Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (1) : 21-40    https://doi.org/10.1007/s12200-012-0192-y
REVIEW ARTICLE
Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices
Lin GAN, Zhiyuan LI()
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(1956 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Photonic crystal (PhC) has offered a powerful means to mold the flow of light and manipulate light-matter interaction at subwavelength scale. Silicon has a large refraction index and low loss in infrared wavelengths, which makes it an important optical material. And silicon has been widely used for integrated photonics applications. In this paper, we have reviewed some recent theoretical and experimental works in our group on infrared two-dimensional (2D) air-bridged silicon PhC slab devices that are based on both band gap and band structure engineering. We have designed, fabricated, and characterized a series of PhC waveguides with novel geometries, PhC high-quality (high-Q) cavity, and channel drop filters utilizing resonant coupling between waveguide and cavity. These devices are aimed to construct a more flexible network of transport channel for infrared light at micrometer/nanometer scale. We have also explored the remarkable dispersion properties of PhCs by engineering the band structures to achieve negative refraction, self-collimation, superprism, and other anomalous dispersion behaviors of infrared light beam. Furthermore, we have designed and fabricated a PhC structure with negative refraction effect and used scanning near-field optical microscopy to observe the negative refraction beam. Finally, we have designed and realized a PhC structure that exhibits a self-collimation effect in a wide angle range and with a large bandwidth. Our works presented in this review show that PhCs have a strong power of controlling propagation of light at micrometer/nanometer scale and possess a great potential of applications in integrated photonic circuits.

Keywords photonic crystal (PhC)      waveguide      high-quality (high-Q) cavity      channel-drop filter      negative refraction     
Corresponding Author(s): LI Zhiyuan,Email:lizy@aphy.iphy.ac.cn   
Issue Date: 05 March 2012
 Cite this article:   
Lin GAN,Zhiyuan LI. Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices[J]. Front Optoelec, 2012, 5(1): 21-40.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0192-y
https://academic.hep.com.cn/foe/EN/Y2012/V5/I1/21
Fig.1  (a) Schematic view of 2D air-bridged PhC structures with input silicon waveguide. Whole structures are fabricated in SOI wafer. Air-bridged structures are formed by HF wet etching; (b) and (c) are top-view SEM and optical microscopy image of practical PhC sample used in experiment. Long adiabatically tapering ridge waveguide connected with PhC structure can be clearly visualized
Fig.2  (a) Schematic view and (b) experimental setup for optical characterization of infrared 2D silicon PhC slab structures; (c) typical optical microscopy picture recorded by CCD camera for PhC sample as displayed in Fig. 1(b)
Fig.3  (a) Photonic band structures for air holes triangular lattice PhC slab; (b) band diagrams for PhC W1 waveguide. The upper and lower bands correspond to even-symmetric and odd-symmetric guided mode, respectively
Fig.4  (a) Schematic of Γ-Μ waveguide constructed in a triangular-lattice PhC slab. The width of the waveguide , as well as the radius of air holes in the first and second row and , are the three crucial parameters to optimize the width of the transmission windows; (b) and (c) are SEM pictures of original and optimized Γ-Μ waveguides
Fig.5  Calculated modal dispersion relation of (a) original Γ-M waveguide and (b) optimized Γ-M waveguide. The band width of the waveguide modes (within the dashed boxes) is 22 nm in the original waveguide, which has parameters: lattice constant = 430 nm, hole radius , and waveguide width . After optimization by the following parameters as = 430 nm, = 50 nm, = 170 nm, and = 0.65, the waveguide band width is significantly broadened to 74 nm; (c) and (d) are the corresponding measured transmission spectra of the original and optimized waveguides
Fig.6  (a) Schematic geometry of 90° waveguide bends in a triangular lattice PhC slab with optimized Γ-M waveguide; (b) SEM picture of practical sample of 90° waveguide bends with optimized bend corner geometry
Fig.7  Simulation model (a) and calculated optical field distributions at (b) 1550 nm; (c) 1560 nm; (d) 1571 nm; (e) 1590 nm and (f) 1610 nm
Fig.8  (a) SEM topographic image, and near-field optical intensity distributions at (b) 1550 nm; (c) 1560 nm; (d) 1571 nm; (e) 1590?nm and (f) 1610 nm. White dotted lines in each optical picture denote the interface between W1 PhC waveguide and PCCCW. All pictures were obtained for the same scanning area of 12 μm × 15 μm
Fig.9  Schematics of (a) original PhC L3 nanocavity and (b) optimized nanocavity; (c) and (d) show radiation spectra of original PhC L3 nanocavity and optimized nanocavity, respectively
Fig.10  (a) SEM pictures of one of the fabricated samples, including the L3 nanocavtiy with displaced air holes; (b) radiation spectra calculated by FDTD method; (c) and (d) show transmission spectra of one of the fabricated samples. The maximum value of up to 71000 is obtained
Fig.11  (a) SEM image of three-port filter; (b) and (c) measured transmission spectra at ports 1 and 2, respectively
Fig.12  (a) Schematic view of one-channel PhC filter, major channel lies in the direction, and the cavity and output side channel are parallel to Γ-K direction of triangular lattice; (b) enlarged view of the filter around the cavity. Air holes have a general elliptical shape with one of its axes oriented counterclockwise by an angle with respect to axis. The two axes are of size and , respectively
Fig.13  (a) SEM image of four-channel filter; (b) simulation results of transmission spectra for four-channel filter; (c) experiment results of transmission spectra for the same filter
channellattice constant /nmnumber of missing air holes in cavitieslong axis a /nmshot axis b /nmangle θtheoretical resonant peak /nmmeasured resonant peak /nmdeviation /nm
142022402000155315494
243022602400153915412
342032402200156315674
443032802400155815602
Tab.1  Structural parameters in four-channel filter
Fig.14  (a) SEM image of fabricated four-channel filter. Four cavities are located on two sides of input waveguide; (b) experimental transmission spectra of the four channel filter in linear scale. Inset: illustrates two groups of end points (air-hole centers) of cavity marked with “a, b” and “c, d.” Black arrows: moving direction of these air holes; (c) infrared CCD camera imaging of output signal observed in experiment for one channel of the sample. Bright spot appears at the end of the output channel when the input wavelength coincides with the resonant wavelength and disappears when it is at off-resonance
channelend points moving distance/nmtheoretical resonant peak/nmmeasured resonant peak/nmtheoretical distance from channel 1/nmexperimental distance from channel 1/nmdeviation/nm
1015501543---
251551.515451.520.5
31015531548352
41515561551682
Tab.2  Structural parameters in the four channel Γ-M and Γ-M waveguides filter
Fig.15  (a) (Color online) Photonic band structures of TE-like bands for air-holes square-lattice PhC slab; (b) EFS contours of TE-like first band for the same PhC show that self-collimation can occur in the direction around the Γ-Μ direction; (c) EFS contours of the TE-like second band show that negative refraction can occur in the direction around the Γ-Μ direction
Fig.16  (a) SEM picture of PhC structure and an input waveguide. The width of waveguide is 2 μm; (b) light intensity distribution of TE-like modes for PhC with deliberately designed tapered air-holes interface; (c) directly observed pattern of radiated light of from the top using an objective lens; (d) SNOM picture of the negative refraction of the same wavelength. In each picture, the boundary of the PhC structure is superimposed as solid lines
Fig.17  (a) Schematic of PhC structure formed by square lattice of elliptical holes; (b) band diagram of the fourth, fifth and sixth TE bands; (c) EFS contours of the fifth TE band
Fig.18  Electric field intensity distribution with 0°, 20° and 60° incident angles at the minimum normalized frequency 0.36 (a) and the maximum 0.46 (b). A FDTD method is used in the simulations
Fig.19  Left panels: SEM pictures of designed PhC structures with 0° (a); 20° (b) and 60° (c) incident waveguide. Middle and right panels: Ray trace of light beam observed using IR camera and a high numerical aperture (NA = 0.50) objective. The patterns of the minimum and maximum wavelengths are shown for each incident angle
1 Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters , 1987, 58(20): 2059-2062
doi: 10.1103/PhysRevLett.58.2059 pmid:10034639
2 Joannopoulos J D, Johnson S G, Winn J N, Meade R D. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton: Princeton University Press, 2008
3 Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X. Three-dimensional optical metamaterial with a negative refractive index. Nature , 2008, 455(7211): 376-379
doi: 10.1038/nature07247 pmid:18690249
4 Yao J, Liu Z W, Liu Y M, Wang Y, Sun C, Bartal G, Stacy A M, Zhang X. Optical negative refraction in bulk metamaterials of nanowires. Science , 2008, 321(5891): 930
doi: 10.1126/science.1157566 pmid:18703734
5 Johnson S G, Fan S H, Villeneuve P R, Joannopoulos J D, Kolodziejski L A. Guided modes in photonic crystal slabs. Physical Review B: Condensed Matter and Materials Physics , 1999, 60(8): 5751-5758
doi: 10.1103/PhysRevB.60.5751
6 Painter O, Lee R K, Scherer A, Yariv A, O’Brien J D, Dapkus P D, Kim I. Two-dimensional photonic band-gap defect mode laser. Science , 1999, 284(5421): 1819-1821
doi: 10.1126/science.284.5421.1819 pmid:10364550
7 McNab S J, Moll N, Vlasov Y A. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Optics Express , 2003, 11(22): 2927-2939
doi: 10.1364/OE.11.002927 pmid:19471413
8 Luo C Y, Johnson S G, Joannopoulos J D, Pendry J B. All-angle negative refraction without negative effective index. Physical Review B: Condensed Matter and Materials Physics , 2002, 65(20): 201104
doi: 10.1103/PhysRevB.65.201104
9 Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S. Self-collimating phenomena in photonic crystals. Applied Physics Letters , 1999, 74(9): 1212-1214
doi: 10.1063/1.123502
10 Yu X F, Fan S H. Bends and splitters for self-collimated beams in photonic crystals. Applied Physics Letters , 2003, 83(16): 3251-3253
doi: 10.1063/1.1621736
11 Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S. Superprism phenomena in photonic crystals: toward microscale lightwave circuits. Journal of Lightwave Technology , 1999, 17(11): 2032-2038
doi: 10.1109/50.802991
12 Baba T, Matsumoto T, Echizen M. Finite difference time domain study of high efficiency photonic crystal superprisms. Optics Express , 2004, 12(19): 4608-4613
doi: 10.1364/OPEX.12.004608 pmid:19484013
13 Berrier A, Mulot M, Swillo M, Qiu M, Thylén L, Talneau A, Anand S. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Physical Review Letters , 2004, 93(7): 073902
doi: 10.1103/PhysRevLett.93.073902 pmid:15324238
14 Born M, Wolf E, Bhatia A B. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. New York: Cambridge University Press, 1999
15 Ho K M, Chan C T, Soukoulis C M. Existence of a photonic gap in periodic dielectric structures. Physical Review Letters , 1990, 65(25): 3152-3155
doi: 10.1103/PhysRevLett.65.3152 pmid:10042794
16 Johnson S, Joannopoulos J. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express , 2001, 8(3): 173-190
doi: 10.1364/OE.8.000173 pmid:19417802
17 Li Z Y, Gu B Y, Yang G Z. Large absolute band gap in 2D anisotropic photonic crystals. Physical Review Letters , 1998, 81(12): 2574-2577
doi: 10.1103/PhysRevLett.81.2574
18 Li Z Y, Wang J, Gu B Y. Creation of partial band gaps in anisotropic photonic-band-gap structures. Physical Review B: Condensed Matter and Materials Physics , 1998, 58(7): 3721-3729
doi: 10.1103/PhysRevB.58.3721
19 Pendry J B. Photonic Band Structures. Journal of Modern Optics , 1994, 41(2): 209-229
doi: 10.1080/09500349414550281
20 Chan C T, Yu Q L, Ho K M. Order-N spectral method for electromagnetic waves. Physical Review B: Condensed Matter and Materials Physics , 1995, 51(23): 16635-16642
doi: 10.1103/PhysRevB.51.16635 pmid:9978667
21 Taflove A. Computational Electrodynamics: the Finite-Difference Time-Domain Method. Boston: Artech House, 1995
22 Nicorovici N A, McPhedran R C, Botten L C. Photonic band gaps for arrays of perfectly conducting cylinders. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics , 1995, 52(1): 1135-1145
doi: 10.1103/PhysRevE.52.1135 pmid:9963518
23 Li L M, Zhang Z Q. Muitiple-scattering approach to finite-sized photonic band-gap materials. Physical Review B: Condensed Matter and Materials Physics , 1998, 58(15): 9587-9590
doi: 10.1103/PhysRevB.58.9587
24 Li Z Y, Lin L L. Photonic band structures solved by a plane-wave-based transfer-matrix method. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2003, 67(4): 046607
doi: 10.1103/PhysRevE.67.046607 pmid:12786509
25 Li Z Y, Lin L L. Evaluation of lensing in photonic crystal slabs exhibiting negative refraction. Physical Review B: Condensed Matter and Materials Physics , 2003, 68(24): 245110
doi: 10.1103/PhysRevB.68.245110
26 Lin L L, Li Z Y, Ho K M. Lattice symmetry applied in transfer-matrix methods for photonic crystals. Journal of Applied Physics , 2003, 94(2): 811-821
doi: 10.1063/1.1587011
27 Li Z Y, Ho K M. Light propagation in semi-infinite photonic crystals and related waveguide structures. Physical Review B: Condensed Matter and Materials Physics , 2003, 68(15): 155101
doi: 10.1103/PhysRevB.68.155101
28 Li Z Y, Lin L L, Ho K M. Light coupling with multimode photonic crystal waveguides. Applied Physics Letters , 2004, 84(23): 4699-4701
doi: 10.1063/1.1760596
29 Che M, Li Z Y. Analysis of photonic crystal waveguide bends by a plane-wave transfer-matrix method. Physical Review B: Condensed Matter and Materials Physics , 2008, 77(12): 125138
doi: 10.1103/PhysRevB.77.125138
30 Che M, Li Z Y. Analysis of surface modes in photonic crystals by a plane-wave transfer-matrix method. Journal of the Optical Society of America a-Optics Image Science and Vision , 2008, 25(9): 2177-2184
31 Li Z Y, Ho K M. Analytic modal solution to light propagation through layer-by-layer metallic photonic crystals. Physical Review B: Condensed Matter and Materials Physics , 2003, 67(16): 165104
doi: 10.1103/PhysRevB.67.165104
32 Li J J, Li Z Y, Zhang D Z. Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2007, 75(5): 056606
doi: 10.1103/PhysRevE.75.056606 pmid:17677185
33 Li Z Y, Li J J, Zhang D Z. Nonlinear frequency conversion in two-dimensional nonlinear photonic crystals solved by a plane-wave-based transfer-matrix method. Physical Review B: Condensed Matter and Materials Physics , 2008, 77(19): 195127
doi: 10.1103/PhysRevB.77.195127
34 Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications , 2010, 181(3): 687-702
doi: 10.1016/j.cpc.2009.11.008
35 Shinya A, Mitsugi S, Kuramochi E, Notomi M. Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide. Optics Express , 2005, 13(11): 4202-4209
doi: 10.1364/OPEX.13.004202 pmid:19495334
36 Song B S, Nagashima T, Asano T, Noda S. Resonant-wavelength tuning of a nanocavity by subnanometer control of a two-dimensional silicon-based photonic crystal slab structure. Applied Optics , 2009, 48(26): 4899-4903
doi: 10.1364/AO.48.004899 pmid:19745851
37 Liu Y Z, Liu R J, Zhou C Z, Zhang D Z, Li Z Y. Gamma-Mu waveguides in two-dimensional triangular-lattice photonic crystal slabs. Optics Express , 2008, 16(26): 21483-21491
doi: 10.1364/OE.16.021483 pmid:19104578
38 Zhou C Z, Liu Y Z, Li Z Y. Waveguide bend of 90° in two-dimensional triangular lattice silicon photonic crystal slabs. Chinese Physics Letters , 2010, 27(8): 084203
doi: 10.1088/0256-307X/27/8/084203
39 Tao H H, Ren C, Liu Y Z, Wang Q K, Zhang D Z, Li Z Y. Near-field observation of anomalous optical propagation in photonic crystal coupled-cavity waveguides. Optics Express , 2010, 18(23): 23994-24002
doi: 10.1364/OE.18.023994 pmid:21164746
40 Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, F?lt S, Hu E L, Imamo?lu A. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature , 2007, 445(7130): 896-899
doi: 10.1038/nature05586 pmid:17259971
41 Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature , 2004, 432(7014): 200-203
doi: 10.1038/nature03119 pmid:15538363
42 Akahane Y, Asano T, Song B S, Noda S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature , 2003, 425(6961): 944-947
doi: 10.1038/nature02063 pmid:14586465
43 Ren C, Tian J, Feng S, Tao H H, Liu Y Z, Ren K, Li Z Y, Cheng B Y, Zhang D Z, Yang H F. High resolution three-port filter in two dimensional photonic crystal slabs. Optics Express , 2006, 14(21): 10014-10020
doi: 10.1364/OE.14.010014 pmid:19529395
44 Liu Y Z, Feng S A, Tian J, Ren C, Tao H H, Li Z Y, Cheng B Y, Zhang D Z, Luo Q. Multichannel filters with shape designing in two-dimensional photonic crystal slabs. Journal of Applied Physics , 2007, 102(4): 043102
doi: 10.1063/1.2769263
45 Liu Y Z, Liu R J, Feng S A, Ren C, Yang H F, Zhang D Z, Li Z Y. Multichannel filters via Γ-M and Γ-K waveguide coupling in two-dimensional triangular-lattice photonic crystal slabs. Applied Physics Letters , 2008, 93(24): 241107
doi: 10.1063/1.3052687
46 Gan L, Liu Y Z, Li J Y, Zhang Z B, Zhang D Z, Li Z Y. Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 μm. Optics Express , 2009, 17(12): 9962-9970
doi: 10.1364/OE.17.009962 pmid:19506646
47 Nguyen H M, Dundar M A, van der Heijden R W, van der Drift E W J M, Salemink H W M, Rogge S, Caro J. Compact Mach-Zehnder interferometer based on self-collimation of light in a silicon photonic crystal. Optics Express , 2010, 18(7): 6437-6446
doi: 10.1364/OE.18.006437 pmid:20389667
48 White T P, de Sterke C M, McPhedran R C, Botten L C. Highly efficient wide-angle transmission into uniform rod-type photonic crystals. Applied Physics Letters , 2005, 87(11): 111107
doi: 10.1063/1.2048823
49 Zengerle R. Light-propagation in singly and doubly periodic planar wave-guides. Journal of Modern Optics , 1987, 34(12): 1589-1617
doi: 10.1080/09500348714551531
[1] Yue WANG, Jiaxin ZHAO, Qifeng ZHU, Jianping SHEN, Zhongyue WANG, Haitao GUO, Chunxiao LIU. Near-infrared carbon-implanted waveguides in Tb3+-doped aluminum borosilicate glasses[J]. Front. Optoelectron., 2019, 12(4): 392-396.
[2] Jianfeng GAO, Junqiang SUN, Heng ZHOU, Jialin JIANG, Yang ZHOU. Design and fabrication of compact Ge-on-SOI coupling structure[J]. Front. Optoelectron., 2019, 12(3): 276-285.
[3] Xiaoliang SHEN, Yue WANG, Haitao GUO, Chunxiao LIU. Near-infrared carbon-implanted Er3+/Yb3+ co-doped phosphate glass waveguides[J]. Front. Optoelectron., 2018, 11(3): 291-295.
[4] Peng WANG, Aron MICHAEL, Chee Yee KWOK. Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM[J]. Front. Optoelectron., 2018, 11(1): 53-59.
[5] Chuan WANG,Xiaoying LIU,Minming ZHANG,Peng ZHOU. Low dispersion broadband integrated double-slot microring resonators optical buffer[J]. Front. Optoelectron., 2016, 9(4): 571-577.
[6] Ashkan PASHAMEHR,Mahdi ZAVVARI,Hamed ALIPOUR-BANAEI. All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators[J]. Front. Optoelectron., 2016, 9(4): 578-584.
[7] Changming CHEN,Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Front. Optoelectron., 2016, 9(3): 428-435.
[8] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[9] Ya’nan WANG,Yi LUO,Changzheng SUN,Bing XIONG,Jian WANG,Zhibiao HAO,Yanjun HAN,Lai WANG,Hongtao LI. Laser annealing of SiO2 film deposited by ICPECVD for fabrication of silicon based low loss waveguide[J]. Front. Optoelectron., 2016, 9(2): 323-329.
[10] Yidong HUANG,Kaiyu CUI,Fang LIU,Xue FENG,Wei ZHANG. Novel optoelectronic characteristics from manipulating general energy-bands by nanostructures[J]. Front. Optoelectron., 2016, 9(2): 151-159.
[11] Jing DAI,Minming ZHANG,Feiya ZHOU,Deming LIU. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range[J]. Front. Optoelectron., 2016, 9(1): 112-120.
[12] Chuan WANG,Xiaoying LIU,Peng ZHOU,Peng LI,Jia DU. Dispersion of double-slot microring resonators in optical buffer[J]. Front. Optoelectron., 2016, 9(1): 106-111.
[13] Jian WANG. A review of recent progress in plasmon-assisted nanophotonic devices[J]. Front. Optoelectron., 2014, 7(3): 320-337.
[14] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[15] Dingbo CHEN,Jeffery BLOCH,Rui WANG,Paul K. L. YU. Absorption density control in waveguide photodiode---analysis, design, and demonstration[J]. Front. Optoelectron., 2014, 7(3): 385-392.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed