Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng Chin    2009, Vol. 4 Issue (3) : 332-338    https://doi.org/10.1007/s11465-009-0046-5
RESEARCH ARTICLE
Fabrication of ionic polymer-metal composites (IPMCs) and robot design
Hanmin PENG(), Qingjun Ding, Huafeng LI
Precision Driving Laboratory in Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 Download: PDF(319 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper describes a method for preliminary manufacturing experiments on a type of smart materials—ionic polymer-metal composites (IPMCs). They belong to EAP materials and are famous for their capability of huge displacement within a low voltage (1–3 V). With best operation quality in the humid environment, they can be made as underwater robots in simple structures. In this paper, two purposes are embodied. One focuses on the research on the IPMCs characteristics, including the actuating principle, manufacturing process, and parameters of performance. The other is that a relevant robot driven by IPMCs strips is designed. According to imitation propulsion mechanism of undulatory fins, IPMCs are designed for a novel bionic water vehicle propelled by undulatory multiple fish-like fins (made by IPMCs). The robot consists of three fins on the bottom tightly contacting by plastic foils with each other.

Keywords ionic polymer-metal composites (IPMCs)      artificial muscles      actuator      bionic robot      platinum-plated     
Corresponding Author(s): PENG Hanmin,Email:phm0407@163.com   
Issue Date: 05 September 2009
 Cite this article:   
Hanmin PENG,Qingjun Ding,Huafeng LI. Fabrication of ionic polymer-metal composites (IPMCs) and robot design[J]. Front Mech Eng Chin, 2009, 4(3): 332-338.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-009-0046-5
https://academic.hep.com.cn/fme/EN/Y2009/V4/I3/332
Fig.1  Structure of the perfluorosulfonic acid membrane; M represents the interior positive ions (such as H, Li, and Na)
Fig.2  (a) Schematic picture of IPMCs deformation (theoretical) and (b) schematic picture of IPMCs deformation (actual)
Fig.3  Deformation of IPMCs strip
Fig.4  Procedure of fabricating IPMCs
Fig.5  (a) Plating Pt on the interior surface; (b) plating Pt on the exterior surface
Fig.6  (a) Tip deformation with different voltages; (b) tip force with different voltages
Fig.7  Swimming modes associated with (a) BCF propulsion and (b) MPF propulsion [] (Shaded areas contribute to thrust generation)
Fig.8  Perspective view of an undulating fin, showing both force vectors []
Fig.9  Undulating fin by using three IPMCs strips
Fig.10  Perspective view of the designed robot
Fig.11  Swimming principle and sequence of IPMCs strip motion
Fig0  
Fig.12  (a) Strain of element solution; (b) stress of element solution
1 Shahinpoor M, Kim K J. Ionic polymer–metal composites: I. Fundamentals, Smart Materials and Structures , 2001, 10: 819-833
doi: 10.1088/0964-1726/10/4/327
2 Kim K J, Shahinpoor M. Ionic polymer–metal composites: II. Manufacturing techniques, Smart Mater, Struct , 2003, 12: 65-79
doi: 10.1088/0964-1726/12/1/308
3 Anton M, Punning A, Aabloo A, Listak M, Kruusmaa M. Towards a biomimetic EAP robot. In: Proc of “Towards Autonomous Robotic Systems” Taros’ , 2004
4 Kim B, Ryu J, Jeong Y, Tak Y, Kim B, Park J O. A ciliary based 8-legged walking micro robot using cast IPMCs actuators. ICRA , 2003: 2940-2945
5 Yamakita M, Kamamichi N, Kozuki T, Asaka K, Luo Z W. A Snake-like swimming robot using IPMCs actuator and verification of doping effect. In: Proc of the IEEE/RSJ Int Conf on Intelligent Robots and Systems , 2005: 3333-3338
6 Yoon W J, Reinhall P G, Seibel E J. Analysis of electro-active polymer bending: A component in a low cost ultrathin scanning endoscope. Sensors and Actuators A , 2006,
doi: 10.1016/j.sna.2006.04.037
7 Sadeghipour K, Salomon R, Neogi S. Development of a novel electrochemically active membrane and ‘smart’ material based vibration sensor/damper. Smart Materials and Structures , 1992, 1: 172e9
8 Shahinpoor M, Bar-Cohen Y, Simpson J, Smith J. Ionic polymer metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles a review. Smart Materials and Structures , 1998, 7(6): R15e30
9 Bennett M D, Donald J L, Garth L W, Frederick L B, Todd W P. A model of charge transport and electromechanical transduction in ionic liquid-swollen Nafion membranes. Polymer , 2006, 47: 6782-6796
doi: 10.1016/j.polymer.2006.07.061
10 Oguro K. Ion-exchange polymer metal composites (IPMCs) membranes, http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/IPMCs PrepProcedure.htm
11 Nguyena V K, Yoo Y. A novel design and fabrication of multilayered ionic polymer-metal composite actuators based on Nafion/layered silicate and Nafion/silica nanocomposites. Sensors and Actuators B , 2007, 123: 183-190
doi: 10.1016/j.snb.2006.08.013
12 Sfakiotakis M, Lane D M, Davies J B C. Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering ,1999, 24(2): 237-252
doi: 10.1109/48.757275
13 Videler J J. Fish Swimming. Chapman & Hall , 1993
14 Blake R W. Fish Locomotion. Cambridge: Cambridge University Press, 1983
[1] Mariana MORETTI, Emílio C. N. SILVA. Topology optimization of piezoelectric bi-material actuators with velocity feedback control[J]. Front. Mech. Eng., 2019, 14(2): 190-200.
[2] Meiju YANG,Chunxia LI,Guoying GU,Limin ZHU. A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator[J]. Front. Mech. Eng., 2015, 10(1): 37-42.
[3] Ruizhou WANG, Xianmin ZHANG. Preload characteristics identification of the piezoelectric-actuated 1-DOF compliant nanopositioning platform[J]. Front. Mech. Eng., 2015, 10(1): 20-36.
[4] G. BORCHERT, C. L?CHTE, G. CARBONE, A. RAATZ. A modular design kit for task-adaptable low-cost robots based on BaPaMan design[J]. Front Mech Eng, 2013, 8(1): 33-41.
[5] Mahdi RASOULI, Andy Prima KENCANA, Van An HUYNH, Eng Kiat TING, Joshua Chong Yue LAI, Kai Juan WONG, Su Lim TAN, Soo Jay PHEE. Ingestible wireless capsules for enhanced diagnostic inspection of gastrointestinal tract[J]. Front Mech Eng, 2011, 6(1): 40-44.
[6] Lin LIN, Mahdi RASOULI, Andy Prima KENCANA, Su Lim TAN, Kai Juan WONG, Khek Yu HO, Soo Jay PHEE. Capsule endoscopy—A mechatronics perspective[J]. Front Mech Eng, 2011, 6(1): 33-39.
[7] Hanmin PENG, Yao HUI, Qingjun DING, Huafeng LI, Chunsheng ZHAO, . IPMC gripper static analysis based on finite element analysis[J]. Front. Mech. Eng., 2010, 5(2): 204-211.
[8] Xinhua WANG, Shuwen SUN, Jian ZHEN, Qianyi YA, Deguo WANG, . Signal separation technology for diphase opposition giant magnetostrictive self-sensing actuator[J]. Front. Mech. Eng., 2010, 5(2): 176-183.
[9] Qi CHEN, Ke XIONG, Kan BIAN, Ning JIN, Bangfeng WANG, . Preparation and performance of soft actuator based on IPMC with silver electrodes[J]. Front. Mech. Eng., 2009, 4(4): 436-440.
[10] Ning JIN, Bangfeng WANG, Kan BIAN, Qi CHEN, Ke XIONG, . Performance of ionic polymer-metal composite (IPMC) with different surface roughening methods[J]. Front. Mech. Eng., 2009, 4(4): 430-435.
[11] Junwu KAN, Kehong TANG, Chenghui SHAO, Guoren ZHU, Taijiang PENG, . Efficiency characteristics of piezostack pump for linear actuators[J]. Front. Mech. Eng., 2009, 4(4): 407-414.
[12] Jinhao QIU, Hongli JI, Kongjun ZHU. Semi-active vibration control using piezoelectric actuators in smart structures[J]. Front Mech Eng Chin, 2009, 4(3): 242-251.
[13] Kaori YUSE, Benoit GUIFFARD, Rabah BELOUADAH, Lionel PETIT, Laurence SEVEYRAT,, Daniel GUYOMAR. Polymer nanocomposites for microactuation and magneto-electric transduction[J]. Front Mech Eng Chin, 2009, 4(3): 350-354.
[14] ZHAO Chunsheng, ZHANG Jiantao, ZHANG Jianhui, JIN Jiamei. Development and application prospects of piezoelectric precision driving technology[J]. Front. Mech. Eng., 2008, 3(2): 119-132.
[15] ZHANG Ruihua, CHEN Haichu. Dynamical research on spherical micro actuator with piezoelectric ceramic stacks drivers[J]. Front. Mech. Eng., 2007, 2(4): 433-438.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed