Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2011, Vol. 6 Issue (3) : 344-353    https://doi.org/10.1007/s11465-011-0227-x
RESEARCH ARTICLE
Structural optimization of typical rigid links in a parallel kinematic machine
Xinjun LIU(), Zhidong LI, Xiang CHEN
State Key Laboratory of Tribology & Institute of Manufacturing Engineering, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China
 Download: PDF(323 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The motion dynamics and accuracy of parallel kinematic machines largely depend on the weights and rigidity of typical rigid links. Therefore, these parts should be designed in such a way that they are light but rigid. This work employs the techniques of topology and size optimization to design two typical rigid links of a parallel kinematic machine (PKM) and subsequently obtains applicable structures for them. The calculation models are established, and a new algorithm called the Guide-Weight method is introduced to solve topology optimization problems. The commercial software Ansys is used to perform size optimization.

Keywords topology optimization      size optimization      parallel kinematic machine (PKM)     
Corresponding Author(s): LIU Xinjun,Email:xinjunliu@mail.tsinghua.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Zhidong LI,Xiang CHEN,Xinjun LIU. Structural optimization of typical rigid links in a parallel kinematic machine[J]. Front Mech Eng, 2011, 6(3): 344-353.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-011-0227-x
https://academic.hep.com.cn/fme/EN/Y2011/V6/I3/344
Fig.1  PKM and load cases of the rigid links
Fig.2  Calculation model for the rigid links of limbs 1 and 2
Fig.3  Calculation model for the rigid link of limb 3 ( is the angle between the torque and the force direction)
Fig.4  Solution procedure of topology optimization
ParameterValueMeaning
E02.06×1011Young’s modulus of steel/Pa
μ0.3Poisson’s ratio of steel
L640Length of the design domain/mm
W240Width of the design domain/mm
H160Height of the design domain/mm
T15000Side force of load case 1/N
T25000Side force of load case 2/N
Tt10000Tension force/N
p3Penalty factor
α0.5Step factor
f0.3Weight fraction
ρ0[1,1,...,1]Initial values of the design variables
?0.01Positive value of convergent condition
Tab.1  Table 1 Parameters for topology optimization for problem in Fig. 2
ParameterValueMeaning
E02.06×1011Young’s modulus of the material
μ0.3Poisson’s ratio of the material
L640Length of the design domain/mm
W200Width of the design domain/mm
H140Height of the design domain/mm
T15000Torque of load case 1/(N·m)
T25000Torque of load case 2/(N·m)
Tt10000Tension force/N
θ37 and 0Anger between T1 and Tt/(o)
p3.0Penalty factor
a0.5Step factor
f0.3Weight fraction
ρ0[1,1,...,1]Initial values of the design variables
?0.01Positive value of convergent condition
Tab.2  Parameters for topology optimization for problem in Fig. 3
Fig.5  Iteration process for the problem in Fig. 2
Fig.6  Result of topology optimization for the problem in Fig. 2
Fig.7  Iteration process for the problem in Fig. 3 where
Fig.8  Result of topology optimization for the problem in Fig. 3 where
Fig.9  Iteration process for the problem in Fig. 3 where
Fig.10  Result of topology optimization for the problem in Fig. 3 where
Fig.11  Designed structure for the problem in Fig. 2
Fig.12  Designed structure for the problem in Fig. 3
Fig.13  Parameters of the designed structure in Fig. 11
Initial valuesOptimal valuesLower boundUpper bound
L1640.0
W1160.0
H1240.0
C1100.0
C260.0
C380.0
L2400.0396.5350.0450.0
L3200.0200.0180.0220.0
L4300.0299.5280.0320.0
L550.047.730.080.0
L650.047.730.080.0
W280.074.460.0100.0
W380.074.350.0100.0
H250.030.230.070.0
H3150.0149.2120.0160.0
H450.048.640.080.0
D12×arctanH1/2-H2L1-L2
Tab.3  Values of the parameters for structure in Fig. 11
Fig.14  Iteration process of the size optimization for the structure in Fig. 11. (a) Volume variation; (b) maximum stress intensity variation; (c) maximum displacement variation
Fig.15  Parameters of the designed structure in Fig. 12
Initial valuesOptimal valuesLower boundUpper bound
L1640.0
W1200.0
H1140.0
C160.0
H280.0119.740.0120.0
W2140.0174.0100.0180.0
Tab.4  Values of the parameters for structure in Fig. 12
Fig.16  Iteration process of the size optimization for the structure in Fig. 12. (a) Volume variation; (b) maximum stress intensity variation; (c) maximum displacement variation
Fig.17  Optimal structure of the rigid links for limbs 1 and 2
Fig.18  Optimal structure of the rigid link for limb 3
1 Fassi I, Wiens G J. Multiaxis machining: PKMs and traditional machining centers. Journal of Manufacturing Processes , 2000, 2(1): 1–14
doi: 10.1016/S1526-6125(00)70008-9
2 Weck M, Staimer D. Parallel kinematic machines-current state and future potentials. CIRP Annals- Manufacturing Technology , 2002, 51(2): 671–683
3 Bonnemains T, Chanal H, Bouzgarrou B, Ray P. Stiffness computation and identification of parallel kinematic machine tools. Journal of Manufacturing Science and Engineering , 2009, 131(4): 041013.1–041013.7
4 Li Y, Xu Q. Stiffness analysis for a 3-PUU parallel kinematic machine. Mechanism and Machine Theory , 2008, 43(2): 186–200
doi: 10.1016/j.mechmachtheory.2007.02.002
5 Zhang D, Wang L, Lang S Y T. Parallel kinematic machines: design, analysis and simulation in an integrated virtual environment. Journal of Mechanical Design , 2005, 127(4): 580–588
doi: 10.1115/1.1897745
6 Li Y, Xu Q. Dynamic modeling and robust control of a 3-PRC translational parallel kinematic machine. Robotics and Computer-Integrated Manufacturing , 2009, 25: 630–640
7 Bendsoe M P, Sigmund O. Topology Optimization: Theory, Methods and Applications. Berlin: Springer, 2003
8 Eschenauer H A, Olhoff N. Topology optimization of continuum structure: a review. Applied Mechanics Reviews , 2001, 54(4): 331–390
doi: 10.1115/1.1388075
9 Hull P V, Canfield S. Optimal synthesis of compliant mechanisms using subdivision and commercial FEA. Journal of Mechanical Design , 2006, 128(2): 337–348
doi: 10.1115/1.2159026
10 Wang M Y. Mechanical and geometric advantages in compliant mechanism optimization. Frontiers of Mechanical Engineering in China , 2009, 4(3): 229–241
11 Patel N M, Kang B S, Renaud J E, Tovar A. Crashworthiness design using topology optimization. Journal of Mechanical Design , 2009, 131(6): 061013.1–061013.12
12 Albert A, Jens O.Integrated structural and controller optimization in dynamic mechatronic systems. Journal of Mechanical Design , 2010, 132(4): 041008.1–041008.8
13 Krog L, Tucker A, Rollema G. Application of topology, sizing and shape optimization methods to optimal design of aircraft components. In: Proceedings of the 3rd Altair UK HyperWorks Users Conference , 2002
14 Hassani B, Hinton E. A review of homogenization and topology optimization I: homogenization theory for media and periodic structure. Computers & Structures , 1998, 69(6): 707–717
doi: 10.1016/S0045-7949(98)00131-X
15 Hassani B, Hinton E. A review of homogenization and topology optimization II: analytical and numerical solution of homogenization equations. Computers & Structures , 1998, 69(6): 719–738
doi: 10.1016/S0045-7949(98)00132-1
16 Hassani B, Hinton E. A review of homogenization and topology optimization III: topology optimization using optimality criteria. Computers & Structures , 1998, 69(6): 739–756
doi: 10.1016/S0045-7949(98)00133-3
17 Bends?e M P, Sigmund O. Material interpolation schemes in topology optimization. Archive of Applied Mechanics , 1999, 69(9–10): 635–654
doi: 10.1007/s004190050248
18 Rozvany G I N. A critical review of established methods of structural topology optimization. Structural and Multidisciplinary Optimization , 2009, 37(3): 217–237
doi: 10.1007/s00158-007-0217-0
19 Rozvany G I N, Zhou M. The COC algorithm, part I: cross-section optimization or sizing. Computer Methods in Applied Mechanics and Engineering , 1991, 89(1–3): 281–308
doi: 10.1016/0045-7825(91)90045-8
20 Rozvany G I N, Zhou M. The COC algorithm, part II: topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering , 1991, 89(1–3): 309–336
21 Zhou M, Rozvany G I N. DCOC: an optimality criteria method for large systems part I: theory. Structural Optimization , 1992, 5(1): 12–25
doi: 10.1007/BF01744690
22 Zhou M, Rozvany G I N. DCOC: An optimality criteria method for large systems part II: Algorithm. Structural Optimization , 1992, 6(3): 250–262
23 Bruyneel M, Duysinx P, Fleury C. A family of MMA approximations for structural optimization. Structural and Multidisciplinary Optimization , 2002, 24(4): 263–276
doi: 10.1007/s00158-002-0238-7
24 Zhou M, Pagaldipti N, Thomas H L, Shyy Y K. An integrated approach to topology, sizing, and shape optimization. Structural and Multidisciplinary Optimization , 2004, 26(5): 308–317
doi: 10.1007/s00158-003-0351-2
25 Chen S, Ye S A. Guide-Weight criterion method for the optimal design of antenna structures. Engineering Optimization , 1986, 10(3): 199–216
doi: 10.1080/03052158608902537
26 Chen S. Analysis, synthesis and optimization of engineering structural systems. Hongkong: China Science Culture Publishing House, 2008
27 Chen S, Torterelli D A. Three-dimensional shape optimization with variational geometry. Structural Optimization , 1997, 13(2–3): 81–94
doi: 10.1007/BF01199226
28 Hetrick J A, Kota S. An energy formulation for parametric size and shape optimization of compliant mechanisms. Journal of Mechanical Design , 1999, 121(2): 229–234
doi: 10.1115/1.2829448
[1] Peng WEI, Wenwen WANG, Yang YANG, Michael Yu WANG. Level set band method: A combination of density-based and level set methods for the topology optimization of continuums[J]. Front. Mech. Eng., 2020, 15(3): 390-405.
[2] Emmanuel TROMME, Atsushi KAWAMOTO, James K. GUEST. Topology optimization based on reduction methods with applications to multiscale design and additive manufacturing[J]. Front. Mech. Eng., 2020, 15(1): 151-165.
[3] Xianda XIE, Shuting WANG, Ming YE, Zhaohui XIA, Wei ZHAO, Ning JIANG, Manman XU. Isogeometric topology optimization based on energy penalization for symmetric structure[J]. Front. Mech. Eng., 2020, 15(1): 100-122.
[4] Manman XU, Shuting WANG, Xianda XIE. Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency[J]. Front. Mech. Eng., 2019, 14(2): 222-234.
[5] Jikai LIU, Qian CHEN, Xuan LIANG, Albert C. TO. Manufacturing cost constrained topology optimization for additive manufacturing[J]. Front. Mech. Eng., 2019, 14(2): 213-221.
[6] Mariana MORETTI, Emílio C. N. SILVA. Topology optimization of piezoelectric bi-material actuators with velocity feedback control[J]. Front. Mech. Eng., 2019, 14(2): 190-200.
[7] Junjie ZHAN, Yangjun LUO. Robust topology optimization of hinge-free compliant mechanisms with material uncertainties based on a non-probabilistic field model[J]. Front. Mech. Eng., 2019, 14(2): 201-212.
[8] Long JIANG, Yang GUO, Shikui CHEN, Peng WEI, Na LEI, Xianfeng David GU. Concurrent optimization of structural topology and infill properties with a CBF-based level set method[J]. Front. Mech. Eng., 2019, 14(2): 171-189.
[9] Markus J. GEISS, Jorge L. BARRERA, Narasimha BODDETI, Kurt MAUTE. A regularization scheme for explicit level-set XFEM topology optimization[J]. Front. Mech. Eng., 2019, 14(2): 153-170.
[10] Yu-Chin CHAN, Kohei SHINTANI, Wei CHEN. Robust topology optimization of multi-material lattice structures under material and load uncertainties[J]. Front. Mech. Eng., 2019, 14(2): 141-152.
[11] Jiadong DENG, Claus B. W. PEDERSEN, Wei CHEN. Connected morphable components-based multiscale topology optimization[J]. Front. Mech. Eng., 2019, 14(2): 129-140.
[12] Yingjun WANG,David J. BENSON. Geometrically constrained isogeometric parameterized level-set based topology optimization via trimmed elements[J]. Front. Mech. Eng., 2016, 11(4): 328-343.
[13] Shutian LIU,Quhao LI,Wenjiong CHEN,Liyong TONG,Gengdong CHENG. An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures[J]. Front. Mech. Eng., 2015, 10(2): 126-137.
[14] Xinjun LIU, Xiang CHEN, Zhidong LI. Modular design of typical rigid links in parallel kinematic machines: Classification and topology optimization[J]. Front Mech Eng, 2012, 7(2): 199-209.
[15] Xinjun LIU, Zhidong LI, Liping WANG, Jinsong WANG. Solving topology optimization problems by the Guide-Weight method[J]. Front Mech Eng, 2011, 6(1): 136-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed