Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2018, Vol. 13 Issue (1) : 53-65    https://doi.org/10.1007/s11465-017-0437-y
RESEARCH ARTICLE
Premature melt solidification during mold filling and its influence on the as-cast structure
M. WU1,2(), M. AHMADEIN3, A. LUDWIG1
1. Chair for Simulation and Modeling of Metallurgical Processes, University of Leoben, Leoben A-8700, Austria
2. Christian-Doppler Laboratory for Advanced Process Simulation of Solidification and Melting, Department of Metallurgy, University of Leoben, Leoben A-8700, Austria
3. Production Engineering and Mechanical Design Department, Faculty of Engineering, Tanta University, Tanta 31111, Egypt
 Download: PDF(899 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Premature melt solidification is the solidification of a melt during mold filling. In this study, a numerical model is used to analyze the influence of the pouring process on the premature solidification. The numerical model considers three phases, namely, air, melt, and equiaxed crystals. The crystals are assumed to have originated from the heterogeneous nucleation in the undercooled melt resulting from the first contact of the melt with the cold mold during pouring. The transport of the crystals by the melt flow, in accordance with the so-called “big bang” theory, is considered. The crystals are assumed globular in morphology and capable of growing according to the local constitutional undercooling. These crystals can also be remelted by mixing with the superheated melt. As the modeling results, the evolutionary trends of the number density of the crystals and the volume fraction of the solid crystals in the melt during pouring are presented. The calculated number density of the crystals and the volume fraction of the solid crystals in the melt at the end of pouring are used as the initial conditions for the subsequent solidification simulation of the evolution of the as-cast structure. A five-phase volume-average model for mixed columnar-equiaxed solidification is used for the solidification simulation. An improved agreement between the simulation and experimental results is achieved by considering the effect of premature melt solidification during mold filling. Finally, the influences of pouring parameters, namely, pouring temperature, initial mold temperature, and pouring rate, on the premature melt solidification are discussed.

Keywords premature solidification      mold filling      as-cast structure      modeling     
Corresponding Author(s): M. WU   
Just Accepted Date: 14 April 2017   Online First Date: 11 May 2017    Issue Date: 23 January 2018
 Cite this article:   
M. WU,M. AHMADEIN,A. LUDWIG. Premature melt solidification during mold filling and its influence on the as-cast structure[J]. Front. Mech. Eng., 2018, 13(1): 53-65.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0437-y
https://academic.hep.com.cn/fme/EN/Y2018/V13/I1/53
Fig.1  Geometric configuration of the reference ingot (Al-4.0 wt.% Cu): Grid in the domains of the ingot and mold (left half) and schematic of different phase regions during mold filling (right half) (Both 2D axisymmetric and complete 3D calculations were performed, but the grid is shown here in 2D axis symmetry.)
Fig.2  Contours of (a) T, (b) fe, (c) n˙ in two color scales representing the birth (gray) and death (color) of the nuclei and (d) n at a filling time of 0.4 s; (e) T, (f) fe, (g) n˙ in color scales representing the birth (gray) and death (color) of the nuclei and, (h) n at a filling time of 0.47 s; (i) T, (j) fe, (k) n˙ in two color scales representing the birth (gray) and death (color) of the nuclei and, (l) n at a filling time of 1.0 s; (m) T, (n) fe, (o) n˙ in two color scales representing the birth (gray) and death (color) of the nuclei and, (p) n at a filling time of 2.0 s; (q) T, (r) f e, (s) n˙ in two color scales representing the birth (gray) and death (color) of the nuclei and, (t) n at a filling time of 5.2 s
Fig.3  Contours of (a) T overlaid with u, (b) n, and (c) fe at filling times of 0.4 s; (d) T overlaid with u, (e) n, and (f) f e at filling times of 1.0 s; (g) T overlaid with u, (h) n, and (i) f e at filling times of 2.0 s; (j) T overlaid with u, (k) n, and (l) f e at filling times of 5.24 s (The pouring temperature is 973 K. Only half of the calculation domain is shown. The u vectors are shown in the vertical section.)
Fig.4  Average T, n, andf e as functions of filling time for the ingot poured at 973 K
Fig.5  As-cast structure (left) and the numerically predicted phase distribution (right) in anAl-4.0 wt.% Cu ingot poured at a pouring temperature of 1073 K (The dotted line in the metallographic image presents the estimated columnar-to-equiaxed transition (CET) line.)
Fig.6  As-cast structure (left) and the numerically calculated phase distribution (right) in an Al-4.0 wt.% Cu ingot poured at a pouring temperature of 973 K (The dotted lines in the metallographic image separate regions of different grain sizes. The simulation result shows the volume fraction of the equiaxed phase overlaid with isolines of the number density of equiaxed grains.)
Pouring temperature, T p/K Initial mold temperature, Tm/K Cases corresponding to varied pouring velocity ( vp/(m·s−1))
0.800 1.037 1.200 1.400
963 293 ? ? ?
973 293 ∗ x
423 ? ? ?
573 ? ? ?
1023 293 ? ∗ x ? ?
1073 293 ? ∗ x ? ?
Tab.1  Case definitions of the pouring parameters
Fig.7  Influences of pouring temperature on (a) the average temperature of the liquid metal and mold, (b) the number density of crystals, and (c) the volume fraction of solid (T m=293 K; vp=1.037 m·s−1)
Fig.8  Influences of the initial mold temperature on average n and fe (T p= 973 K; vp = 1.037 m/s)
Fig.9  Influences of pouring velocity on the average grain number density and volume fraction of solid (T p = 973 K; Tm= 293 K)
Calculated type Number of volume elements Cell size/mm
2Da 121 2.3
2Db 4500 1.2
2Dc 11000 0.67
3D 85000 2.13
Tab.2  Case definitions for the grid sensitivity study
Fig.10  Comparison of the calculated average n and fe for various 2D grid sizes and 3D
1 ‎.  Spittle J,  Dellamore G,  Smith R. Formation of equiaxed zone in small ingots. In: Proceedings of the Conference on the Solidification of Metals. Brighton, 1967, 318–322
2 Stefanescu D M. Science and Engineering of Casting Solidification.New York: Kluwer Academic/Plenum Publishers, 2002, 119–126
3 Winegard W, Chalmers  B. Supercooling and dendritic freezing in alloys.  Transactions of American Society for Metals, 1954, 46: 1214–1223
4 ‎.Chalmers B. The structure of ingots. Journal of the Australian Institute of Metals, 1963, 8: 255–263
5 ‎Jackson K,  Hunt J, Uhlmann  D, et al.On origin of equiaxed zone in castings Transactions of the Metallurgical Society of AIME, 1966, 236: 149–158
6 Southin R T. Nucleation of equiaxed zone in cast metals. Transactions of the Metallurgical Society of AIME, 1967, 239: 220–225
7 Morando R, Biloni  H, Cole G S, et al.The development of macrostructure in ingots of increasing size. Metallurgical and Materials Transactions, 1970, 1(5): 1407–1412
8 Parazian J M, Kattamis  T Z. Effect of reduced gravity on solidification microstructures CH4Cl-H2O alloys. Metallurgical Transactions A, 1980, 11(3): 483–493
9 Hunt J D. ‎Steady state columnar and equiaxed growth of dendrites and eutectic. Materials Science and Engineering, 1984, 65(1): 75–83
https://doi.org/10.1016/0025-5416(84)90201-5
10 Wu M, Fjeld  A, Ludwig A. Modeling mixed columnar-equiaxed solidification with melt convection and grain sedimentation-Part I: Model description. Computational Materials Science, 2010, 50(1): 32–42
https://doi.org/10.1016/j.commatsci.2010.07.005
11 Wu M, Nunner  G, Ludwig A, et al. Evaluation of a mixed columnar-equiaxed solidification model with laboratory castings. IOP Conference Series: Materials Science and Engineering, 2012, 27(1): 012018
https://doi.org/10.1088/1757-899X/27/1/012018
12 Ahmadein M, Wu  M, Li J, et al.Prediction of the as-cast structure of Al-4.0 wt.% Cu ingots. Metallurgical and Materials Transactions A, 2013, 44(6): 2895–2903
https://doi.org/10.1007/s11661-012-1606-6
13 Wang T, Wu  M, Ludwig A, et al.Modelling the thermosolutal convection, shrinkage flow and grain movement of globular equiaxed solidification using a three phase model. International Journal of Cast Metals Research, 18(4): 221–228
https://doi.org/10.1179/136404605225022874
14 Wang T, Yao  S, Zhang X, et al.Modelling of the thermo-solutal convection, shrinkage flow and grain movement during globular equiaxed solidification in a multi-phase system I. Three-phase flow model. Acta Metallurgica Sinica, 2006, 42(6): 584–590 (in Chinese)
15 Wang C Y, Ahuja  S, Beckermann C, et al.Multiparticle interfacial drag in equiaxed solidification. Metallurgical and Materials Transactions B, 1995, 26(1): 111–119
https://doi.org/10.1007/BF02648984
16 ANSYS, Inc. ANSYS FLUENT 12.0 User’s Guide. 2009
17 Ahmadein M, Pustal  B, Berger R, et al.Grain nucleation parameters for aluminum alloys experimental determination and model evaluation. Metallurgical and Materials Transactions A, 2009, 40(3): 646–653
https://doi.org/ 10.1007/s11661-008-9738-4
[1] Xinyu HUI, Yingjie XU, Weihong ZHANG. Multiscale model of micro curing residual stress evolution in carbon fiber-reinforced thermoset polymer composites[J]. Front. Mech. Eng., 2020, 15(3): 475-483.
[2] Chengyuan LIANG, Fang YUAN, Xuedong CHEN, Wei JIANG, Lizhan ZENG, Xin LUO. Comprehensive analysis of the influence of structural and dynamic parameters on the accuracy of nano-precision positioning stages[J]. Front. Mech. Eng., 2019, 14(3): 255-272.
[3] Wentao YAN, Stephen LIN, Orion L. KAFKA, Cheng YU, Zeliang LIU, Yanping LIAN, Sarah WOLFF, Jian CAO, Gregory J. WAGNER, Wing Kam LIU. Modeling process-structure-property relationships for additive manufacturing[J]. Front. Mech. Eng., 2018, 13(4): 482-492.
[4] Zheng-Dong MA. Macro-architectured cellular materials: Properties, characteristic modes, and prediction methods[J]. Front. Mech. Eng., 2018, 13(3): 442-459.
[5] Le YANG, Shuo WANG, Jianghua FENG. Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems[J]. Front. Mech. Eng., 2018, 13(3): 329-353.
[6] Qizhi MENG, Fugui XIE, Xin-Jun LIU. Conceptual design and kinematic analysis of a novel parallel robot for high-speed pick-and-place operations[J]. Front. Mech. Eng., 2018, 13(2): 211-224.
[7] A. DAVOUDINEJAD, P. PARENTI, M. ANNONI. 3D finite element prediction of chip flow, burr formation, and cutting forces in micro end-milling of aluminum 6061-T6[J]. Front. Mech. Eng., 2017, 12(2): 203-214.
[8] Liangchi ZHANG,Weidong LIU. Precision glass molding: Toward an optimal fabrication of optical lenses[J]. Front. Mech. Eng., 2017, 12(1): 3-17.
[9] Rupalika DASH,Kalipada MAITY. Simulation of abrasive flow machining process for 2D and 3D mixture models[J]. Front. Mech. Eng., 2015, 10(4): 424-432.
[10] Jorge Alberto Rodriguez DURAN,Ronney Mancebo BOLOY,Rafael Raider LEONI. Some remarks on the engineering application of the fatigue crack growth approach under nonzero mean loads[J]. Front. Mech. Eng., 2015, 10(3): 255-262.
[11] S. SHANKAR GANESH,A.B. KOTESWARA RAO. Stiffness of a 3-degree of freedom translational parallel kinematic machine[J]. Front. Mech. Eng., 2014, 9(3): 233-241.
[12] S. SHANKAR GANESH,A. B. KOTESWARA RAO. Error analysis and optimization of a 3-degree of freedom translational Parallel Kinematic Machine[J]. Front. Mech. Eng., 2014, 9(2): 120-129.
[13] Reza TEIMOURI, Hamed SOHRABPOOR. Application of adaptive neuro-fuzzy inference system and cuckoo optimization algorithm for analyzing electro chemical machining process[J]. Front Mech Eng, 2013, 8(4): 429-442.
[14] Ravindra Nath YADAV, Vinod YADAVA, G.K. SINGH. Multi-objective optimization of process parameters in Electro-Discharge Diamond Face Grinding based on ANN-NSGA-II hybrid technique[J]. Front Mech Eng, 2013, 8(3): 319-332.
[15] Surinder Kumar GILL, Meenu GUPTA, P. S. SATSANGI. Prediction of cutting forces in machining of unidirectional glass fiber reinforced plastics composite[J]. Front Mech Eng, 2013, 8(2): 187-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed