Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2013, Vol. 8 Issue (2) : 146-149    https://doi.org/10.1007/s11465-013-0260-z
RESEARCH ARTICLE
Dependence of error sensitivity of frequency on bias voltage in force-balanced micro accelerometer
Lili CHEN1, Wu ZHOU2()
1. Department of Mechanical and Electrical Engineering, Chengdu Technological University, Chengdu 611730, China; 2. School of Mechatronics Engineering, University of Electronic Technology and Science of China, Chengdu 611731, China
 Download: PDF(137 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To predict more precisely the frequency of force-balanced micro accelerometer with different bias voltages, the effects of bias voltages on error sensitivity of frequency is studied. The resonance frequency of accelerometer under closed loop control is derived according to its operation principle, and its error sensitivity is derived and analyzed under over etching structure according to the characteristics of Deep Reaction Ion Etching (DRIE). Based on the theoretical results, micro accelerometer is fabricated and tested to study the influences of AC bias voltage and DC bias voltage on sensitivity, respectively. Experimental results indicate that the relative errors between test data and theory data are less than 7%, and the fluctuating value of error sensitivity under the range of voltage adjustment is less than 0.01 μm-1. It is concluded that the error sensitivity with designed parameters of structure, circuit and process error can be used to predict the frequency of accelerometer with no need to consider the influence of bias voltage.

Keywords Micro-Electro-Mechanical Systems (MEMS)      micro accelerometer      force-balanced micro accelerometer      frequency      error sensitivity     
Corresponding Author(s): ZHOU Wu,Email:zhouwu916@163.com   
Issue Date: 05 June 2013
 Cite this article:   
Lili CHEN,Wu ZHOU. Dependence of error sensitivity of frequency on bias voltage in force-balanced micro accelerometer[J]. Front Mech Eng, 2013, 8(2): 146-149.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-013-0260-z
https://academic.hep.com.cn/fme/EN/Y2013/V8/I2/146
Fig.1  Structure of sensing parts
Fig.2  SEM of sensing parts
Fig.3  Dependence of error sensitivity on DC bias
Fig.4  Dependence of error sensitivity on AC bias
1 Shao P G, Wang L D, Ren Y T. New progress of MEMS component and instrument. Optics and Precision Engineering , 1999, 7: 10-15
2 Liu S F, Ma T H, Hou W. Design and fabrication of a new miniaturized capacitive accelerometer. Sensors and Actuators A, Physical , 2008, 147(1): 70-74
doi: 10.1016/j.sna.2008.03.016
3 Aaltonen L, Halonen K. Continuous-time interface for a micromachined capacitive accelerometer with NEA of 4 μg and bandwidth of 300 Hz. Sensors and Actuators A, Physical , 2009, 154(1): 46-56
doi: 10.1016/j.sna.2009.07.011
4 Che L F, Xu Z N, Xiong B. Response model of capacitive accelerometer with voltage feedback for quasi-static signal and step signal. Chinese Journal of Mechanical Engineering , 2004, 40(10): 102-108
doi: 10.3901/JME.2004.10.102
5 Li J, Gao Z Y, Dong J X. Study on estimation of the proof mass of a MEMS accelerometer. Chinese Journal of Mechanical Engineering , 2004, 40(3): 115-118
doi: 10.3901/JME.2004.03.115
6 Rudolf F, Jornod A, Bergqvist J, Leuthold H. Precision accelerometer with μg resolution. Sensors and Actuators A, Physical , 1990, 21(1-3): 297-302
doi: 10.1016/0924-4247(90)85059-D
7 Yin L, Chen W P, Liu X W. CMOS interface circuit for closed-loop accelerometer. Optics and Precision Engineering , 2009, 17: 1311-1315
8 Soen J, Voda A, Condemine C. Controller design for a closed-loop micromachined accelerometer. Control Engineering Practice , 2007, 15(1): 57-68
doi: 10.1016/j.conengprac.2006.03.001
9 Tan X Y, Zhou X Z, Jiang Y M. Comparative analysis of Sigma Delta modulation and pulse code modulation in micro-accelerometer. Optics and Precision Engineering , 2009, 17: 1228-1232
10 Zhou W, He X P, Su W. Nonlinear errors of force-balanced micro accelerometer. China Mechanical Engineering , 2009, 20: 1791-1793
11 Zhang Y F, Liu X W, Chen W P. System-level modeling and simulation of force-balance MEMS accelerometers. Journal of Semiconductors , 2000, 29: 917-922
12 Zhou W, Li B L, He X P. Calibration study of force-balanced micro accelerometer based on least squared method and genetic algorithm. In: Proceedings of the IEEE International Conference on Mechatronics and Automation , 2009: 1357-1361
13 Bao M H, Huang Y P, Yang H. Reliable operation conditions of capacitive inertial sensor for step and shock signals. Sensors and Actuators , 2004, A114: 41-48
14 Chau K, Lewis S, Zhao Y. An integrated force-balanced capacitive accelerometer for low-G applications. In: Proceedings of the IEEE International Conference on Solid-State Sensors and Actuators , June25-29, 1995: 593-596
[1] Bo WANG, Feng ZHAO, Zixu ZHAO, Kunpeng XU. Influence factors on natural frequencies of composite materials[J]. Front. Mech. Eng., 2020, 15(4): 571-584.
[2] Ye GAO, Wei SUN. Inverse identification of the mechanical parameters of a pipeline hoop and analysis of the effect of preload[J]. Front. Mech. Eng., 2019, 14(3): 358-368.
[3] Manman XU, Shuting WANG, Xianda XIE. Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency[J]. Front. Mech. Eng., 2019, 14(2): 222-234.
[4] Jianghua FENG, Jing SHANG, Zhixue ZHANG, Huadong LIU, Zihao HUANG. Solid-state transformer-based new traction drive system and control[J]. Front. Mech. Eng., 2018, 13(3): 411-426.
[5] Le YANG, Shuo WANG, Jianghua FENG. Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems[J]. Front. Mech. Eng., 2018, 13(3): 329-353.
[6] Shuaishuai WANG, Caichao ZHU, Chaosheng SONG, Huali HAN. Effects of elastic support on the dynamic behaviors of the wind turbine drive train[J]. Front. Mech. Eng., 2017, 12(3): 348-356.
[7] F. H. ZHANG, S. F. WANG, C. H. AN, J. WANG, Q. XU. Full-band error control and crack-free surface fabrication techniques for ultra-precision fly cutting of large-aperture KDP crystals[J]. Front. Mech. Eng., 2017, 12(2): 193-202.
[8] Mingjin XU,Yifan DAI,Xuhui XIE,Lin ZHOU,Shengyi LI,Wenqiang PENG. Ion beam figuring of continuous phase plates based on the frequency filtering process[J]. Front. Mech. Eng., 2017, 12(1): 110-115.
[9] Pengxing YI,Peng HUANG,Tielin SHI. Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine[J]. Front. Mech. Eng., 2016, 11(4): 388-402.
[10] M. R. AKBARI,D. D. GANJI,A. MAJIDIAN,A. R. AHMADI. Solving nonlinear differential equations of Vanderpol, Rayleigh and Duffing by AGM[J]. Front. Mech. Eng., 2014, 9(2): 177-190.
[11] Lokavarapu Bhaskara RAO,Chellapilla Kameswara RAO. Frequencies of circular plate with concentric ring and elastic edge support[J]. Front. Mech. Eng., 2014, 9(2): 168-176.
[12] Qi XIA,Tao ZHOU,Michael Yu WANG,Tielin SHI. Shape and topology optimization for tailoring the ratio between two flexural eigenfrequencies of atomic force microscopy cantilever probe[J]. Front. Mech. Eng., 2014, 9(1): 50-57.
[13] M.R. AKBARI,D.D. GANJI,A.R. AHMADI,Sayyid H. Hashemi KACHAPI. Analyzing the nonlinear vibrational wave differential equation for the simplified model of Tower Cranes by Algebraic Method[J]. Front. Mech. Eng., 2014, 9(1): 58-70.
[14] Yancheng LI,Jianchun LI. Dynamic characteristics of a magnetorheological pin joint for civil structures[J]. Front. Mech. Eng., 2014, 9(1): 15-33.
[15] Jinxin LIU, Xuefeng CHEN, Zhengjia HE. Frequency domain active vibration control of a flexible plate based on neural networks[J]. Front Mech Eng, 2013, 8(2): 109-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed