Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2016, Vol. 11 Issue (1) : 12-25    https://doi.org/10.1007/s11465-015-0358-6
REVIEW ARTICLE
Ancient road transport devices: Developments from the Bronze Age to the Roman Empire
Cesare ROSSI1,*(),Thomas G. CHONDROS2,Kypros F. MILIDONIS2,Sergio SAVINO1,Flavio RUSSO3
1. Department of Industrial Engineering, University of Naples “Federico II”, Naples 80125, Italy
2. Mechanical Engineering & Aeronautics Department, University of Patras, Patras 26500, Greece
3. USSME Consultant, via Lamaria 137, Torre del Greco, Napoli, Italy
 Download: PDF(6192 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The development of transportation systems has significantly enhanced the welfare and modernization of society. Wooden vehicles pulled by animals have been used for land transportation since the early Bronze Age. Whole-body gharries with rigid wheels pulled by oxen appeared in Crete by 2000 BC or earlier. Horses originating from the East were depicted in early Cretan seal-rings of the same period. The two-wheeled horse-drawn chariot was one of the most important inventions in history. This vehicle provided humanity its first concept of personal transport and was the key technology of war for 2000 years. Chariots of Mycenaean and Archaic Greece with light and flexible four-spoked wheels acting as spring suspensions were depicted in vase paintings. The development of this vehicle incorporated the seeds of a primitive design activity and was important for engineering. The Trojan horse since 1194 BC and the helepolis since 700 BC were the first known machines on a wheeled base transported by horses or self-powered. Ancient engineers invented bearings lubricated with fat, and Romans introduced the ancestors of ball bearings for their wagons and carts. The historic evolution of wheeled transportation systems, along with early traction, suspension, and braking systems, is presented in this paper. Analytical and numerical methods are incorporated to analyze the most conceivable loading situations of typically reconstructed wheeled transportation systems in ancient times. Traction requirements both for horse-driven machines and the power for internal motors are also analyzed. This study can serve as a basis for further development of detailed reconstruction of transportation systems in antiquity.

Keywords transportation      wheel      spoke      cart      axle      bearing     
Corresponding Author(s): Cesare ROSSI   
Online First Date: 02 December 2015    Issue Date: 02 March 2016
 Cite this article:   
Cesare ROSSI,Thomas G. CHONDROS,Kypros F. MILIDONIS, et al. Ancient road transport devices: Developments from the Bronze Age to the Roman Empire[J]. Front. Mech. Eng., 2016, 11(1): 12-25.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-015-0358-6
https://academic.hep.com.cn/fme/EN/Y2016/V11/I1/12
Fig.1  A two-horses drawn chariot with 4-spoked wheels and lubricated wheel bearings in Thebes, Egypt, manufactured around 1500 BC [9]
Fig.2  Egyptians wheel manufacturers, Thebes, 1475 BC [9]
Fig.3  (a) Race-track and the turning point; (b) the Achaean chariot with charioteer
Fig.4  A two-horse drawn Scythian cart with spoked wheels and lubricated wheel bearings of the 5th century BC [9]
Fig.5  Forces acting on a wheel when obstacles are negotiated
Fig.6  The traction configuration of the reconstructed Trojan horse [12]
Fig.7  Fast private cart with folding top [4]
Fig.8  Barrel cart for liquid transportation [4]
Fig.9  Cart used to transport dignitaries [4]
Fig.10  Sleeping wagon [4]
Fig.11  Parallel cuts into rock in Malta [4]
Fig.12  Rails in Pompeii [4]
Fig.13  Reconstruction of the railed cargo [4]
Fig.14  Detail of braking mechanism [4]
Fig.15  Supports for suspension belts [4]
Fig.16  Detail of suspension joint with axle [4]
Fig.17  Virtual reconstruction of a Celtic roller bearing [4]
Fig.18  Assyrian bas relief showing a siege tower, found in the period from 865 BC to 860 BC [4]
Fig.19  Scheme of the mechanical device used to apply the motor torque to the wheel axle, and the counterweight motor [15]
Fig.20  Virtual reconstruction of a capstan with rope transmission [4]
Fig.21  Scheme of the capstan [4]
Fig.22  Working principle of the tread wheel; adapted from [4]
Fig.23  (a) Counterweight motor of Heron’s self-propelled automata [6]; (b) mechanism to change direction [6]
Fig.24  Helepolis with counterweight motor simulated by Working Model 2D

1−Velocity of the helepolis; 2−Stress on the pulley system; 3−Velocity of the counterweight; 4−Displacement of the helepolis; 5−Model of the helepolis

Fig.25  Simulation results at (a) constant counterweight velocity and (b) controlled counterweight velocity
1 Diodorus Siculus. Bibliotheca Historica, Liber XX
2 Publius Flavius Vegezius Renatus. Epitoma Rei Militaris, Liber IV, Cap. XVII.
3 Julius Caesar  G. De Bello Gallico, Liber II, XXX et XXXI.
4 Rossi  C, Russo  F, Russo  F. Ancient Engineers’ Inventions: Precursors of the Present. Amsterdam: Springer, 2009
5 Feraudi  B. Meccanica Tecnica. Hoepli  1957
6 Baldi  B. Di Herone Alessandrino de Gli Avtomati Ouero Machine se Moventi Libri Due. Tradotti dal Greco da B. Baldi. Venezia, 1602 (in Italian )
7 Webb  B. The first mobile Robot. In: Proceedings of Towards Intelligent Mobile Robots. 1999
8 Dimarogonas  A D. Machine Design: A CAD Approach. Hoboken: John Wiley & Sons, 2001
9 Dimarogonas  A D. History of Technology I, II. Athens: Macedonian Publications, 2001
10 Paipetis  S A. The Unknown Technology in Homer. Amsterdam: Springer, 2010
11 Galperin  M, Dombrovsky  N, Mestechkin  L. Construction Equipment. Moscow: Mir Publishers, 1982
12 Chondros  T G, Milidonis  K, Paipetis  S,  The Trojan Horse reconstruction. Mechanism and Machine Theory, 2015, 90: 261–282 
https://doi.org/10.1016/j.mechmachtheory.2015.03.015
13 Wooley  J C, Jones  M M. The draft of farm wagons as affected by height of wheel and width of tire. Missouri Agricultural Experiment Station Bullettin, 1925, 237: 3–14
14 Chondros  T G, Milidonis  K, Paipetis  S,  The Trojan horse reconstruction. Mechanism and Machine Theory, 2015, 90: 261–282
15 Rossi  C, Pagano  S. A study on possible motors for siege towers. Journal of Mechanical Design, 2011, 133(7): 74–82 
16 Candeo Cicogna  J. Esercizi di Meccanica Applicata alle Macchine. Torino: Libreria Tecnica Editrice V. Giorgio, 1941
17 Knowledge Revolution. Working Model 2DTM Manual, 1995
[1] Yongqiang GUO, Chunguo XU, Jingtao HAN, Zhengyu WANG. New technique of precision necking for long tubes with variable wall thickness[J]. Front. Mech. Eng., 2020, 15(4): 622-630.
[2] Peng ZOU, Xiangming CHEN, Hao CHEN, Guanhua XU. Damage propagation and strength prediction of a single-lap interference-fit laminate structure[J]. Front. Mech. Eng., 2020, 15(4): 558-570.
[3] Yongliang YUAN, Liye LV, Shuo WANG, Xueguan SONG. Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer[J]. Front. Mech. Eng., 2020, 15(3): 406-416.
[4] Zhinan ZHANG, Mingdong ZHOU, Weimin DING, Huifang MA. New analysis model for rotor-bearing systems based on plate theory[J]. Front. Mech. Eng., 2019, 14(4): 461-473.
[5] Yanfeng PENG, Junsheng CHENG, Yanfei LIU, Xuejun LI, Zhihua PENG. An adaptive data-driven method for accurate prediction of remaining useful life of rolling bearings[J]. Front. Mech. Eng., 2018, 13(2): 301-310.
[6] Joe T. REXWINKLE, Heather K. HUNT, Ferris M. PFEIFFER. Characterization of the surface and interfacial properties of the lamina splendens[J]. Front. Mech. Eng., 2017, 12(2): 234-252.
[7] Ming FENG,Yongbo WU,Julong YUAN,Zhao PING. Processing of high-precision ceramic balls with a spiral V-groove plate[J]. Front. Mech. Eng., 2017, 12(1): 132-142.
[8] Yang LI,Yunxin WU,Hai GONG,Xiaolei FENG. Air bearing center cross gap of neutron stress spectrometer sample table support system[J]. Front. Mech. Eng., 2016, 11(4): 403-411.
[9] Pengxing YI,Peng HUANG,Tielin SHI. Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine[J]. Front. Mech. Eng., 2016, 11(4): 388-402.
[10] Girish Sudhir MODAK,Manmohan Manikrao BHOOMKAR. Innovative stair climber using associated wheels[J]. Front. Mech. Eng., 2016, 11(3): 299-310.
[11] Mikhail MALENKOV. Self-propelled automatic chassis of Lunokhod-1: History of creation in episodes[J]. Front. Mech. Eng., 2016, 11(1): 60-86.
[12] Lie SUN,Ang LI. Rolling-element bearings in China: From ancient times to the 20th century[J]. Front. Mech. Eng., 2016, 11(1): 33-43.
[13] Ahmad MOZAFFARI,Mahyar VAJEDI,Nasser L. AZAD. Real-time immune-inspired optimum state-of-charge trajectory estimation using upcoming route information preview and neural networks for plug-in hybrid electric vehicles fuel economy[J]. Front. Mech. Eng., 2015, 10(2): 154-167.
[14] Yimin ZHANG. Reliability-based robust design optimization of vehicle components, Part II: Case studies[J]. Front. Mech. Eng., 2015, 10(2): 145-153.
[15] Van Thanh NGO, Danmei XIE, Yangheng XIONG, Hengliang ZHANG, Yi YANG. Dynamic analysis of a rig shafting vibration based on finite element[J]. Front Mech Eng, 2013, 8(3): 244-251.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed