|
|
Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices |
Lin GAN, Zhiyuan LI( ) |
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Photonic crystal (PhC) has offered a powerful means to mold the flow of light and manipulate light-matter interaction at subwavelength scale. Silicon has a large refraction index and low loss in infrared wavelengths, which makes it an important optical material. And silicon has been widely used for integrated photonics applications. In this paper, we have reviewed some recent theoretical and experimental works in our group on infrared two-dimensional (2D) air-bridged silicon PhC slab devices that are based on both band gap and band structure engineering. We have designed, fabricated, and characterized a series of PhC waveguides with novel geometries, PhC high-quality (high-Q) cavity, and channel drop filters utilizing resonant coupling between waveguide and cavity. These devices are aimed to construct a more flexible network of transport channel for infrared light at micrometer/nanometer scale. We have also explored the remarkable dispersion properties of PhCs by engineering the band structures to achieve negative refraction, self-collimation, superprism, and other anomalous dispersion behaviors of infrared light beam. Furthermore, we have designed and fabricated a PhC structure with negative refraction effect and used scanning near-field optical microscopy to observe the negative refraction beam. Finally, we have designed and realized a PhC structure that exhibits a self-collimation effect in a wide angle range and with a large bandwidth. Our works presented in this review show that PhCs have a strong power of controlling propagation of light at micrometer/nanometer scale and possess a great potential of applications in integrated photonic circuits.
|
Keywords
photonic crystal (PhC)
waveguide
high-quality (high-Q) cavity
channel-drop filter
negative refraction
|
Corresponding Author(s):
LI Zhiyuan,Email:lizy@aphy.iphy.ac.cn
|
Issue Date: 05 March 2012
|
|
1 |
Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters , 1987, 58(20): 2059-2062 doi: 10.1103/PhysRevLett.58.2059 pmid:10034639
|
2 |
Joannopoulos J D, Johnson S G, Winn J N, Meade R D. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton: Princeton University Press, 2008
|
3 |
Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X. Three-dimensional optical metamaterial with a negative refractive index. Nature , 2008, 455(7211): 376-379 doi: 10.1038/nature07247 pmid:18690249
|
4 |
Yao J, Liu Z W, Liu Y M, Wang Y, Sun C, Bartal G, Stacy A M, Zhang X. Optical negative refraction in bulk metamaterials of nanowires. Science , 2008, 321(5891): 930 doi: 10.1126/science.1157566 pmid:18703734
|
5 |
Johnson S G, Fan S H, Villeneuve P R, Joannopoulos J D, Kolodziejski L A. Guided modes in photonic crystal slabs. Physical Review B: Condensed Matter and Materials Physics , 1999, 60(8): 5751-5758 doi: 10.1103/PhysRevB.60.5751
|
6 |
Painter O, Lee R K, Scherer A, Yariv A, O’Brien J D, Dapkus P D, Kim I. Two-dimensional photonic band-gap defect mode laser. Science , 1999, 284(5421): 1819-1821 doi: 10.1126/science.284.5421.1819 pmid:10364550
|
7 |
McNab S J, Moll N, Vlasov Y A. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Optics Express , 2003, 11(22): 2927-2939 doi: 10.1364/OE.11.002927 pmid:19471413
|
8 |
Luo C Y, Johnson S G, Joannopoulos J D, Pendry J B. All-angle negative refraction without negative effective index. Physical Review B: Condensed Matter and Materials Physics , 2002, 65(20): 201104 doi: 10.1103/PhysRevB.65.201104
|
9 |
Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S. Self-collimating phenomena in photonic crystals. Applied Physics Letters , 1999, 74(9): 1212-1214 doi: 10.1063/1.123502
|
10 |
Yu X F, Fan S H. Bends and splitters for self-collimated beams in photonic crystals. Applied Physics Letters , 2003, 83(16): 3251-3253 doi: 10.1063/1.1621736
|
11 |
Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S. Superprism phenomena in photonic crystals: toward microscale lightwave circuits. Journal of Lightwave Technology , 1999, 17(11): 2032-2038 doi: 10.1109/50.802991
|
12 |
Baba T, Matsumoto T, Echizen M. Finite difference time domain study of high efficiency photonic crystal superprisms. Optics Express , 2004, 12(19): 4608-4613 doi: 10.1364/OPEX.12.004608 pmid:19484013
|
13 |
Berrier A, Mulot M, Swillo M, Qiu M, Thylén L, Talneau A, Anand S. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Physical Review Letters , 2004, 93(7): 073902 doi: 10.1103/PhysRevLett.93.073902 pmid:15324238
|
14 |
Born M, Wolf E, Bhatia A B. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. New York: Cambridge University Press, 1999
|
15 |
Ho K M, Chan C T, Soukoulis C M. Existence of a photonic gap in periodic dielectric structures. Physical Review Letters , 1990, 65(25): 3152-3155 doi: 10.1103/PhysRevLett.65.3152 pmid:10042794
|
16 |
Johnson S, Joannopoulos J. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express , 2001, 8(3): 173-190 doi: 10.1364/OE.8.000173 pmid:19417802
|
17 |
Li Z Y, Gu B Y, Yang G Z. Large absolute band gap in 2D anisotropic photonic crystals. Physical Review Letters , 1998, 81(12): 2574-2577 doi: 10.1103/PhysRevLett.81.2574
|
18 |
Li Z Y, Wang J, Gu B Y. Creation of partial band gaps in anisotropic photonic-band-gap structures. Physical Review B: Condensed Matter and Materials Physics , 1998, 58(7): 3721-3729 doi: 10.1103/PhysRevB.58.3721
|
19 |
Pendry J B. Photonic Band Structures. Journal of Modern Optics , 1994, 41(2): 209-229 doi: 10.1080/09500349414550281
|
20 |
Chan C T, Yu Q L, Ho K M. Order-N spectral method for electromagnetic waves. Physical Review B: Condensed Matter and Materials Physics , 1995, 51(23): 16635-16642 doi: 10.1103/PhysRevB.51.16635 pmid:9978667
|
21 |
Taflove A. Computational Electrodynamics: the Finite-Difference Time-Domain Method. Boston: Artech House, 1995
|
22 |
Nicorovici N A, McPhedran R C, Botten L C. Photonic band gaps for arrays of perfectly conducting cylinders. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics , 1995, 52(1): 1135-1145 doi: 10.1103/PhysRevE.52.1135 pmid:9963518
|
23 |
Li L M, Zhang Z Q. Muitiple-scattering approach to finite-sized photonic band-gap materials. Physical Review B: Condensed Matter and Materials Physics , 1998, 58(15): 9587-9590 doi: 10.1103/PhysRevB.58.9587
|
24 |
Li Z Y, Lin L L. Photonic band structures solved by a plane-wave-based transfer-matrix method. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2003, 67(4): 046607 doi: 10.1103/PhysRevE.67.046607 pmid:12786509
|
25 |
Li Z Y, Lin L L. Evaluation of lensing in photonic crystal slabs exhibiting negative refraction. Physical Review B: Condensed Matter and Materials Physics , 2003, 68(24): 245110 doi: 10.1103/PhysRevB.68.245110
|
26 |
Lin L L, Li Z Y, Ho K M. Lattice symmetry applied in transfer-matrix methods for photonic crystals. Journal of Applied Physics , 2003, 94(2): 811-821 doi: 10.1063/1.1587011
|
27 |
Li Z Y, Ho K M. Light propagation in semi-infinite photonic crystals and related waveguide structures. Physical Review B: Condensed Matter and Materials Physics , 2003, 68(15): 155101 doi: 10.1103/PhysRevB.68.155101
|
28 |
Li Z Y, Lin L L, Ho K M. Light coupling with multimode photonic crystal waveguides. Applied Physics Letters , 2004, 84(23): 4699-4701 doi: 10.1063/1.1760596
|
29 |
Che M, Li Z Y. Analysis of photonic crystal waveguide bends by a plane-wave transfer-matrix method. Physical Review B: Condensed Matter and Materials Physics , 2008, 77(12): 125138 doi: 10.1103/PhysRevB.77.125138
|
30 |
Che M, Li Z Y. Analysis of surface modes in photonic crystals by a plane-wave transfer-matrix method. Journal of the Optical Society of America a-Optics Image Science and Vision , 2008, 25(9): 2177-2184
|
31 |
Li Z Y, Ho K M. Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals. Physical Review B: Condensed Matter and Materials Physics , 2003, 67(16): 165104 doi: 10.1103/PhysRevB.67.165104
|
32 |
Li J J, Li Z Y, Zhang D Z. Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2007, 75(5): 056606 doi: 10.1103/PhysRevE.75.056606 pmid:17677185
|
33 |
Li Z Y, Li J J, Zhang D Z. Nonlinear frequency conversion in two-dimensional nonlinear photonic crystals solved by a plane-wave-based transfer-matrix method. Physical Review B: Condensed Matter and Materials Physics , 2008, 77(19): 195127 doi: 10.1103/PhysRevB.77.195127
|
34 |
Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications , 2010, 181(3): 687-702 doi: 10.1016/j.cpc.2009.11.008
|
35 |
Shinya A, Mitsugi S, Kuramochi E, Notomi M. Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide. Optics Express , 2005, 13(11): 4202-4209 doi: 10.1364/OPEX.13.004202 pmid:19495334
|
36 |
Song B S, Nagashima T, Asano T, Noda S. Resonant-wavelength tuning of a nanocavity by subnanometer control of a two-dimensional silicon-based photonic crystal slab structure. Applied Optics , 2009, 48(26): 4899-4903 doi: 10.1364/AO.48.004899 pmid:19745851
|
37 |
Liu Y Z, Liu R J, Zhou C Z, Zhang D Z, Li Z Y. Gamma-Mu waveguides in two-dimensional triangular-lattice photonic crystal slabs. Optics Express , 2008, 16(26): 21483-21491 doi: 10.1364/OE.16.021483 pmid:19104578
|
38 |
Zhou C Z, Liu Y Z, Li Z Y. Waveguide bend of 90° in two-dimensional triangular lattice silicon photonic crystal slabs. Chinese Physics Letters , 2010, 27(8): 084203 doi: 10.1088/0256-307X/27/8/084203
|
39 |
Tao H H, Ren C, Liu Y Z, Wang Q K, Zhang D Z, Li Z Y. Near-field observation of anomalous optical propagation in photonic crystal coupled-cavity waveguides. Optics Express , 2010, 18(23): 23994-24002 doi: 10.1364/OE.18.023994 pmid:21164746
|
40 |
Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, F?lt S, Hu E L, Imamo?lu A. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature , 2007, 445(7130): 896-899 doi: 10.1038/nature05586 pmid:17259971
|
41 |
Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature , 2004, 432(7014): 200-203 doi: 10.1038/nature03119 pmid:15538363
|
42 |
Akahane Y, Asano T, Song B S, Noda S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature , 2003, 425(6961): 944-947 doi: 10.1038/nature02063 pmid:14586465
|
43 |
Ren C, Tian J, Feng S, Tao H H, Liu Y Z, Ren K, Li Z Y, Cheng B Y, Zhang D Z, Yang H F. High resolution three-port filter in two dimensional photonic crystal slabs. Optics Express , 2006, 14(21): 10014-10020 doi: 10.1364/OE.14.010014 pmid:19529395
|
44 |
Liu Y Z, Feng S A, Tian J, Ren C, Tao H H, Li Z Y, Cheng B Y, Zhang D Z, Luo Q. Multichannel filters with shape designing in two-dimensional photonic crystal slabs. Journal of Applied Physics , 2007, 102(4): 043102 doi: 10.1063/1.2769263
|
45 |
Liu Y Z, Liu R J, Feng S A, Ren C, Yang H F, Zhang D Z, Li Z Y. Multichannel filters via Γ-M and Γ-K waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs. Applied Physics Letters , 2008, 93(24): 241107 doi: 10.1063/1.3052687
|
46 |
Gan L, Liu Y Z, Li J Y, Zhang Z B, Zhang D Z, Li Z Y. Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 μm. Optics Express , 2009, 17(12): 9962-9970 doi: 10.1364/OE.17.009962 pmid:19506646
|
47 |
Nguyen H M, Dundar M A, van der Heijden R W, van der Drift E W J M, Salemink H W M, Rogge S, Caro J. Compact Mach-Zehnder interferometer based on self-collimation of light in a silicon photonic crystal. Optics Express , 2010, 18(7): 6437-6446 doi: 10.1364/OE.18.006437 pmid:20389667
|
48 |
White T P, de Sterke C M, McPhedran R C, Botten L C. Highly efficient wide-angle transmission into uniform rod-type photonic crystals. Applied Physics Letters , 2005, 87(11): 111107 doi: 10.1063/1.2048823
|
49 |
Zengerle R. Light-propagation in singly and doubly periodic planar wave-guides. Journal of Modern Optics , 1987, 34(12): 1589-1617 doi: 10.1080/09500348714551531
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|