
https://doi.org/10.1038/s41467-021-21246-9
|
36 |
J Zhang, M Guan, Q Wang, J Zhang, T Zhou, X Sun. Single-cell transcriptome-based multilayer network biomarker for predicting prognosis and therapeutic response of gliomas. Brief Bioinform 2020; 21(3): 1080–1097
https://doi.org/10.1093/bib/bbz040
|
37 |
AP Patel, I Tirosh, JJ Trombetta, AK Shalek, SM Gillespie, H Wakimoto, DP Cahill, BV Nahed, WT Curry, RL Martuza, DN Louis, O Rozenblatt-Rosen, ML Suvà, A Regev, BE Bernstein. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014; 344(6190): 1396–1401
https://doi.org/10.1126/science.1254257
|
38 |
GM Brodeur. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 2003; 3(3): 203–216
https://doi.org/10.1038/nrc1014
|
39 |
XW Pan, H Zhang, D Xu, JX Chen, WJ Chen, SS Gan, FJ Qu, CM Chu, JW Cao, YH Fan, X Song, JQ Ye, W Zhou, XG Cui. Identification of a novel cancer stem cell subpopulation that promotes progression of human fatal renal cell carcinoma by single-cell RNA-seq analysis. Int J Biol Sci 2020; 16(16): 3149–3162
https://doi.org/10.7150/ijbs.46645
|
40 |
Manno G La, R Soldatov, A Zeisel, E Braun, H Hochgerner, V Petukhov, K Lidschreiber, ME Kastriti, P Lönnerberg, A Furlan, J Fan, LE Borm, Z Liu, Bruggen D van, J Guo, X He, R Barker, E Sundström, G Castelo-Branco, P Cramer, I Adameyko, S Linnarsson, PV Kharchenko. RNA velocity of single cells. Nature 2018; 560(7719): 494–498
https://doi.org/10.1038/s41586-018-0414-6
|
41 |
B Spanjaard, B Hu, N Mitic, P Olivares-Chauvet, S Janjuha, N Ninov, JP Junker. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat Biotechnol 2018; 36(5): 469–473
https://doi.org/10.1038/nbt.4124
|
42 |
L Kester, A van Oudenaarden. Single-cell transcriptomics meets lineage tracing. Cell Stem Cell 2018; 23(2): 166–179
https://doi.org/10.1016/j.stem.2018.04.014
|
43 |
H Lee-Six, NF Øbro, MS Shepherd, S Grossmann, K Dawson, M Belmonte, RJ Osborne, BJP Huntly, I Martincorena, E Anderson, L O’Neill, MR Stratton, E Laurenti, AR Green, DG Kent, PJ Campbell. Population dynamics of normal human blood inferred from somatic mutations. Nature 2018; 561(7724): 473–478
https://doi.org/10.1038/s41586-018-0497-0
|
44 |
TE Miller, CA Lareau, JA Verga, EAK DePasquale, V Liu, D Ssozi, K Sandor, Y Yin, LS Ludwig, CA El Farran, DM Morgan, AT Satpathy, GK Griffin, AA Lane, JC Love, BE Bernstein, VG Sankaran, P van Galen. Mitochondrial variant enrichment from high-throughput single-cell RNA sequencing resolves clonal populations. Nat Biotechnol 2022; 40(7): 1030–1034
https://doi.org/10.1038/s41587-022-01210-8
|
45 |
B Nguyen, C Fong, A Luthra, SA Smith, RG DiNatale, S Nandakumar, H Walch, WK Chatila, R Madupuri, R Kundra, CM Bielski, B Mastrogiacomo, MTA Donoghue, A Boire, S Chandarlapaty, K Ganesh, JJ Harding, CA Iacobuzio-Donahue, P Razavi, E Reznik, CM Rudin, D Zamarin, W Abida, GK Abou-Alfa, C Aghajanian, A Cercek, P Chi, D Feldman, AL Ho, G Iyer, YY Janjigian, M Morris, RJ Motzer, EM O’Reilly, MA Postow, NP Raj, GJ Riely, ME Robson, JE Rosenberg, A Safonov, AN Shoushtari, W Tap, MY Teo, AM Varghese, M Voss, R Yaeger, MG Zauderer, N Abu-Rustum, J Garcia-Aguilar, B Bochner, A Hakimi, WR Jarnagin, DR Jones, D Molena, L Morris, E Rios-Doria, P Russo, S Singer, VE Strong, D Chakravarty, LH Ellenson, A Gopalan, JS Reis-Filho, B Weigelt, M Ladanyi, M Gonen, SP Shah, J Massague, J Gao, A Zehir, MF Berger, DB Solit, SF Bakhoum, F Sanchez-Vega, N Schultz. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 2022; 185(3): 563–575.e11
https://doi.org/10.1016/j.cell.2022.01.003
|
46 |
AW Lambert, DR Pattabiraman, RA Weinberg. Emerging biological principles of metastasis. Cell 2017; 168(4): 670–691
https://doi.org/10.1016/j.cell.2016.11.037
|
47 |
K Lundgren, B Nordenskjöld, G Landberg. Hypoxia, Snail and incomplete epithelial-mesenchymal transition in breast cancer. Br J Cancer 2009; 101(10): 1769–1781
https://doi.org/10.1038/sj.bjc.6605369
|
48 |
MA Nieto, RY Huang, RA Jackson, JP Thiery. EMT: 2016. Cell 2016; 166(1): 21–45
https://doi.org/10.1016/j.cell.2016.06.028
|
49 |
M Li, C Sun, X Bu, Y Que, L Zhang, Y Zhang, L Zhang, S Lu, J Huang, J Zhu, J Wang, F Sun, Y Zhang. ISL1 promoted tumorigenesis and EMT via Aurora kinase A-induced activation of PI3K/AKT signaling pathway in neuroblastoma. Cell Death Dis 2021; 12(6): 620
https://doi.org/10.1038/s41419-021-03894-3
|
50 |
T Ferronha, MA Rabadán, E Gil-Guiñon, Dréau G Le, Torres C de, E Martí. LMO4 is an essential cofactor in the Snail2-mediated epithelial-to-mesenchymal transition of neuroblastoma and neural crest cells. J Neurosci 2013; 33(7): 2773–2783
https://doi.org/10.1523/JNEUROSCI.4511-12.2013
|
51 |
P Missios, EL da Rocha, DS Pearson, J Philipp, MM Aleman, M Pirouz, D Farache, JW Franses, C Kubaczka, KM Tsanov, DK Jha, B Pepe-Mooney, JT Powers, RI Gregory, AS Lee, D Dominguez, DT Ting, GQ Daley. LIN28B alters ribosomal dynamics to promote metastasis in MYCN-driven malignancy. J Clin Invest 2021; 131(22): e145142
https://doi.org/10.1172/JCI145142
|
52 |
CY Tan, CL Chang. NDPKA is not just a metastasis suppressor—be aware of its metastasis-promoting role in neuroblastoma. Lab Invest 2018; 98(2): 219–227
https://doi.org/10.1038/labinvest.2017.105
|
53 |
SK Das, S Maji, SL Wechman, P Bhoopathi, AK Pradhan, S Talukdar, D Sarkar, J Landry, C Guo, XY Wang, WK Cavenee, L Emdad, PB Fisher. MDA-9/Syntenin (SDCBP): novel gene and therapeutic target for cancer metastasis. Pharmacol Res 2020; 155: 104695
https://doi.org/10.1016/j.phrs.2020.104695
|
54 |
LN Kent, G Leone. The broken cycle: E2F dysfunction in cancer. Nat Rev Cancer 2019; 19(6): 326–338
https://doi.org/10.1038/s41568-019-0143-7
|
55 |
CJ Barger, C Branick, L Chee, AR Karpf. Pan-cancer analyses reveal genomic features of FOXM1 overexpression in cancer. Cancers (Basel) 2019; 11(2): 251
https://doi.org/10.3390/cancers11020251
|
56 |
J Musa, MM Aynaud, O Mirabeau, O Delattre, TG Grünewald. MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis. Cell Death Dis 2017; 8(6): e2895
https://doi.org/10.1038/cddis.2017.244
|
57 |
S Polager, D Ginsberg. E2F—at the crossroads of life and death. Trends Cell Biol 2008; 18(11): 528–535
https://doi.org/10.1016/j.tcb.2008.08.003
|
58 |
LR Bandara, EW Lam, TS Sørensen, M Zamanian, R Girling, Thangue NB La. DP-1: a cell cycle-regulated and phosphorylated component of transcription factor DRTF1/E2F which is functionally important for recognition by pRb and the adenovirus E4 orf 6/7 protein. EMBO J 1994; 13(13): 3104–3114
https://doi.org/10.1002/j.1460-2075.1994.tb06609.x
|
59 |
E Fang, X Wang, F Yang, A Hu, J Wang, D Li, H Song, M Hong, Y Guo, Y Liu, H Li, K Huang, L Zheng, Q Tong. Therapeutic targeting of MZF1–AS1/PARP1/E2F1 axis inhibits proline synthesis and neuroblastoma progression. Adv Sci (Weinh) 2019; 6(19): 1900581
https://doi.org/10.1002/advs.201900581
|
60 |
Z Wang, HJ Park, JR Carr, YJ Chen, Y Zheng, J Li, AL Tyner, RH Costa, S Bagchi, P Raychaudhuri. FoxM1 in tumorigenicity of the neuroblastoma cells and renewal of the neural progenitors. Cancer Res 2011; 71(12): 4292–4302
https://doi.org/10.1158/0008-5472.CAN-10-4087
|
61 |
G Raschellà, V Cesi, R Amendola, A Negroni, B Tanno, P Altavista, GP Tonini, Bernardi B De, B Calabretta. Expression of B-myb in neuroblastoma tumors is a poor prognostic factor independent from MYCN amplification. Cancer Res 1999; 59(14): 3365–3368
|
62 |
J Xu, S Lamouille, R Derynck. TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009; 19(2): 156–172
https://doi.org/10.1038/cr.2009.5
|
63 |
D Padua, J Massagué. Roles of TGFbeta in metastasis. Cell Res 2009; 19(1): 89–102
https://doi.org/10.1038/cr.2008.316
|
64 |
R Derynck, SJ Turley, RJ Akhurst. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2021; 18(1): 9–34
https://doi.org/10.1038/s41571-020-0403-1
|
65 |
J Cheng, J Zhang, Z Wu, X Sun. Inferring microenvironmental regulation of gene expression from single-cell RNA sequencing data using scMLnet with an application to COVID-19. Brief Bioinform 2021; 22(2): 988–1005
https://doi.org/10.1093/bib/bbaa327
|
66 |
J Luo, M Deng, X Zhang, X Sun. ESICCC as a systematic computational framework for evaluation, selection, and integration of cell-cell communication inference methods. Genome Res 2023; 33(10): 1788–1805
https://doi.org/10.1101/gr.278001.123
|
67 |
X HeX Sun Y Shao. Multicellular network-informed survival model for identification of drug targets of gliomas. IEEE J Biomed Health Inform 2023; [Epub ahead of print] doi: 10.1109/JBHI.2023.3309825
|
68 |
M Huang, WA Weiss. Neuroblastoma and MYCN. Cold Spring Harb Perspect Med 2013; 3(10): a014415
https://doi.org/10.1101/cshperspect.a014415
|
69 |
GM Brodeur, J Pritchard, F Berthold, NL Carlsen, V Castel, RP Castelberry, B De Bernardi, AE Evans, M Favrot, F Hedborg. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 1993; 11(8): 1466–1477
https://doi.org/10.1200/JCO.1993.11.8.1466
|
70 |
WB London, RP Castleberry, KK Matthay, AT Look, RC Seeger, H Shimada, P Thorner, G Brodeur, JM Maris, CP Reynolds, SL Cohn. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J Clin Oncol 2005; 23(27): 6459–6465
https://doi.org/10.1200/JCO.2005.05.571
|
71 |
S Turajlic, C Swanton. Metastasis as an evolutionary process. Science 2016; 352(6282): 169–175
https://doi.org/10.1126/science.aaf2784
|
72 |
JP Thiery, H Acloque, RY Huang, MA Nieto. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5): 871–890
https://doi.org/10.1016/j.cell.2009.11.007
|
73 |
X Ye, RA Weinberg. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol 2015; 25(11): 675–686
https://doi.org/10.1016/j.tcb.2015.07.012
|
74 |
Q Zhang, L Fei, R Han, R Huang, Y Wang, H Chen, B Yao, N Qiao, Z Wang, Z Ma, Z Ye, Y Zhang, W Wang, Y Wang, L Kong, X Shou, X Cao, X Zhou, M Shen, H Cheng, Z Yao, C Zhang, G Guo, Y Zhao. Single-cell transcriptome reveals cellular hierarchies and guides p-EMT-targeted trial in skull base chordoma. Cell Discov 2022; 8(1): 94
https://doi.org/10.1038/s41421-022-00459-2
|
75 |
EM Grasset, M Dunworth, G Sharma, M Loth, J Tandurella, A Cimino-Mathews, M Gentz, S Bracht, M Haynes, EJ Fertig, AJ Ewald. Triple-negative breast cancer metastasis involves complex epithelial-mesenchymal transition dynamics and requires vimentin. Sci Transl Med 2022; 14(656): eabn7571
https://doi.org/10.1126/scitranslmed.abn7571
|
76 |
I Pastushenko, C Blanpain. EMT transition states during tumor progression and metastasis. Trends Cell Biol 2019; 29(3): 212–226
https://doi.org/10.1016/j.tcb.2018.12.001
|
77 |
AM Krebs, J Mitschke, M Lasierra Losada, O Schmalhofer, M Boerries, H Busch, M Boettcher, D Mougiakakos, W Reichardt, P Bronsert, VG Brunton, C Pilarsky, TH Winkler, S Brabletz, MP Stemmler, T Brabletz. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 2017; 19(5): 518–529
https://doi.org/10.1038/ncb3513
|
78 |
Y Hao, D Baker, P Ten Dijke. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci 2019; 20(11): 2767
https://doi.org/10.3390/ijms20112767
|
79 |
Y Zhang, X Zou, W Qian, X Weng, L Zhang, L Zhang, S Wang, X Cao, L Ma, G Wei, Y Wu, Z Hou. Enhanced PAPSS2/VCAN sulfation axis is essential for Snail-mediated breast cancer cell migration and metastasis. Cell Death Differ 2019; 26(3): 565–579
https://doi.org/10.1038/s41418-018-0147-y
|
80 |
JL Carstens, S Yang, P Correa de Sampaio, X Zheng, S Barua, KM McAndrews, A Rao, JK Burks, AD Rhim, R Kalluri. Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver metastasis in pancreatic cancer. Cell Rep 2021; 35(2): 108990
https://doi.org/10.1016/j.celrep.2021.108990
|
81 |
MV Sepporta, V Praz, Bourloud K Balmas, JM Joseph, N Jauquier, N Riggi, K Nardou-Auderset, A Petit, JY Scoazec, H Sartelet, R Renella, A Mühlethaler-Mottet. TWIST1 expression is associated with high-risk neuroblastoma and promotes primary and metastatic tumor growth. Commun Biol 2022; 5(1): 42
https://doi.org/10.1038/s42003-021-02958-6
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|