|
|
Additive direct-write microfabrication for MEMS: A review |
Kwok Siong TEH( ) |
School of Engineering, San Francisco State University, San Francisco, CA 94132, USA |
|
|
Abstract Direct-write additive manufacturing refers to a rich and growing repertoire of well-established fabrication techniques that builds solid objects directly from computer-generated solid models without elaborate intermediate fabrication steps. At the macroscale, direct-write techniques such as stereolithography, selective laser sintering, fused deposition modeling ink-jet printing, and laminated object manufacturing have significantly reduced concept-to-product lead time, enabled complex geometries, and importantly, has led to the renaissance in fabrication known as the maker movement. The technological premises of all direct-write additive manufacturing are identical—converting computer generated three-dimensional models into layers of two-dimensional planes or slices, which are then reconstructed sequentially into three-dimensional solid objects in a layer-by-layer format. The key differences between the various additive manufacturing techniques are the means of creating the finished layers and the ancillary processes that accompany them. While still at its infancy, direct-write additive manufacturing techniques at the microscale have the potential to significantly lower the barrier-of-entry—in terms of cost, time and training—for the prototyping and fabrication of MEMS parts that have larger dimensions, high aspect ratios, and complex shapes. In recent years, significant advancements in materials chemistry, laser technology, heat and fluid modeling, and control systems have enabled additive manufacturing to achieve higher resolutions at the micrometer and nanometer length scales to be a viable technology for MEMS fabrication. Compared to traditional MEMS processes that rely heavily on expensive equipment and time-consuming steps, direct-write additive manufacturing techniques allow for rapid design-to-prototype realization by limiting or circumventing the need for cleanrooms, photolithography and extensive training. With current direct-write additive manufacturing technologies, it is possible to fabricate unsophisticated micrometer scale structures at adequate resolutions and precisions using materials that range from polymers, metals, ceramics, to composites. In both academia and industry, direct-write additive manufacturing offers extraordinary promises to revolutionize research and development in microfabrication and MEMS technologies. Importantly, direct-write additive manufacturing could appreciably augment current MEMS fabrication technologies, enable faster design-to-product cycle, empower new paradigms in MEMS designs, and critically, encourage wider participation in MEMS research at institutions or for individuals with limited or no access to cleanroom facilities. This article aims to provide a limited review of the current landscape of direct-write additive manufacturing techniques that are potentially applicable for MEMS microfabrication.
|
Keywords
direct-write
additive manufacturing
microfabrication
MEMS
|
Corresponding Author(s):
Kwok Siong TEH
|
Just Accepted Date: 04 September 2017
Online First Date: 08 November 2017
Issue Date: 31 October 2017
|
|
1 |
A B Frazier, R O Warrington, C Friedrich. The miniaturization technologies: Past, present, and future. IEEE Transactions on Industrial Electronics, 1995, 42(5): 423–430
https://doi.org/10.1109/41.464603
|
2 |
N Yazdi, F Ayazi, K Najafi. Micromachined inertial sensors. Proceedings of the IEEE, 1998, 86(8): 1640–1659
https://doi.org/10.1109/5.704269
|
3 |
T Gessner, W Doetzel, D Billep, et al.Silicon mirror arrays fabricated by using bulk and surface micromachining. Proceedings of the SPIE, Miniaturized Systems with Micro-Optics and Micromechanics II, 1997, 3008: 296–305
https://doi.org/10.1117/12.271427
|
4 |
A I Tsung Pan. US Patent 4894664, 1990-01-16
|
5 |
M Lemkin, B E Boser. A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics. IEEE Journal of Solid-State Circuits, 1999, 34(4): 456–468
https://doi.org/10.1109/4.753678
|
6 |
H Takao, H Fukumoto, M Ishida. A CMOS integrated three-axis accelerometer fabricated with commercial submicrometer CMOS technology and bulk-micromachining. IEEE Transactions on Electron Devices, 2001, 48(9): 1961–1968
https://doi.org/10.1109/16.944183
|
7 |
J Voldman, M L Gray, M A Schmidt. Microfabrication in biology and medicine. Annual Review of Biomedical Engineering, 1999, 1(1): 401–425
https://doi.org/10.1146/annurev.bioeng.1.1.401
|
8 |
M A Unger, H P Chou, T Thorsen, et al.Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 2000, 288(5463): 113–116
https://doi.org/10.1126/science.288.5463.113
|
9 |
R C McGlennen. Miniaturization technologies for molecular diagnostics. Clinical Chemistry, 2001, 47(3): 393–402
|
10 |
W P Eaton, J H Smith. Micromachined pressure sensors: Review and recent developments. Smart Materials and Structures, 1997, 6(5): 530–539
https://doi.org/10.1088/0964-1726/6/5/004
|
11 |
D S Eddy, D R Sparks. Application of MEMS technology in automotive sensors and actuators. Proceedings of the IEEE, 1998, 86(8): 1747–1755
https://doi.org/10.1109/5.704280
|
12 |
S Lucyszyn. Review of radio frequency microelectromechanical systems technology. IEE Proceedings. Science Measurement and Technology, 2004, 151(2): 93–103
https://doi.org/10.1049/ip-smt:20040405
|
13 |
D Briand, B van der Schoot, N F de Rooij, et al.. A low-power micromachined MOSFET gas sensor. Journal of Microelectromechanical Systems, 2000, 9(3): 303–308
https://doi.org/10.1109/84.870055
|
14 |
M C Wu. Micromachining for optical and optoelectronic systems. Proceedings of the IEEE, 1997, 85(11): 1833–1856
https://doi.org/10.1109/5.649660
|
15 |
D V McAllister, M G Allen, M R Prausnitz. Microfabricated microneedles for gene and drug delivery. Annual Review of Biomedical Engineering, 2000, 2(1): 289–313
https://doi.org/10.1146/annurev.bioeng.2.1.289
|
16 |
J M Bustillo, R T Howe, R S Muller. Surface micromachining for microelectromechanical systems. Proceedings of the IEEE, 1998, 86(8): 1552–1574
https://doi.org/10.1109/5.704260
|
17 |
R T Howe. Surface micromachining for microsensors and microactuators. Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena: An Official Journal of the American Vacuum Society, 1988, 6(6): 1809–1813
https://doi.org/10.1116/1.584158
|
18 |
G T Kovacs, K Petersen, M Albin. Peer reviewed: Silicon micromachining: Sensors to systems. Analytical Chemistry, 1996, 68(13): 407A–412A
https://doi.org/10.1021/ac961977i
|
19 |
M Hoffmann, E Voges. Bulk silicon micromachining for MEMS in optical communication systems. Journal of Micromechanics and Microengineering, 2002, 12(4): 349–360
https://doi.org/10.1088/0960-1317/12/4/301
|
20 |
G T Kovacs, N I Maluf, K E Petersen. Bulk micromachining of silicon. Proceedings of the IEEE, 1998, 86(8): 1536–1551
https://doi.org/10.1109/5.704259
|
21 |
Chr Burrer , J Esteve. A novel resonant silicon accelerometer in bulk-micromachining technology. Sensors and Actuators. A, Physical, 1995, 46(1–3): 185–189
https://doi.org/10.1016/0924-4247(94)00887-N
|
22 |
J Hormes, J Göttert, K Lian, et al.Materials for LiGA and LiGA-based microsystems. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 2003, 199: 332–341
https://doi.org/10.1016/S0168-583X(02)01571-9
|
23 |
T Katoh, N Nishi, M Fukagawa, et al.Direct writing for three-dimensional microfabrication using synchrotron radiation etching. Sensors and Actuators. A, Physical, 2001, 89(1–2): 10–15
https://doi.org/10.1016/S0924-4247(00)00528-8
|
24 |
R K Kupka, F Bouamrane, C Cremers, et al.Microfabrication: LIGA-X and applications. Applied Surface Science, 2000, 164(1–4): 97–110
https://doi.org/10.1016/S0169-4332(00)00354-8
|
25 |
Y Cheng, B Y Shew, M K Chyu, et al.Ultra-deep LIGA process and its applications. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467–468: 1192–1197
https://doi.org/10.1016/S0168-9002(01)00606-4
|
26 |
C K Malek, V Saile. Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: A review. Microelectronics Journal, 2004, 35(2): 131–143
https://doi.org/10.1016/j.mejo.2003.10.003
|
27 |
A del Campo, C Greiner. SU-8: A photoresist for high-aspect-ratio and 3D submicron lithography. Journal of Micromechanics and Microengineering, 2007, 17(6): R81–R95
https://doi.org/10.1088/0960-1317/17/6/R01
|
28 |
M J Madou. Manufacturing Techniques for Microfabrication and Nanotechnology. Boca Raton: CRC Press, 2011
|
29 |
H Jansen, H Gardeniers, M de Boer, et al.A survey on the reactive ion etching of silicon in microtechnology. Journal of Micromechanics and Microengineering, 1996, 6(1): 14–28
https://doi.org/10.1088/0960-1317/6/1/002
|
30 |
M Sterner, N Roxhed, G Stemme, et al.Electrochemically assisted maskless selective removal of metal layers for three-dimensional micromachined SOI RF MEMS transmission lines and devices. Journal of Microelectromechanical Systems, 2011, 20(4): 899–908
https://doi.org/10.1109/JMEMS.2011.2159100
|
31 |
M Zahedinejad, S D Farimani, M Khaje, et al.Deep and vertical silicon bulk micromachining using metal assisted chemical etching. Journal of Micromechanics and Microengineering, 2013, 23(5): 055015
https://doi.org/10.1088/0960-1317/23/5/055015
|
32 |
S M Kim, D Y Khang. Bulk micromachining of Si by metal-assisted chemical etching. Small, 2014, 10(18): 3761–3766
https://doi.org/10.1002/smll.201303379
|
33 |
M L Zhang, K Q Peng, X Fan, et al.Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. Journal of Physical Chemistry C, 2008, 112(12): 4444–4450
https://doi.org/10.1021/jp077053o
|
34 |
M T Saif, N C MacDonald. Design considerations for large MEMS. Proceedings of the SPIE: Smart Structures and Materials: Smart Electronics, 1995, 2448: 93–104
https://doi.org/10.1117/12.210452
|
35 |
P B Chu, S S Lee, S Park. MEMS: The path to large optical crossconnects. IEEE Communications Magazine, 2002, 40(3): 80–87
https://doi.org/10.1109/35.989762
|
36 |
S R Samuelson, H Xie. A large piston displacement MEMS mirror with electrothermal ladder actuator arrays for ultra-low tilt applications. Journal of Microelectromechanical Systems, 2014, 23(1): 39–49
https://doi.org/10.1109/JMEMS.2013.2290994
|
37 |
X Lv, W Wei, X Mao, et al.A novel MEMS electromagnetic actuator with large displacement. Sensors and Actuators. A, Physical, 2015, 221: 22–28
https://doi.org/10.1016/j.sna.2014.10.028
|
38 |
J Reddy, R Pratap. Si-gold-glass hybrid wafer bond for 3D-MEMS and wafer level packaging. Journal of Micromechanics and Microengineering, 2016, 27(1): 015005
https://doi.org/10.1088/0960-1317/27/1/015005
|
39 |
C T Ko, K N Chen. Low temperature bonding technology for 3D integration. Microelectronics and Reliability, 2012, 52(2): 302–311
https://doi.org/10.1016/j.microrel.2011.03.038
|
40 |
V Dragoi, E Pabo, J Burggraf, et al.CMOS: Compatible wafer bonding for MEMS and wafer-level 3D integration. Microsystem Technologies, 2012, 18(7–8): 1065–1075
https://doi.org/10.1007/s00542-012-1439-7
|
41 |
S Halder, K Stiers, A Miller, et al.Metrology and inspection challenges for manufacturing 3D stacked IC’s. In: Proceedings of ASMC 2013 SEMI Advanced Semiconductor Manufacturing Conference. IEEE, 2013, 75–79
|
42 |
H Ishida, S Sood, C Rosenthal, et al.Temporary bonding/de-bonding and permanent wafer bonding solutions for 3D integration. In: Proceedings of 2nd IEEE CPMT Symposium Japan. IEEE, 2012, 1–4
https://doi.org/10.1109/ICSJ.2012.6523416
|
43 |
A U Alam, M M Howlader, M J Deen. Oxygen plasma and humidity dependent surface analysis of silicon, silicon dioxide and glass for direct wafer bonding. ECS Journal of Solid State Science and Technology, 2013, 2(12): 515–523
https://doi.org/10.1149/2.007312jss
|
44 |
PolyMUMPs. 2016. Retrieved from MEMSCAP website, 2016-9-15
|
45 |
MEMS Foundry Services. 2016. Available from TDK website, 2016-9-15
|
46 |
B Berman. 3-D printing: The new industrial revolution. Business Horizons, 2012, 55(2): 155–162
https://doi.org/10.1016/j.bushor.2011.11.003
|
47 |
I J Petrick, T W Simpson. 3D printing disrupts manufacturing: How economies of one create new rules of competition. Research Technology Management, 2013, 56(6): 12–16
https://doi.org/10.5437/08956308X5606193
|
48 |
M Gebler, A J M Schoot Uiterkamp, C Visser. A global sustainability perspective on 3D printing technologies. Energy Policy, 2014, 74: 158–167
https://doi.org/10.1016/j.enpol.2014.08.033
|
49 |
S S Kumar, B D Pant. Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: A focused review. Microsystem Technologies, 2014, 20(7): 1213–1247
https://doi.org/10.1007/s00542-014-2215-7
|
50 |
M Narducci, L Yu-Chia, W Fang, et al.CMOS MEMS capacitive absolute pressure sensor. Journal of Micromechanics and Microengineering, 2013, 23(5): 055007
https://doi.org/10.1088/0960-1317/23/5/055007
|
51 |
R Littrell, K Grosh. Modeling and characterization of cantilever-based MEMS piezoelectric sensors and actuators. Journal of Microelectromechanical Systems, 2012, 21(2): 406–413
https://doi.org/10.1109/JMEMS.2011.2174419
|
52 |
F Hu, J Yao, C Qiu, et al.A MEMS micromirror driven by electrostatic force. Journal of Electrostatics, 2010, 68(3): 237–242
https://doi.org/10.1016/j.elstat.2010.01.005
|
53 |
N G Wright, A B Horsfall. SiC sensors: A review. Journal of Physics. D, Applied Physics, 2007, 40(20): 6345–6354
https://doi.org/10.1088/0022-3727/40/20/S17
|
54 |
P M Sarro. Silicon carbide as a new MEMS technology. Sensors and Actuators. A, Physical, 2000, 82(1–3): 210–218
https://doi.org/10.1016/S0924-4247(99)00335-0
|
55 |
C H Wu, C A Zorman, M Mehregany. Fabrication and testing of bulk micromachined silicon carbide piezoresistive pressure sensors for high temperature applications. IEEE Sensors Journal, 2006, 6(2): 316–324
https://doi.org/10.1109/JSEN.2006.870145
|
56 |
M Mehregany, C A Zorman, N Rajan, et al.Silicon carbide MEMS for harsh environments. Proceedings of the IEEE, 1998, 86(8): 1594–1609
https://doi.org/10.1109/5.704265
|
57 |
F Tejada, A G Andreou, D K Wickenden, et al.Surface micromachining in silicon on sapphire CMOS technology. In: Proceedings of the 2004 International Symposium on Circuits and Systems. ISCAS ‘04. Vancouver: IEEE, 2004, 920–923
https://doi.org/10.1109/ISCAS.2004.1329155
|
58 |
J Wang, J E Butler, T Feygelson, et al.1.51-GHz nanocrystalline diamond micromechanical disk resonator with material-mismatched isolating support. In: Proceedings of 17th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2004. Maastricht: IEEE, 2004, 641–644
https://doi.org/10.1109/MEMS.2004.1290666
|
59 |
T L Naing, T Beyazoglu, L Wu, et al.2.97-GHz CVD diamond ring resonator with Q>40,000. In: Proceedings of 2012 IEEE International Frequency Control Symposium. Baltimore: IEEE, 2012, 1–6
https://doi.org/10.1109/FCS.2012.6243723
|
60 |
A E Franke, J M Heck, T J King, et al.Polycrystalline silicon-germanium films for integrated microsystems. Journal of Microelectromechanical Systems, 2003, 12(2): 160–171
https://doi.org/10.1109/JMEMS.2002.805051
|
61 |
K S Teh, Y T Cheng, L Lin. MEMS fabrication based on nickel-nanocomposite: Film deposition and characterization. Journal of Micromechanics and Microengineering, 2005, 15(12): 2205–2215
https://doi.org/10.1088/0960-1317/15/12/001
|
62 |
E Meng, Y C Tai. A parylene MEMS flow sensing array. In: Proceedings of 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems. Boston: IEEE, 2003, 686–689
https://doi.org/10.1109/SENSOR.2003.1215566
|
63 |
M Mescher, T Abe, B Brunett, et al.Piezoelectric lead-zirconate-titanate actuator films for microelectromechanical systems applications. In: Proceedings of IEEE Micro Electro Mechanical Systems. MEMS ’95. Amsterdam: IEEE, 1995, 261
https://doi.org/10.1109/MEMSYS.1995.472537
|
64 |
Y Bastani, N Bassiri-Gharb. Processing optimization of lead magnesium niobite-lead titanate thin films for piezoelectric MEMS application. Journal of the American Ceramic Society, 2012, 95(4): 1269–1275
https://doi.org/10.1111/j.1551-2916.2011.05042.x
|
65 |
R G Polcawich, J S Pulskamp. Lead zirconate titanate (PZT) for M/NEMS. In: Bhugra H, Piazza G, eds. Piezoelectric MEMS Resonators. Microsystems and Nanosystems. Cham: Springer, 2017, 39–71
|
66 |
G Wang, T Polley, A Hunt, et al.A high performance tunable RF MEMS switch using barium strontium titanate (BST) dielectrics for reconfigurable antennas and phased arrays. IEEE Antennas and Wireless Propagation Letters, 2005, 4(1): 217–220
https://doi.org/10.1109/LAWP.2005.851065
|
67 |
Marvell Nanofabrication Laboratory Lab Manual. Chapter 1.10: Miscellaneous Etchants. 2016. Retrieved from Berkeley Marvell NanoLab at CITRIS website, 2016-8-30
|
68 |
N T Nguyen, X Huang, T K Chuan. MEMS-micropumps: A review. Journal of Fluids Engineering, 2002, 124(2): 384–392
https://doi.org/10.1115/1.1459075
|
69 |
C K Malek, V Saile. Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: A review. Microelectronics Journal, 2004, 35(2): 131–143
https://doi.org/10.1016/j.mejo.2003.10.003
|
70 |
A Bertsch, S Jiguet, P Bernhard, et al.Microstereolithography: A review. In: Materials Research Society Symposium Proceedings, Cambridge: Cambridge University Press, 2002, 758: LL1–1
|
71 |
H B Sun, S Kawata. Two-photon photopolymerization and 3D lithographic microfabrication. In: NMR•3D Analysis•Photopolymerization. Apvances in Polymer Science. Volume 170. Berlin: Springer, 2004, 169–273
|
72 |
Y H Pao, P M Rentzepis. Laser-induced production of free radicals in organic compounds. Applied Physics Letters, 1965, 6(5): 93–95
https://doi.org/10.1063/1.1754182
|
73 |
K Ikuta, K Hirowatari. Real three dimensional micro fabrication using stereo lithography and metal molding. In: Proceedings of An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. Micro Electro Mechanical Systems, MEMS ’93. Fort Lauderdale: IEEE, 1993, 42–47
https://doi.org/10.1109/MEMSYS.1993.296949
|
74 |
C Sun, N Fang, D M Wu, et al.Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors and Actuators. A, Physical, 2005, 121(1): 113–120
https://doi.org/10.1016/j.sna.2004.12.011
|
75 |
J Stampfl, H Fouad, S Seidler, et al.Fabrication and moulding of cellular materials by rapid prototyping. International Journal of Materials & Product Technology, 2004, 21(4): 285–296
https://doi.org/10.1504/IJMPT.2004.004943
|
76 |
X Zheng, H Lee, T H Weisgraber, et al.Ultralight, ultrastiff mechanical metamaterials. Science, 2014, 344(6190): 1373–1377
https://doi.org/10.1126/science.1252291
|
77 |
R D Farahani, K Chizari, D Therriault. Three-dimensional printing of freeform helical microstructures: A review. Nanoscale, 2014, 6(18): 10470–10485
https://doi.org/10.1039/C4NR02041C
|
78 |
K Kobayashi, K Ikuta. Three-dimensional magnetic microstructures fabricated by microstereolithography. Applied Physics Letters, 2008, 92(26): 262505
https://doi.org/10.1063/1.2954011
|
79 |
F Kotz, K Arnold, W Bauer, et al.Three-dimensional printing of transparent fused silica glass. Nature, 2017, 544(7650): 337–339
https://doi.org/10.1038/nature22061
|
80 |
K Alblalaihid, J Overton, S Lawes, et al.A 3D-printed polymer micro-gripper with self-defined electrical tracks and thermal actuator. Journal of Micromechanics and Microengineering, 2017, 27(4): 045019
https://doi.org/10.1088/1361-6439/aa631e
|
81 |
G Xu, W Zhao, Y Tang, et al.Novel stereolithography system for small size objects. Rapid Prototyping Journal, 2006, 12(1): 12–17
https://doi.org/10.1108/13552540610637228
|
82 |
S Kawata, H B Sun, T Tanaka, et al.Finer features for functional microdevices. Nature, 2001, 412(6848): 697–698
https://doi.org/10.1038/35089130
|
83 |
P Mueller, M Thiel, M Wegener. 3D direct laser writing using a 405 nm diode laser. Optics Letters, 2014, 39(24): 6847–6850
https://doi.org/10.1364/OL.39.006847
|
84 |
R D Sochol, Y J Heo, S Iwanaga, et al.Cells on arrays of microsprings: An approach to achieve tri-axial control of substrate stiffness. In: Proceedings of IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). Taipei: IEEE, 2013, 90–93
https://doi.org/10.1109/MEMSYS.2013.6474184
|
85 |
S Maruo, K Ikuta, H Korogi. Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography. Journal of Microelectromechanical Systems, 2003, 12(5): 533–539
https://doi.org/10.1109/JMEMS.2003.817894
|
86 |
J W Choi, R B Wicker, S H Cho, et al.Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography. Rapid Prototyping Journal, 2009, 15(1): 59–70
https://doi.org/10.1108/13552540910925072
|
87 |
T Gissibl, S Thiele, A Herkommer, et al.Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics, 2016, 10(8): 554–560
https://doi.org/10.1038/nphoton.2016.121
|
88 |
GmBH Nanoscribe. 2017. Retrieved from Nanoscribe website, 2017-7-15
|
89 |
J R Tumbleston, D Shirvanyants, N Ermoshkin, et al.Continuous liquid interface production of 3D objects. Science, 2015, 347(6228): 1349–1352
https://doi.org/10.1126/science.aaa2397
|
90 |
M Thiel, M Hermatschweiler. Three-dimensional laser lithography. Optik & Photonik, 2011, 6(4): 36–39
https://doi.org/10.1002/opph.201190386
|
91 |
G Göring, P I Dietrich, M Blaicher, et al.Tailored probes for atomic force microscopy fabricated by two-photon polymerization. Applied Physics Letters, 2016, 109(6): 063101
https://doi.org/10.1063/1.4960386
|
92 |
W Xiong, Y S Zhou, X N He, et al.Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light, Science & Applications, 2012, 1(4): e6
https://doi.org/10.1038/lsa.2012.6
|
93 |
V K Varadan, X Jiang, V V Varadan. Microstereolithography and Other Fabrication Techniques for 3D MEMS. New York: John Wiley & Sons, 2001
|
94 |
K Ikuta, T Ogata, M Tsubio, et al.Development of mass productive micro stereo lithography (Mass-IH Process). In: Proceedings of the Ninth Annual International Workshop on Micro Electro Mechanical Systems, MEMS ’96. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. San Diego: IEEE, 1996, 301–306
https://doi.org/10.1109/MEMSYS.1996.493998
|
95 |
J Neumann, K S Wieking, D Kip. Direct laser writing of surface reliefs in dry, self-developing photopolymer films. Applied Optics, 1999, 38(25): 5418–5421
https://doi.org/10.1364/AO.38.005418
|
96 |
P J Bártolo. Stereolithography: Materials, Processes and Applications. New Yrok: Springer, 2011
|
97 |
V A Lifton, G Lifton, S Simon. Options for additive rapid prototyping methods (3D printing) in MEMS technology. Rapid Prototyping Journal, 2014, 20(5): 403–412
https://doi.org/10.1108/RPJ-04-2013-0038
|
98 |
M Vaezi, H Seitz, S Yang. A review on 3D micro-additive manufacturing technologies. International Journal of Advanced Manufacturing Technology, 2013, 67(5–8): 1721–1754
https://doi.org/10.1007/s00170-012-4605-2
|
99 |
I Gibson, D W Rosen, B Stucker. Additive Manufacturing Technologies. New York: Springer, 2010
|
100 |
J W Lee, I H Lee, D W Cho. Development of micro-stereolithography technology using metal powder. Microelectronic Engineering, 2006, 83(4–9): 1253–1256
https://doi.org/10.1016/j.mee.2006.01.192
|
101 |
K S Lee, R H Kim, D Y Yang, et al.Advances in 3D nano/microfabrication using two-photon initiated polymerization. Progress in Polymer Science, 2008, 33(6): 631–681
https://doi.org/10.1016/j.progpolymsci.2008.01.001
|
102 |
EnvisionTec Perfactory 3D Printer. 2017. Retrieved from EnvisionTec website, 2017-7-15
|
103 |
S Kawata, H B Sun, T Tanaka, et al.Finer features for functional microdevices. Nature, 2001, 412(6848): 697–698
https://doi.org/10.1038/35089130
|
104 |
F Abe, K Osakada, M Shiomi, et al.The manufacturing of hard tools from metallic powders by selective laser melting. Journal of Materials Processing Technology, 2001, 111(1–3): 210–213
https://doi.org/10.1016/S0924-0136(01)00522-2
|
105 |
H Exner, A Streek. High resolution laser micro sintering/melting using q-switched and high brilliant laser radiation. Proceedings of the SPIE, International Society for Optics and Photonics, 2015, 9353: 93530P
https://doi.org/10.1117/12.2083777
|
106 |
H Exner, M Horn, A Streek, et al.Laser micro sintering: A new method to generate metal and ceramic parts of high resolution with sub-micrometer powder. Virtual and Physical Prototyping, 2008, 3(1): 3–11
https://doi.org/10.1080/17452750801907970
|
107 |
T Petsch, P Regenfuß, R Ebert, et al.Industrial laser micro sintering. In: Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics 2004. Erlangen, 2004
|
108 |
H Exner, P Regenfuss, L Hartwig, et al.Selective laser micro sintering with a novel process. Proceedings of SPIE, Fourth International Symposium on Laser Precision Microfabrication, 2003, 5063: 145–151
https://doi.org/10.1117/12.540730
|
109 |
P Regenfuss, A Streek, L Hartwig, et al.Principles of laser micro sintering. Rapid Prototyping Journal, 2007, 13(4): 204–212
https://doi.org/10.1108/13552540710776151
|
110 |
S Hong, J Yeo, G Kim, et al.Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano, 2013, 7(6): 5024–5031
https://doi.org/10.1021/nn400432z
|
111 |
Y K Liu, M T Lee. Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate. ACS Applied Materials & Interfaces, 2014, 6(16): 14576–14582
https://doi.org/:10.1021/am503897r
|
112 |
J Kwon, H Cho, H Eom, et al.Low-temperature oxidation-free selective laser sintering of Cu nanoparticle paste on a polymer substrate for the flexible touch panel applications. ACS Applied Materials & Interfaces, 2016, 8(18): 11575–11582
https://doi.org/10.1021/acsami.5b12714
|
113 |
J Bohandy, B F Kim, F J Adrian. Metal deposition from a supported metal film using an excimer laser. Journal of Applied Physics, 1986, 60(4): 1538–1539
https://doi.org/10.1063/1.337287
|
114 |
A J Birnbaum, R C Auyeung, K J Wahl, et al.Laser printed micron-scale free standing laminate composites: Process and properties. Journal of Applied Physics, 2010, 108(8): 083526
https://doi.org/10.1063/1.3492708
|
115 |
J Wang, R C Auyeung, H Kim, et al.Three-dimensional printing of interconnects by laser direct-write of silver nanopastes. Advanced Materials, 2010, 22(40): 4462–4466
https://doi.org/10.1002/adma.201001729
|
116 |
C W Visser, R Pohl, C Sun, et al.Toward 3D printing of pure metals by laser-induced forward transfer. Advanced Materials, 2015, 27(27): 4087–4092
https://doi.org/10.1002/adma.201501058
|
117 |
A Piqué, D B Chrisey. Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Power Sources. New York: Academic Press, 2001
|
118 |
A Piqué, D B Chrisey, R C Auyeung, et al.A novel laser transfer process for direct writing of electronic and sensor materials. Applied Physics. A, Materials Science & Processing, 1999, 69(1): S279–S284
|
119 |
A Piqué, R C Auyeung, H Kim, et al.Laser 3D micro-manufacturing. Journal of Physics. D, Applied Physics, 2016, 49(22): 223001
https://doi.org/10.1088/0022-3727/49/22/223001
|
120 |
D B Chrisey, A Pique, J Fitz-Gerald, et al.New approach to laser direct writing active and passive mesoscopic circuit elements. Applied Surface Science, 2000, 154–155: 593–600
https://doi.org/10.1016/S0169-4332(99)00465-1
|
121 |
A J Birnbaum, H Kim, N A Charipar, et al.Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices. Applied Physics. A, Materials Science & Processing, 2010, 99(4): 711–716
https://doi.org/10.1007/s00339-010-5743-8
|
122 |
A Piqué , H Kim, R C Auyeung, et al.Laser forward transfer of functional materials for digital fabrication of microelectronics. Journal of Imaging Science and Technology, 2013, 57(4): 40404
https://doi.org/10.2352/J.ImagingSci.Technol.2013.57.4.040404
|
123 |
H Kim, M Duocastella, K M Charipar, et al.Laser printing of conformal and multi-level 3D interconnects. Applied Physics. A, Materials Science & Processing, 2013, 113(1): 5–8
https://doi.org/10.1007/s00339-013-7909-7
|
124 |
R C Auyeung, H Kim, A J Birnbaum, et al.Laser decal transfer of freestanding microcantilevers and microbridges. Applied Physics. A, Materials Science & Processing, 2009, 97(3): 513–519
https://doi.org/10.1007/s00339-009-5433-6
|
125 |
A Piqué, R Auyeung, K Metkus, et al.Laser decal transfer of electronic materials with thin film characteristics. Proceedings of SPIE, 2008, 6879: 687911
|
126 |
P Delaporte, A P Alloncle. Laser-induced forward transfer: A high resolution additive manufacturing technology. Optics & Laser Technology, 2016, 78: 33–41
https://doi.org/10.1016/j.optlastec.2015.09.022
|
127 |
S Zhang, R Tu, T Goto. High-speed epitaxial growth of -SiC film on Si (111) single crystal by laser chemical vapor deposition. Journal of the American Ceramic Society, 2012, 95(9): 2782–2784
https://doi.org/10.1111/j.1551-2916.2012.05354.x
|
128 |
S Zhang, Q Xu, R Tu, et al.Growth mechanism and defects of<111>-oriented-SiC films deposited by laser chemical vapor deposition. Journal of the American Ceramic Society, 2015, 98(1): 236–241
https://doi.org/10.1111/jace.13248
|
129 |
D J Ehrlich, J Y Tsao. Laser Microfabrication: Thin Film Processes and Lithography. Boston: Academic Press, 1989
|
130 |
B Shen, R Izquierdo, M Meunier. Laser fabrication of three-dimensional microstructures, cavities, and columns. Proceedings of SPIE, International Society for Optics and Photonics, 1994, 91–98
|
131 |
C Duty, D Jean, W J Lackey. Laser chemical vapour deposition: Materials, modelling, and process control. International Materials Reviews, 2013, 271–287
https://doi.org/10.1179/095066001771048727
|
132 |
M C Wanke, O Lehmann, K Müller, et al.Laser rapid prototyping of photonic band-gap microstructures. Science, 1997, 275(5304): 1284–1286
https://doi.org/10.1126/science.275.5304.1284
|
133 |
K L Williams, J Köhler, M Boman. Fabrication and mechanical characterization of LCVD-deposited carbon micro-springs. Sensors and Actuators. A, Physical, 2006, 130–131: 358–364
https://doi.org/10.1016/j.sna.2005.10.022
|
134 |
K Williams, J Maxwell, K Larsson, et al.Freeform fabrication of functional microsolenoids, electromagnets and helical springs using high-pressure laser chemical vapor deposition. In: Proceedings of Twelfth IEEE International Conference on Micro Electro Mechanical Systems. MEMS ‘99. Orlando: IEEE, 1999, 232–237
https://doi.org/10.1109/MEMSYS.1999.746821
|
135 |
M Stuke, K Mueller, T Mueller, et al.Laser-direct-write creation of three-dimensional OREST microcages for contact-free trapping, handling and transfer of small polarizable neutral objects in solution. Applied Physics. A, Materials Science & Processing, 2005, 81(5): 915–922
https://doi.org/10.1007/s00339-005-3280-7
|
136 |
Y B van de Burgt. Laser-assisted growth of carbon nanotubes. Dissertation for the Doctoral Degree. Eindhoven: Technische Universiteit Eindhoven, 2014
https://doi.org/10.6100/IR772901
|
137 |
S Maeda, K Minami, M Esashi. Excimerlaser induced CVD and its application to selective non-planar metallization. Journal of Micromechanics and Microengineering, 1995, 5(3): 237–242
https://doi.org/10.1088/0960-1317/5/3/006
|
138 |
K L Williams. Laser-assisted CVD fabrication and characterization of carbon and tungsten microhelices for microthrusters. Dissertation for the Doctoral Degree. Sweden: Uppsala University, 2006
|
139 |
K L Williams, A B Eriksson, R Thorslund, et al.The electrothermal feasibility of carbon microcoil heaters for cold/hot gas microthrusters. Journal of Micromechanics and Microengineering, 2006, 16(7): 1154–1161
https://doi.org/10.1088/0960-1317/16/7/007
|
140 |
K L Williams, J Köhler, M Boman. Fabrication and mechanical characterization of LCVD-deposited carbon micro-springs. Sensors and Actuators: A, Physical, 2006, 130–131: 358–364
https://doi.org/10.1016/j.sna.2005.10.022
|
141 |
O Lehmann, M Stuke. Laser-driven movement of three-dimensional microstructures generated by laser rapid prototyping. Science, 1995, 270(5242): 1644–1645
|
142 |
A S Holmes. Laser fabrication and assembly processes for MEMS. Proceedings of the SPIE, Laser Applications in Microelectronic and Optoelectronic Manufacturing VI, 2001, 4274: 297–306
https://doi.org/10.1117/12.432522
|
143 |
S B Fuller, E J Wilhelm, J M Jacobson. Ink-jet printed nanoparticle microelectromechanical systems. Journal of Microelectromechanical Systems, 2002, 11(1): 54–60
https://doi.org/10.1109/84.982863
|
144 |
J O’Donnell, M Kim, H S Yoon. A review on electromechanical devices fabricated by additive manufacturing. Journal of Manufacturing Science and Engineering, 2016, 139(1): 010801
https://doi.org/10.1115/1.4033758
|
145 |
T D Brown, P D Dalton, D W Hutmacher. Direct writing by way of melt electrospinning. Advanced Materials, 2011, 23(47): 5651–5657
https://doi.org/10.1002/adma.201103482
|
146 |
S Y Wu, C Yang, W Hsu, et al.3D-printed microelectronics for integrated circuitry and passive wireless sensors. Microsystems & Nanoengineering, 2015, 1: 15013
|
147 |
O Pabst, J Perelaer, E Beckert, et al.All inkjet-printed piezoelectric polymer actuators: Characterization and applications for micropumps in lab-on-a-chip systems. Organic Electronics, 2013, 14(12): 3423–3429
https://doi.org/10.1016/j.orgel.2013.09.009
|
148 |
K Sun, T S Wei, B Y Ahn, et al.3D Printing of interdigitated Li-ion microbattery architectures. Advanced Materials, 2013, 25(33): 4539–4543
https://doi.org/10.1002/adma.201301036
|
149 |
J R Raney, J A Lewis. Printing mesoscale architectures. MRS Bulletin, 2015, 40(11): 943–950
https://doi.org/10.1557/mrs.2015.235
|
150 |
B G Compton, J A Lewis. 3D-printing of lightweight cellular composites. Advanced Materials, 2014, 26(34): 5930–5935
https://doi.org/10.1002/adma.201401804
|
151 |
J U Lind, T A Busbee, A D Valentine, et al.Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nature Materials, 2016, 16(3): 303–308
https://doi.org/10.1038/nmat4782
|
152 |
M A Skylar-Scott, S Gunasekaran, J A Lewis. Laser-assisted direct ink writing of planar and 3D metal architectures. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(22): 6137–6142
|
153 |
N Travitzky, A Bonet, B Dermeik, et al.Additive manufacturing of ceramic-based materials. Advanced Engineering Materials, 2014, 16(6): 729–754
https://doi.org/10.1002/adem.201400097
|
154 |
M S Mason, T Huang, R G Landers, et al.Aqueous-based extrusion of high solids loading ceramic pastes: Process modeling and control. Journal of Materials Processing Technology, 2009, 209(6): 2946–2957
https://doi.org/10.1016/j.jmatprotec.2008.07.004
|
155 |
Y Huang, N Bu, Y Duan, et al.Electrohydrodynamic direct-writing. Nanoscale, 2013, 5(24): 12007–12017
https://doi.org/10.1039/c3nr04329k
|
156 |
M S Onses, E Sutanto, P M Ferreira, et al.Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small, 2015, 11(34): 4237–4266
https://doi.org/10.1002/smll.201500593
|
157 |
G Luo, K S Teh, Y Liu, et al.Direct-write, self-aligned electrospinning on paper for controllable fabrication of three-dimensional structures. ACS Applied Materials & Interfaces, 2015, 7(50): 27765–27770
https://doi.org/10.1021/acsami.5b08909
|
158 |
G Luo, K S Teh, X Zang, et al.High aspect-ratio 3D microstructures via near-field electrospinning for energy storage applications. In: Proceedings of IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). Shanghai: IEEE, 2016, 29–32
https://doi.org/10.1109/MEMSYS.2016.7421549
|
159 |
J M Hoey, A Lutfurakhmanov, D L Schulz, et al.A review on aerosol-based direct-write and its applications for microelectronics. Journal of Nanotechnology, 2012, 2012(2012): 324380
https://doi.org/10.1155/2012/324380
|
160 |
J Lessing, A C Glavan, S B Walker, et al.Inkjet printing of conductive inks with high lateral resolution on omniphobic “RF paper” for paper-based electronics and MEMS. Advanced Materials, 2014, 26(27): 4677–4682
https://doi.org/10.1002/adma.201401053
|
161 |
S Waheed, J M Cabot, N P Macdonald, et al.3D printed microfluidic devices: Enablers and barriers. Lab on a Chip, 2016, 16(11): 1993–2013
https://doi.org/10.1039/C6LC00284F
|
162 |
R D Sochol, E Sweet, C C Glick, et al.3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab on a Chip, 2016, 16(4): 668–678
https://doi.org/10.1039/C5LC01389E
|
163 |
S H Ko, H Pan, C P Grigoropoulos, et al.All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology, 2007, 18(34): 345202
https://doi.org/10.1088/0957-4484/18/34/345202
|
164 |
K J Lee, B H Jun, T H Kim, et al.Direct synthesis and inkjetting of silver nanocrystals toward printed electronics. Nanotechnology, 2006, 17(9): 2424–2428
https://doi.org/10.1088/0957-4484/17/9/060
|
165 |
S H Ko, J Chung, N Hotz, et al.Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication. Journal of Micromechanics and Microengineering, 2010, 20(12): 125010
https://doi.org/10.1088/0960-1317/20/12/125010
|
166 |
Y L Kong, I A Tamargo, H Kim, et al.3D printed quantum dot light-emitting diodes. Nano Letters, 2014, 14(12): 7017–7023
https://doi.org/10.1021/nl5033292
|
167 |
EcoPlex Inc. 2017. Retrieved from, 2017-3-10
|
168 |
Y Zhang, C Liu, D Whalley. Direct-write techniques for maskless production of microelectronics: A review of current state-of-the-art technologies. In: Proceedings of International Conference on Electronic Packaging Technology & High Density Packaging. ICEPT-HDP ‘09. Beijing: IEEE, 2009, 497–503
https://doi.org/10.1109/ICEPT.2009.5270702
|
169 |
Optomec Aerosol Jet Printer. 2017. Retrieved from Optomec website, 2017-5-21
|
170 |
A Mette, P L Richter, M Hörteis, et al.Metal aerosol jet printing for solar cell metallization. Progress in Photovoltaics: Research and Applications, 2007, 15(7): 621–627
https://doi.org/10.1002/pip.759
|
171 |
C Yang, E Zhou, S Miyanishi, et al.Preparation of active layers in polymer solar cells by aerosol jet printing. ACS Applied Materials & Interfaces, 2011, 3(10): 4053–4058
https://doi.org/10.1021/am200907k
|
172 |
E Macdonald, R Salas, D Espalin, et al.3D printing for the rapid prototyping of structural electronics. IEEE Access: Practical Innovations, Open Solutions, 2014, 2: 234–242
https://doi.org/10.1109/ACCESS.2014.2311810
|
173 |
B Andò, S Baglio, S La Malfa, et al.All inkjet printed system for strain measurement. Sensors, 2012, 25(35): 215–217
https://doi.org/10.1109/ICSENS.2011.6127295
|
174 |
T Rahman, L Renaud, D Heo, et al.Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures. Journal of Micromechanics and Microengineering, 2015, 25(10): 107002
https://doi.org/10.1088/0960-1317/25/10/107002
|
175 |
A M Numan-Al-Mobin, R Shankar, W M Cross, et al.Direct-write printing of an RF-MEMS cantilever. In: Proceedings of IEEE Antennas and Propagation Society International Symposium (APSURSI). Memphis: IEEE, 2014, 15–16
https://doi.org/10.1109/APS.2014.6904339
|
176 |
E Sachs, M Cima, P Williams, et al.Three dimensional printing: Rapid tooling and prototypes directly from a CAD model. Journal of Engineering for Industry, 1992, 114(4): 481–488
https://doi.org/10.1115/1.2900701
|
177 |
C Ainsley, N Reis, B Derby. Freeform fabrication by controlled droplet deposition of powder filled melts. Journal of Materials Science, 2002, 37(15): 3155–3161
https://doi.org/10.1023/A:1016106311185
|
178 |
C K Chua, K F Leong, C S Lim. Rapid Prototyping: Principles and Applications. 3rd ed. Singapore: World Scientific Publishing Co. Pte. Ltd., 2010
|
179 |
D Guo, X Wu, J Lei, et al.Fabrication of micro/nanoelectrode using focused-ion-beam chemical vapor deposition, and its application to micro-ECDM. Procedia CIRP, 2016, 42: 733–736
https://doi.org/10.1016/j.procir.2016.02.310
|
180 |
K K Hon, L Li, I M Hutchings. Direct writing technology—Advances and developments. CIRP Annals-Manufacturing Technology, 2008, 57(2): 601–620
https://doi.org/10.1016/j.cirp.2008.09.006
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|