Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2014, Vol. 7 Issue (1) : 91-101    https://doi.org/10.1007/s12200-014-0392-8
RESEARCH ARTICLE
Climate effects on performance of free space optical communication systems in Yemen
Abdulsalam G. ALKHOLIDI(), Khalil S. ALTOWIJ
Faculty of Engineering, Electrical Engineering Department, Sana'a University, Sana'a, Yemen
 Download: PDF(898 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Free space optical (FSO) communication has been considered as an alternative to radio relay link line-of-sight (LOS) communication systems. The total attenuation is a combination of atmospheric attenuation in the atmosphere and geometric losses. The purpose of this paper is to study the geometric loss versus link range (in km), divergence angle, transmitter aperture diameter, and receiver aperture diameter. Total attenuation versus low visibility, average visibility, beam divergence, link range and rainfall rate were presented in this paper. Atmospheric attenuation (in dB) and scattering coefficient (in km-1) for several Yemeni main cities were explored. The study was concentrated on received power versus low and average visibilities and link range. Series of related simulation results were illustrated and discussed in this paper about the climate effects on performance of FSO communication systems in Yemen.

Keywords free space optics (FSO)      total attenuation      geometric losses      haze      fog      rain      receive power     
Corresponding Author(s): ALKHOLIDI Abdulsalam G.,Email:abdulsalam.alkholidi@gmail.com   
Issue Date: 05 March 2014
 Cite this article:   
Abdulsalam G. ALKHOLIDI,Khalil S. ALTOWIJ. Climate effects on performance of free space optical communication systems in Yemen[J]. Front Optoelec, 2014, 7(1): 91-101.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0392-8
https://academic.hep.com.cn/foe/EN/Y2014/V7/I1/91
designdiameter of transmitter aperturediameter of receiver aperture
design 18 cm10 cm
design 23.5 cm7 cm
Tab.1  Diameters of transmitter and receiver aperture of an FSO system
Fig.1  Geometric loss (dB) versus link range (km)
Fig.2  Geometric loss (dB) versus divergence angle (mrad)
Fig.3  Geometric loss (dB) versus transmitter aperture diameter (m)
Fig.4  Geometric loss (dB) versus receiver aperture diameter (m)
design parametersgeometric loss/dB
design 1design 2
fromtofromto
link range1.38.2-3.47.2
divergence angle1.934.6-10.5-5.6
receiver aperture diameter14.8-5.210.4-9.8
transmitter aperture diameter-67.2-2.910.3
Tab.2  Results of geometric loss with design parameters.
Fig.5  Total Attenuation (dB) versus low visibility (km)
Fig.6  Total attenuation (dB) versus average visibility (km)
Fig.7  Total attenuation (dB) versus link range (km)
Fig.8  Total attenuation (dB) versus laser beam divergence (mrad)
parametersWavelength/nmtotal attenuation/dB
fromto
low visibility78031.816.8
8503116.4
155026.415.4
average visibility78015.9615.3
85015.815.3
155014.914.7
link range78017.3115
85016.9111.8
155014.688.4
beam divergence7803251.6
8503150.8
15502646
Tab.3  Results of total attenuation for design parameters at hazy days
Fig.9  Total attenuation (dB) versus rainfall rate (mm/hr)
Fig.10  Total attenuation (dB) versus link range (km)
parametersrainfalltotal attenuation/dB
fromto
rainfall ratelight14.314.46
moderate14.514.67
heavy14.7114.98
link rangelight15.115.5
moderate15.416.8
heavy15.620
Tab.4  Results of total attenuation for design parameters at rainy days
Fig.11  Scattering coefficient (km) versus low Visibility for Sana'a city (km)
Fig.12  Atmospheric attenuation (dB) versus low visibility (km) for Sana'a City
Fig.13  Scattering coefficient (km) versus low visibility (km) for Aden city
Fig.14  Atmospheric attenuation (dB) versus low visibility (km) for Aden city
Fig.15  Scattering coefficient (km) versus low visibility (km) for Taiz city
Fig.16  Atmospheric attenuation (dB) versus low visibility (km) for Taiz city
citywavelength/nmscattering coefficient/km-1atmospheric attenuation/dB
fromtofromto
Sana'a78011.370.4549.42
85010.990.4147.71.8
15508.690.2137.70.94
Aden78044. 80.45194.41.95
85043.80.41190.21.8
155037.60.22163.50.94
Taiz78044.80.7194.43.1
85043.80.65190.22.8
155037.60.37163.51.6
Tab.5  Results of scattering coefficient and atmospheric attenuation at low visibility for Sana'a, Aden and Taiz cities.
parametersdescription
wavelength (λ)780, 850, 1550 nm
transmit power (Ptx)23.52 dB
beam divergence1 mrd
visibility5 km
Tab.6  Optical link budget parameters
Fig.17  Received power (dBm) versus low visibility (km)
Fig.18  Received power (dBm) versus average visibility (km)
Fig.19  Received power (dBm) versus link range (km)
monthJan.Feb.Mar.Apr.MayJun.Jul.Aug.Sep.Oct.Nov.Dec.
visibility/kmSana'aaverage9.989.19.19.57.35.68.69.89.81010
low50.31240.70.523276
Adenaverage9.78.39.19.29.475.789.19.29.89.7
low6257331530.0587
Taizaverage98.49.79.79.98.988.89.99.59.38.9
low0.050.05440.05231.511.50.10.1
Tab.7  Data of visibility obtained from CAMA for year 2008
1 Altowij K S, Alkholidi A, Hamam H. Effect of clear atmospheric turbulence on the quality of the free space optical communications in Yemen. Frontiers of Optoelectronics in China , 2010, 3(4): 423–428
doi: 10.1007/s12200-010-0123-8
2 Alkholidi A, Altowij K S. Effect of clear atmospheric turbulence on quality of free space optical communications in Western Asia. In: Das N, ed, Optical Communications Systems . Croatia: InTech, 2012
3 Norhanis Aida M, Islam M R, Al-Khateeb W. Atmospheric effects on free space earth-to-satellite optical links in tropical climate. International Journal of Computer Science, Engineering and Applications , 2013, 3(1): 17–36
4 Rouissat M, Borsali A R, Mohammad E. Free space optical channel characterization and modeling with focus on Algeria weather conditions. International Journal of Computer Network and Information Security , 2012, 4(3): 17–23
5 Yang G, Khalighi M A, Ghassemlooy Z, Bourennane S. Performance evaluation of receive-diversity free-space optical communications over correlated Gamma-Gamma fading channels. Applied Optics , 2013, 52(24): 5903–5911
doi: 10.1364/AO.52.005903 pmid:24084990
6 Zvanovec S, Perez J, Ghassemlooy Z, Rajbhandari S, Libich J. Route diversity analyses for free-space optical wireless links within turbulent scenarios. Optics Express , 2013, 21(6): 7641–7650
doi: 10.1364/OE.21.007641 pmid:23546147
7 Kumar N, Rana A K. Simulative analysis of various parameters on free space optical communication system. Journal of Optical Communications , 2013, 34(3): 237–241
doi: 10.1515/joc-2013-0018
8 Fadhil H A, Amphawan A, Shamsuddin H A B, Abd T H, Al-Khafaji H M R, Aljunid S A, Ahmed N. Optimization of free space optics parameters: an optimum solution for bad weather conditions. Optik-International Journal for Light and Electron Optics , 2013, 124(19): 3969–3973
9 Willebrand H A, Ghuman B S. Fiber optic without fiber. Spectrum, IEEE , 2001, 38(8): 40–45
10 Kim I I, Korevaar E. Availability of free space optics (FSO) and hybrid FSO/RF systems. In: Proceedings of Optical Wireless Communications IV, SPIE 2001, 4530: 84–95
doi: 10.1117/12.449800
11 Tang X. Polarisation shift keying modulation free-space optical communication systems. Dissertation for the Doctoral Degree . Newcastle: University of Northumbria at Newcastle, 2012
12 Mazin A. Atmospheric turbulence effect on free space optical communications. International Journal of Emerging Technology in Computational and Applied Sciences (IJETCAS) , 2013, 5(4): 345–351
13 Hemmati H. Near-Earth Laser Communications. California: CRC Press, 2008
14 Kim I I, McArthur B, Korevaar E J. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. In: Proceedings of Optical Wireless Communications III, SPIE . 2001, 4214: 26–37
doi: 10.1117/12.417512
15 Civil Aviation and Meteorology Authority (CAMA) data recorded report, 2008
[1] Yulia S. MAKLYGINA, Alexei S. SKOBELTSIN, Tatiana A. SAVELIEVA, Galina V. PAVLOVA, Ivan V. CHEKHONIN, Olga I. GURINA, Anastasiya A. Chernysheva, Sergey A. Cherepanov, Victor B. LOSCHENOV. Study of possibility of cell recognition in brain tumors[J]. Front. Optoelectron., 2020, 13(4): 371-380.
[2] F. MAKOUEI,S. MAKOUEI. Design of temperature insensitive in vivo strain sensor using multilayer single mode optical fiber[J]. Front. Optoelectron., 2016, 9(4): 621-626.
[3] Kambiz ABEDI. Strain effects on performance of electroabsorption optical modulators[J]. Front Optoelec, 2013, 6(3): 282-289.
[4] Yuewen HAN, Cheng CHENG. An optimized distributed fiber Bragg grating sensing system based on optical frequency domain reflectometry[J]. Front Optoelec, 2012, 5(3): 345-350.
[5] Yijie HUO, Hai LIN, Robert CHEN, Yiwen RONG, Theodore I. KAMINS, James S. HARRIS. MBE growth of tensile-strained Ge quantum wells and quantum dots[J]. Front Optoelec, 2012, 5(1): 112-116.
[6] Guodong WANG, Yunjian WANG, Na LI. Axial strain sensitivity analysis of long period fiber grating by new transfer matrix method[J]. Front Optoelec Chin, 2011, 4(4): 430-433.
[7] Pijus Kanti SAMANTA, Partha Roy CHAUDHURI. Substrate effect on morphology and photoluminescence from ZnO monopods and bipods[J]. Front Optoelec Chin, 2011, 4(2): 130-136.
[8] Zigang DUAN, Wei SHI, Yan LI, Guangyue CHAI. Gain properties and optical-feedback suppression of asymmetrical curved active waveguides[J]. Front Optoelec Chin, 2009, 2(4): 379-383.
[9] Xinlong CHANG, Ming LI, Xuanzi HAN. Recent development and applications of polymer optical fiber sensors for strain measurement[J]. Front Optoelec Chin, 2009, 2(4): 362-367.
[10] Xiaohua LV, Yi ZHENG, Ting LI, Zhongxing ZHANG, Hui GONG. A portable functional imaging instrument for psychology research based on near-infrared spectroscopy[J]. Front Optoelec Chin, 2008, 1(3-4): 279-284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed