Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (4) : 546-553    https://doi.org/10.1007/s11465-017-0447-9
RESEARCH ARTICLE
Piezoresistive pressure sensor with high sensitivity for medical application using peninsula-island structure
Tingzhong XU1,2, Hongyan WANG3(), Yong XIA1, Zhiming ZHAO1, Mimi HUANG1, Jiuhong WANG1, Libo ZHAO1, Yulong ZHAO1, Zhuangde JIANG1
1. State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2. School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
3. Shaanxi Institute of Metrology Science, Xi’an 710065, China
 Download: PDF(555 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel micro-electromechanical systems piezoresistive pressure sensor with a diagonally positioned peninsula-island structure has high sensitivity for ultra-low-pressure measurement. The pressure sensor was designed with a working range of 0–500 Pa and had a high sensitivity of 0.06 mV·V−1·Pa−1. The trade-off between high sensitivity and linearity was alleviated. Moreover, the influence of the installation angle on the sensing chip output was analyzed, and an application experiment of the sensor was conducted using the built pipettor test platform. Findings indicated that the proposed pressure sensor had sufficient resolution ability and accuracy to detect the pressure variation in the pipettor chamber. Therefore, the proposed pressure sensor has strong potential for medical equipment application.

Keywords MEMS      low pressure sensor      peninsula-island      ultra-high sensitivity      medical application     
Corresponding Author(s): Hongyan WANG   
Just Accepted Date: 07 June 2017   Online First Date: 25 July 2017    Issue Date: 31 October 2017
 Cite this article:   
Tingzhong XU,Hongyan WANG,Yong XIA, et al. Piezoresistive pressure sensor with high sensitivity for medical application using peninsula-island structure[J]. Front. Mech. Eng., 2017, 12(4): 546-553.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0447-9
https://academic.hep.com.cn/fme/EN/Y2017/V12/I4/546
Fig.1  Schematics of the proposed structure. (a) Schematic of the sensor chip cavity; (b) mask of the sensor chip
Fig.2  Optimization process of the diagonally positioned peninsula-island structure. (a) Peninsula length optimization; (b) island length optimization
Fig.3  Piezoresistors captured by CLE. (a) Pattern I for piezoresistor; (b) Pattern II for piezoresistor
Fig.4  Peninsula-island structure captured by CLE
Fig.5  Sensor chip observed by CLE
Fig.6  Experiment setup of the sensor chip. (a) Package structure of the sensor chip; (b) block diagram of the experimental system
Pressure/PaVoltage output/mV
1st round2nd round3rd roundMean value
Forward
stroke
Backward strokeForward strokeBackward strokeForward strokeBackward strokeForward strokeBackward stroke
00.000.100.050.170.000.040.020.10
10030.7330.7631.1831.3031.2531.0731.0531.04
20061.1461.2361.7461.8161.7961.5261.5661.52
30091.2291.3291.7591.7691.7091.5391.5691.54
400121.11121.20121.42121.56121.44121.17121.32121.31
500151.10151.05151.11151.10151.20151.20151.14151.10
Tab.1  Calibration data for the developed pressure sensor
Fig.7  Output voltage versus applied pressure ranging from 0 to 500 Pa
ParameterValue
Full-scale output/mV151
Sensitivity/(mV·V–1·Pa–1)0.06
Nonlinearity/(%FS)0.36
Repeatability/(%FS)0.20
Hysteresis/(%FS)0.31
Accuracy/(%FS)0.68
TC span (TCS)/(%·°C–1)–2671
TC zero offset/(mV·V–1·°C–1)0.98–0.116
Tab.2  Performance of the developed pressure sensor
Fig.8  Experimental setup for the cross sensitivity evaluation of the developed sensing chip. (a) Detailed installation dependencies between the sensing chip and the rotation part of the platform; (b) whole experimental setup
Fig.9  Output voltage versus installation angle of the sensing chip from –180° to 180°
Fig.10  Comparison between the working mechanism of the pipettor with and without a pressure detection module
Fig.11  Pipettor testing system. (a) Experimental set; (b) block diagram of the experiment
Fig.12  Inner chamber pressure detection during the evaporation process of anhydrous ethanol
1 Druzhinin A, Lavitska E, Maryamova I. Medical pressure sensors on the basis of silicon microcrystals and SOI layers. Sensors and Actuators B: Chemical, 1999, 58(1–3): 415–419
https://doi.org/10.1016/S0925-4005(99)00121-5
2 Kattavenos N, Lawrenson B, Frank T G, et al. Force-sensitive tactile sensor for minimal access surgery. Journal Minimally Invasive Therapy & Allied Technologies, 2004, 13(1): 42–46
https://doi.org/10.1080/13645700310023069
3 Pramanik C, Saha H. Low pressure piezoresistive sensors for medical electronics applications. Materials and Manufacturing Processes, 2006, 21(3): 233–238
https://doi.org/10.1080/10426910500464446
4 Barlian A A, Park W T, Mallon J R, et al. Review: Semiconductor piezoresistance for microsystems. Proceedings of the IEEE, 2009, 97(3): 513–552
https://doi.org/10.1109/JPROC.2009.2013612
5 Welham C J, Greenwood J, Bertioli M M. A high accuracy resonant pressure sensor by fusion bonding and trench etching. Sensors and Actuators A: Physical, 1999, 76(1–3): 298–304
https://doi.org/10.1016/S0924-4247(99)00065-5
6 Cheng R, Li C, Zhao Y, et al. A high performance micro-pressure sensor based on a double-ended quartz tuning fork and silicon diaphragm in atmospheric packaging. Measurement Science and Technology, 2015, 26(6): 065101
https://doi.org/10.1088/0957-0233/26/6/065101
7 Li Z, Zhao L, Jiang Z, et al. An improved method for the mechanical behavior analysis of electrostatically actuated microplates under uniform hydrostatic pressure. Journal of Microelectromechanical Systems, 2015, 24(2): 474–485
https://doi.org/10.1109/JMEMS.2014.2333371
8 Chattopadhyay M, Chowdhury D. A new scheme for reducing breathing trouble through MEMS based capacitive pressure sensor. Microsystem Technologies, 2016, 22(11): 2731–2736
https://doi.org/10.1007/s00542-015-2707-0
9 Qing D, Xing D, Jun Y, et al. Fiber loop ring-down optical fiber grating gas pressure sensor. Optics and Lasers in Engineering, 2010, 48(12): 1262–1265
https://doi.org/10.1016/j.optlaseng.2010.06.005
10 Yasukawa A, Shimazoe M, Matsuoka Y. Simulation of circular silicon pressure sensors with a center boss for very low pressure measurement. IEEE Transactions on Electron Devices, 1989, 36(7): 1295–1302
https://doi.org/10.1109/16.30935
11 Shimazoe M, Matsuoka Y, Yasukawa A, et al. A special silicon diaphragm pressure sensor with high output and high accuracy. Sensors and Actuators, 1981–1982, 2: 275–282
https://doi.org/10.1016/0250-6874(81)80047-9
12 Matsuoka Y, Yamamoto Y, Shimazoe M, et al. Differential pressure/pressure transmitters applied with semiconductor sensors. IEEE Transactions on Industrial Electronics, 1986, IE-33(2): 152–157
https://doi.org/10.1109/TIE.1986.350209
13 Bao M, Yu L, Wang Y. Micromachined beam-diaphragm structure improves performances of pressure transducer. Sensors and Actuators A: Physical, 1990, 21(1–3): 137–141 
https://doi.org/10.1016/0924-4247(90)85026-Z
14 Sandmaier H, Kuhl K. A square-diaphragm piezoresistive pressure sensor with a rectangular central boss for low-pressure ranges. IEEE Transactions on Electron Devices, 1993, 40(10): 1754–1759
https://doi.org/10.1109/16.277331
15 Marco S, Samitier J, Ruiz O, et al. High-performance piezoresistive pressure sensors for biomedical applications using very thin structured membranes. Measurement Science and Technology, 1996, 7(9): 1195–1203
https://doi.org/10.1088/0957-0233/7/9/002
16 Wu A, Chen J, Wang X. A very sensitive pressure sensor on a SOI-on-cavity substrate. In: Proceedings of IEEE International SOI Conference. IEEE, 2007, 151–152
https://doi.org/10.1109/SOI.2007.4357897
17 Kinnell P K, King J, Lester M, et al. A hollow stiffening structure for low-pressure sensors. Sensors and Actuators A: Physical, 2010, 160(1–2): 35–41 
https://doi.org/10.1016/j.sna.2010.03.024
18 Huang X, Zhang D. A high sensitivity and high linearity pressure sensor based on a peninsula-structured diaphragm for low- pressure ranges. Sensors and Actuators A: Physical, 2014, 216: 176–189
https://doi.org/10.1016/j.sna.2014.05.031
19 Yu Z, Zhao Y, Sun L, et al. Incorporation of beams into bossed diaphragm for a high sensitivity and overload micro pressure sensor. Review of Scientific Instruments, 2013, 84(1): 015004
20 Tian B, Zhao Y L, Jiang Z, et al.. The design and analysis of beam-membrane structure sensors for micro-pressure measurement. Review of Scientific Instruments, 2012, 83(4): 045003
https://doi.org/10.1063/1.3702809
21 Yu Z, Zhao Y, Li L, et al. Realization of a micro pressure sensor with high sensitivity and overload by introducing beams and Islands. Microsystem Technologies, 2015, 21(4): 739–747
https://doi.org/10.1007/s00542-014-2234-4
22 Xu T, Zhao L, Jiang Z, et al. Modeling and analysis of a novel combined peninsula-island structure diaphragm for ultra-low pressure sensing with high sensitivity. Journal of Physics D: Applied Physics, 2016, 49(7): 075110
https://doi.org/10.1088/0022-3727/49/7/075110
23 Xu T, Zhao L, Jiang Z, et al. A high sensitive pressure sensor with the novel bossed diaphragm combined with peninsula-island structure. Sensors and Actuators A: Physical, 2016, 244: 66–76
https://doi.org/10.1016/j.sna.2016.04.027
24 Yuan X. Handbook of the Sensor Technology. Beijing: National Defense Industry Press, 1989 (in Chinese)
25 Bao M H. Micro Mechanical Transducers: Pressure sensors, Accelerometers and Gyroscopes. Amsterdam: Elsevier, 2000, 241–280
26 Chen L, Mehregany M. A silicon carbide capacitive pressure sensor for in-cylinder pressure measurement. Sensors and Actuators A: Physical, 2008, 145–146: 2–8
https://doi.org/10.1016/j.sna.2007.09.015
27 Guo S, Eriksen H, Childress K, et al. High temperature smart-cut SOI pressure sensor. Sensors and Actuators A: Physical, 2009, 154(2): 255–260
https://doi.org/10.1016/j.sna.2009.03.011
[1] Dehui XU, Yuelin WANG, Bin XIONG, Tie LI. MEMS-based thermoelectric infrared sensors: A review[J]. Front. Mech. Eng., 2017, 12(4): 557-566.
[2] Shifeng YU, Shuyu WANG, Ming LU, Lei ZUO. Review of MEMS differential scanning calorimetry for biomolecular study[J]. Front. Mech. Eng., 2017, 12(4): 526-538.
[3] Kwok Siong TEH. Additive direct-write microfabrication for MEMS: A review[J]. Front. Mech. Eng., 2017, 12(4): 490-509.
[4] Weizheng YUAN. Development and application of high-end aerospace MEMS[J]. Front. Mech. Eng., 2017, 12(4): 567-573.
[5] Lili CHEN, Wu ZHOU. Dependence of error sensitivity of frequency on bias voltage in force-balanced micro accelerometer[J]. Front Mech Eng, 2013, 8(2): 146-149.
[6] ZHOU Lianqun, LI Zhenggang, WU Yihui, ZHANG Ping, XUAN Ming, JIA Hongguang. Micro-spectrophotometer based on micro electro-mechanical systems technology[J]. Front. Mech. Eng., 2008, 3(1): 37-43.
[7] WANG Wei, CHEN Wei-ping. The electrostatic-alloy bonding technique used in MEMS[J]. Front. Mech. Eng., 2006, 1(2): 238-241.
[8] LI De-sheng, LIU Ben-dong. Research on Microelectromagnetic Relays[J]. Front. Mech. Eng., 2006, 1(1): 111-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed