Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (1) : 13-20    https://doi.org/10.1007/s12200-012-0225-6
REVIEW ARTICLE
Ge quantum dots light-emitting devices
Jinsong XIA1(), Takuya MARUIZUMI2, Yasuhiro SHIRAKI2
1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Advance Research Laboratories, Tokyo City University, Tokyo 158-0082, Japan
 Download: PDF(495 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Si photonics becomes one of the research focuses in the field of photonics. Si-based light-emitting devices are one of the most important devices in this field. In this paper, we review the Si-based light-emitting devices fabricated by embedding Ge self-assembled quantum dots into optical microcavities. Ge self-assembled quantum dots emit light in the telecommunication wavelength range from 1.3 to 1.6 μm, for which Si is transparent. Ge self-assembled quantum dots were grown on silicon-on-insulator (SOI) by molecular beam epitaxy (MBE) in Stranski-Krastanov (S-K) mode. Then, electron beam lithography (EBL) was used to define the pattern of optical microcavities on the wafer. Finally, the pattern was transferred onto the Si/Ge slab by inductive coupled plasma (ICP) dry etching. Room-temperature photoluminescence (PL) was used to characterize the light-emitting properties of fabricated devices. The results showed that strong resonant light emission was observed in different optical microcavities. Significant enhancement of the intensity was obtained by the optical resonance. Based on the results of PL, we designed and fabricated current-injected light-emitting devices based on Ge self-assembled quantum dots in optical microcavities. Room-temperature resonant light emission was observed from Ge dots in a 3.8 μm microdisk resonator.

Keywords Si-based light-emitting devices      Ge self-assembled quantum dots      microcavities      photonic crystal (PhC)      microdisk     
Corresponding Author(s): XIA Jinsong,Email:jinsongxia@gmail.com   
Issue Date: 05 March 2012
 Cite this article:   
Jinsong XIA,Takuya MARUIZUMI,Yasuhiro SHIRAKI. Ge quantum dots light-emitting devices[J]. Front Optoelec, 2012, 5(1): 13-20.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0225-6
https://academic.hep.com.cn/foe/EN/Y2012/V5/I1/13
Fig.1  (a) AFM image of the Ge self-assembled quantum dots grown at 600°C by gas-source MBE; (b) PL spectrum of Ge self-assembled quantum dots at 40 K
Fig.2  (a) Reflectivity spectrum of planar cavity with Ge dots formed by SiGe/Si DBRs; (b) PL spectrum at 10 K from Ge quantum dots in cavity formed by SiGe/Si DBRs (The dashed line shows PL spectrum of reference sample without cavity. This figure is adopted from Ref. (15))
Fig.3  SEM image of fabricated microdisk resonator with Ge quantum dots
Fig.4  Room-temperature -PL spectra of a 4 μm micro disk with Ge dots. (a) Pumping laser spot is located at the disk edge. The reference spectrum at the bottom is recorded in PhC pattern-free region; (b) pumping laser spot is located at the disk center
Fig.5  SEM image of a fabricated microring resonator with Ge dots
Fig.6  Room-temperature -PL spectra of a 3 μm microring resonator with Ge quantum dots (The top black line is recorded in the microring. The bottom grey line is recorded in the pattern-free region under same condition)
Fig.7  (a) Schematic structure of PhC microcavity with Ge self-assembled quantum dots; (b) SEM image of fabricated T6 cavity
Fig.8  Room-temperature -PL spectrum from T6 microcavity. Pumping power is 0.2 mW at 514.5 nm. The reference spectrum at the bottom is recorded in PhC pattern-free region
Fig.9  Room-temperature -PL spectra from T6 microcavities with different lattice constants. The scale of wavelength axis decreased and moved to clearly show the relationship between the spectra. The vertical dashed lines show the alignment of four selected resonant peaks
Fig.10  (a) Schematic structure of Ge dots microdisk EL device; (b) SEM image of a 2.8 μm microdisk EL device; (c) EL spectrum of the device undercurrent of 0.1 mA recorded at room-temperature; (d) calculated resonant wavelengths of TM-polarized-like WGMs supported by microdisk. Insets show the mode profiles of WGMs
1 Nayak D K, Usami N, Fukatsu S, Shiraki Y. Band-edge photoluminescence of SiGe/strained-Si/SiGe type-II quantum wells on Si(100). Applied Physics Letters , 1993, 63(25): 3509-3511
doi: 10.1063/1.110110
2 Fukatsu S, Usami N, Kato Y, Sunamura H, Shiraki Y, Oku H, Ohnishi T, Ohmori Y, Okumura K. Gas-source molecular beam epitaxy and luminescence characterization of strained Si1-xGex/Si quantum wells. Journal of Crystal Growth , 1994, 136(1-4): 315-321
doi: 10.1016/0022-0248(94)90432-4
3 Fukatsu S, Sunamuru H, Shiraki Y, Komiyama S. Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot. Applied Physics Letters , 1997, 71(2): 258-260
doi: 10.1063/1.119514
4 Kawaguchi K, Morooka M, Konishi K, Koh S, Shiraki Y. Optical properties of strain-balanced SiGe planar microcavities with Ge dots on Si substrates. Applied Physics Letters , 2002, 81(5): 817-819
doi: 10.1063/1.1496142
5 Dashiell M W, Denker U, Müller C, Costantini G, Manzano C, Kern K, Schmidt O G. Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures. Applied Physics Letters , 2002, 80(7): 1279-1281
doi: 10.1063/1.1430508
6 Kim E S, Usami N, Shiraki Y. Control of Ge dots in dimension and position by selective epitaxial growth and their optical properties. Applied Physics Letters , 1998, 72(13): 1617-1619
doi: 10.1063/1.121131
7 Lynch S A, Paul D J, Townsend P, Matmon G M, Suet Z, Kelsall R W, Ikonic Z, Harrison P, Zhang J, Noriss D J, Cullis A G, Pidgeon C R, Murzyn P, Murdin B, Bain M, Gamble H S, Zhao M, Ni W X. Toward silicon-based lasers for Terahertz sources. IEEE Journal of Selected Topics in Quantum Electronics , 2006, 2(6): 1570-1577
doi: 10.1109/JSTQE.2006.884069
8 Dehlinger G, Diehl L, Gennser U, Sigg H, Faist J, Ensslin K, Grützmacher DMüller E. Intersubband electroluminescence from silicon-based quantum cascade structures. Science , 2000, 290(5500): 2277-2280
doi: 10.1126/science.290.5500.2277 pmid:11125134
9 Franzò G, Priolo F, Coffa S, Polman A, Camera A. Room-temperature electroluminescence from Er-doped crystalline Si. Applied Physics Letters , 1994, 64(17): 2235-2237
doi: 10.1063/1.111655
10 Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Optical gain in silicon nanocrystals. Nature , 2000, 408(6811): 440-444
doi: 10.1038/35044012 pmid:11100719
11 Ng W L, Louren?o M A, Gwilliam R M, Ledain S, Shao G, Homewood K P. An efficient room-temperature silicon-based light-emitting diode. Nature , 2001, 410(6825): 192-194
doi: 10.1038/35065571 pmid:11242075
12 Purcell E M. Spontaneous emission probabilities at radio frequencies. Physical Review , 1946, 69: 681
13 Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters , 1987, 58(20): 2059-2062
doi: 10.1103/PhysRevLett.58.2059 pmid:10034639
14 Kawaguchi K, Koh S, Shiraki Y, Zhang J. Fabrication of strain-balanced Si0.73Ge0.27/Si distributed Bragg reflectors on Si substrates. Applied Physics Letters , 2001, 79(4): 476-478
doi: 10.1063/1.1385196
16 Kawaguchi K, Koh S, Shiraki Y, Zhang J. Fabrication of strain-balanced Si0.73Ge0.27/Si-distributed Bragg reflectors on Si substrates for optical device applications. Physica E, Low-Dimensional Systems and Nanostructures , 2002, 13(2-4): 1051-1054
doi: 10.1016/S1386-9477(02)00300-4
17 Kawaguchi K, Konishi K, Koh S, Shiraki Y, Kaneko Y, Zhang J. Optical properties of strain-balanced Si0.73Ge0.27 planar microcavities on Si substrates. Japanese Journal of Applied Physics , 2002, 41(4B): 2664-2667
doi: 10.1143/JJAP.41.2664
18 McCall S L, Levi A F J, Slusher R E, Pearton S J, Logan R A. Whispering-gallery mode microdisk lasers. Applied Physics Letters , 1992, 60(3): 289-291
doi: 10.1063/1.106688
19 Xia J S, Nemoto K, Ikegami Y, Usami N, Shiraki Y. Silicon-based light emitters fabricated by embedding Ge quantum dots in Si microdisks. Applied Physics Letters , 2007, 91(1): 011104
doi: 10.1063/1.2754356
20 Xia J S, Tominaga R, Usami N, Iwamoto S, Ikegami Y, Nemoto K, Arakawa Y, Shiraki Y. Resonant photoluminescence from Ge self-assembled dots in optical microcavities. Journal of Crystal Growth , 2009, 311(3): 883-887
doi: 10.1016/j.jcrysgro.2008.09.108
21 Xia J S, Ikegami Y, Shiraki Y, Usami N, Nakata Y. Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature. Applied Physics Letters , 2006, 89(20): 201102
doi: 10.1063/1.2386915
22 Xia J S, Ryuichiro T, Fukamizu S, Usami N, Shiraki Y. Generation and wavelength control of resonant luminescence from silicon photonic crystal microcavities with Ge dots. Japanese Journal of Applied Physics , 2009, 48(2): 022102
doi: 10.1143/JJAP.48.022102
23 El Kurdi M, David S, Boucaud P, Kammerer C, Li X, Le Thanh V, Sauvage S, Lourtioz J M. Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator. Journal of Applied Physics , 2004, 96(2): 997-1000
doi: 10.1063/1.1753655
24 Boucaud P, Li X, El Kurdi M, David S, Checoury X, Sauvage S, Kammerer C, Cabaret S, Le Thanh V, Bouchier D, Lourtioz J M, Kermarrec O, Campidelli Y, Bensahel D. Ge islands and photonic crystals for Si-based photonics. Optical Materials , 2005, 27(5): 792-798
doi: 10.1016/j.optmat.2004.08.001
25 Li X, Boucaud P, Checoury X, Kermarrec O, Campidelli Y, Bensahel D. Probing photonic crystals on silicon-on-insulator with Ge/Si self-assembled islands as an internal source. Journal of Applied Physics , 2006, 99(2): 023103
doi: 10.1063/1.2163007
26 Li X, Boucaud P, Checoury X, El Kurdi M, David S, Sauvage S, Yam N, Fossard F, Bouchier D, Fédéli J M, Salomon A, Calvo V, Hadji E. Quality factor control of Si-based two-dimensional photonic crystals with a Bragg mirror. Applied Physics Letters , 2006, 88(9): 091122
doi: 10.1063/1.2181633
27 El Kurdi M, Checoury X, David S, Ngo T P, Zerounian N, Boucaud P, Kermarrec O, Campidelli Y, Bensahel D. Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source. Optics Express , 2008, 16(12): 8780-8791
doi: 10.1364/OE.16.008780 pmid:18545591
28 Fukatsu S, Usami N, Chinzei T, Shiraki Y, Nishida A, Nakagawa K. Electroluminescence from strained SiGe/Si quantum well structures grown by solid source Si molecular beam epitaxy. Japanese Journal of Applied Physics , 1992, 31(8A): L1015-L1017
doi: 10.1143/JJAP.31.L1015
29 Brunhes T, Boucaud P, Sauvage S, Aniel F, Lourtioz J M, Hernandez C, Campidelli Y, Kermarrec O, Bensahel D, Faini G, Sagnes I. Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition. Applied Physics Letters , 2000, 77(12): 1822-1824
doi: 10.1063/1.1308526
30 Xia J S, Takeda Y, Usami N, Maruizumi T, Shiraki Y. Room-temperature electroluminescence from Si microdisks with Ge quantum dots. Optics Express , 2010, 18(13): 13945-13950
doi: 10.1364/OE.18.013945 pmid:20588527
[1] Ashkan PASHAMEHR,Mahdi ZAVVARI,Hamed ALIPOUR-BANAEI. All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators[J]. Front. Optoelectron., 2016, 9(4): 578-584.
[2] Somaye SERAJMOHAMMADI, Hamed ALIPOUR-BANAEI. Band gap properties of 2D square lattice photonic crystal composed of rectangular cells[J]. Front Optoelec, 2013, 6(3): 346-352.
[3] Lin GAN, Zhiyuan LI. Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices[J]. Front Optoelec, 2012, 5(1): 21-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed