Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (4) : 567-573    https://doi.org/10.1007/s11465-017-0424-3
REVIEW ARTICLE
Development and application of high-end aerospace MEMS
Weizheng YUAN()
Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Xi’an 710072, China; Key Laboratory of Micro/Nano Electromechanical Systems, Xi’an 710072, China; Department of Microsystem Engineering, Northwestern Polytechnical University, Xi’an 710072, China
 Download: PDF(459 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper introduces the design and manufacturing technology of aerospace microelectromechanical systems (MEMS) characterized by high performance, multi-variety, and small batch. Moreover, several kinds of special MEMS devices with high precision, high reliability, and environmental adaptability, as well as their typical applications in the fields of aeronautics and aerospace, are presented.

Keywords MEMS      design and manufacture technology      aeronautic and aerospace     
Corresponding Author(s): Weizheng YUAN   
Just Accepted Date: 28 February 2017   Online First Date: 24 March 2017    Issue Date: 31 October 2017
 Cite this article:   
Weizheng YUAN. Development and application of high-end aerospace MEMS[J]. Front. Mech. Eng., 2017, 12(4): 567-573.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0424-3
https://academic.hep.com.cn/fme/EN/Y2017/V12/I4/567
Fig.1  Schematic of the Pan-structured design
Fig.2  Micro gyroscope with an integrated circuit
Fig.3  Micro programmable grating and multispectral imaging
Fig.4  MEMS typical structure and manufacturing feature
Fig.5  Selective release method. (a) Deep etching; (b) dry release; (c) wet release and cutting; (d) dicing
Fig.6  Microstructures fabricated by combining wet and dry release
Fig.7  Structures of different widths without lag effects
Fig.8  Comb electrodes with different height
Fig.9  Fabrication processes of flexible hot-film sensor array
Fig.10  Flexible hot-film shear stress sensor array
Fig.11  Wind tunnel experiment of ARJ21 model
Fig.12  Floating element wall shear stress micro-sensor
Fig.13  Silicon-based resonant pressure sensor with integrated circuit
Fig.14  (a) Boundary layer changes with and without synthetic jet; (b) wind tunnel test of active flow control
Fig.15  Micro thruster and nanosatellite
Fig.16  Electrostatically actuated micro mirror
Fig.17  High temperature-resistant sensor. (a) Thin film thermocouple; (b) SOI-based wall shear stress sensor; (c) SiC-based dynamic pressure sensor
1 Chang H, Yuan  W. Pan-structured MEMS Integrated Design Method. Xi’an: Northwestern Polytechnical University Press, 2010 (in Chinese)
2 Yuan W, Chang  H, Li W , et al.. Application of an optimization methodology for multidisciplinary system design of microgyroscopes. Microsystem Technologies, 2006, 12(4): 315–323
https://doi.org/10.1007/s00542-005-0054-2
3 Xu J, Yuan  W, Chang H , et al.. Angularly parameterized macromodel extraction for unconstrained microstructures. Journal of Micromechanics and Microengineering, 2008, 18(11): 115034
https://doi.org/10.1088/0960-1317/18/11/115034
4 Qiao D, Chen  X, Ren Y , et al.. A micro nuclear battery based on SiC Schottky barrier diode. Journal of Microelectromechanical Systems, 2011, 20(3): 685–690
https://doi.org/10.1109/JMEMS.2011.2127448
5 Yuan W, Chang  H, Li W , et al.. Application of an optimization methodology for multidisciplinary system design of microgyroscopes. Microsystem Technologies, 2006, 12(4): 315–323
https://doi.org/10.1007/s00542-005-0054-2
6 Yu Y, Yuan  W, Qiao D . Electromechanical characterization of a new micro programmable blazed grating by laser Doppler vibrometry. Microsystem Technologies, 2009, 15(6): 853–858
https://doi.org/10.1007/s00542-009-0835-0
7 Chang H, Xie  J, Fu Q , et al.. Micromachined inertial measurement unit fabricated by a SOI process with selective roughening under structures. Micro & Nano Letters, 2011, 6(7): 486–489
https://doi.org/10.1049/mnl.2011.0120
8 Ma B, Ren  J, Deng J , et al.. Flexible thermal sensor array on PI film substrate for underwater applications. In: Proceedings of the 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2010, 679–682 
https://doi.org/10.1109/MEMSYS.2010.5442315
9 Lv H, Jiang  C, Xiang Z , et al.. Design of a micro floating element shear stress sensor. Flow Measurement and Instrumentation, 2013, 30: 66–74
https://doi.org/10.1016/j.flowmeasinst.2012.11.004
10 Ren S, Yuan  W, Qiao D , et al.. A micromachined pressure sensor with integrated resonator operating at atmospheric pressure. Sensors, 2013, 13(12): 17006–17024
https://doi.org/10.3390/s131217006
11 Wang S, Ma  B, Deng J , et al.. Fabrication and characterization of MEMS piezoelectric synthetic jet actuators with bulk-micromachined PZT thick film. Microsystem Technologies, 2015, 21(5): 1053–1059 
https://doi.org/10.1007/s00542-014-2278-5
12 Xia C, Qiao  D, Zeng Q , et al.. The squeeze-film air damping of circular and elliptical micro-torsion mirrors. Microfluidics and Nanofluidics, 2015, 19(3): 585–593
https://doi.org/10.1007/s10404-015-1585-1
13 Ma B, Ma  C. A MEMS surface fence for wall shear stress measurement with high sensitivity. Microsystem Technologies, 2016, 22(2): 239–246
https://doi.org/10.1007/s00542-015-2450-6
[1] Dehui XU, Yuelin WANG, Bin XIONG, Tie LI. MEMS-based thermoelectric infrared sensors: A review[J]. Front. Mech. Eng., 2017, 12(4): 557-566.
[2] Tingzhong XU, Hongyan WANG, Yong XIA, Zhiming ZHAO, Mimi HUANG, Jiuhong WANG, Libo ZHAO, Yulong ZHAO, Zhuangde JIANG. Piezoresistive pressure sensor with high sensitivity for medical application using peninsula-island structure[J]. Front. Mech. Eng., 2017, 12(4): 546-553.
[3] Shifeng YU, Shuyu WANG, Ming LU, Lei ZUO. Review of MEMS differential scanning calorimetry for biomolecular study[J]. Front. Mech. Eng., 2017, 12(4): 526-538.
[4] Kwok Siong TEH. Additive direct-write microfabrication for MEMS: A review[J]. Front. Mech. Eng., 2017, 12(4): 490-509.
[5] Lili CHEN, Wu ZHOU. Dependence of error sensitivity of frequency on bias voltage in force-balanced micro accelerometer[J]. Front Mech Eng, 2013, 8(2): 146-149.
[6] ZHOU Lianqun, LI Zhenggang, WU Yihui, ZHANG Ping, XUAN Ming, JIA Hongguang. Micro-spectrophotometer based on micro electro-mechanical systems technology[J]. Front. Mech. Eng., 2008, 3(1): 37-43.
[7] WANG Wei, CHEN Wei-ping. The electrostatic-alloy bonding technique used in MEMS[J]. Front. Mech. Eng., 2006, 1(2): 238-241.
[8] LI De-sheng, LIU Ben-dong. Research on Microelectromagnetic Relays[J]. Front. Mech. Eng., 2006, 1(1): 111-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed