Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2014, Vol. 7 Issue (1) : 20-27    https://doi.org/10.1007/s12200-014-0395-5
REVIEW ARTICLE
Semitransparent organic solar cells
Furong ZHU()
Department of Physics and Institute of Advanced Materials, Hong Kong Baptist University, Hong Kong, China
 Download: PDF(283 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The organic solar cell technology has attracted great interests due to its potential of low cost solution process capability. Bulk heterojunction organic solar cells offer a potentially much cheaper alternative way to harness solar energy, and can be made flexible and large area. They can also be made translucent and in different colors. As a result, the inexpensive fabrication process such as solution-process techniques, mechanical flexibility, light weight and visible-light transparency features make organic solar technology attractive for application in new markets, such as smart sensors, power generating window panes, building architecture, greenhouses and outdoor lifestyle, etc. After a brief overview of basics of organic photovoltaics, the enhancement of semitransparent organic solar cells over the two competing performance indices of power conversion efficiency and transmittance will be discussed.

Keywords organic photovoltaic      transparent electrode      optical and optimal design      optical admittance analysis     
Corresponding Author(s): ZHU Furong,Email:frzhu@hkbu.edu.hk   
Issue Date: 05 March 2014
 Cite this article:   
Furong ZHU. Semitransparent organic solar cells[J]. Front Optoelec, 2014, 7(1): 20-27.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0395-5
https://academic.hep.com.cn/foe/EN/Y2014/V7/I1/20
Fig.1  (a) Calculated transmittance and integrated absorptance of the P3HT:PCBM active layer as a function of its layer thickness for semitransparent OSCs of the type: glass/ITO/PEDOT:PSS (40 nm)/P3HT:PCBM (25–300 nm)/Ca (10 nm)/Ag (10 nm)/ ITO (60 nm); (b) a photo picture showing a semitransparent OSC having an optimized cell structure of glass/ITO/PEDOT:PSS (40 nm)/P3HT:PCBM (75 nm)/Ca (10 nm)/Ag (10 nm)/ITO (60 nm)
Fig.2  Calculated results showing the effect of the upper ITO layer thickness on the integrated absorbance of P3HT:PCBM layer and the transmittance of a semitransparent OSC of the type: glass/ITO/PEDOT:PSS (40 nm)/P3HT:PCBM (75 nm)/Ca (10 nm)/Ag (10 nm)/ITO (0–60 nm)
Fig.3  (a) Transmission spectra calculated for two structurally identical semitransparent OSCs with Ca (10 nm)/Ag (10 nm) and Ca (10 nm)/Ag (10 nm)/ITO (60 nm) upper cathodes, respectively. The red symbols represented the transmission spectral measured for semitransparent OSCs made with a Ca (10 nm)/Ag (10 nm)/ITO (60 nm); (b) comparison of characteristics measured for a control OSC, semitransparent OSCs with upper cathodes of Ca (10 nm)/Ag (10 nm) and Ca (10 nm)/Ag (10 nm)/ITO (60 nm)
1 Ginley D S, Green M A, Collins R T. Solar energy conversion toward 1 terawatt. Mrs Bulletin , 2008, 33(4): 355–364
doi: 10.1557/mrs2008.71
2 Slaoui A, Collins R T. Advanced inorganic materials for photovoltaics. Mrs Bulletin , 2007, 32(3): 211–218
doi: 10.1557/mrs2007.24
3 Tang C W, VanSlyke S A. Organic electroluminescent diodes. Applied Physics Letters , 1987, 51(12): 913–915
doi: 10.1063/1.98799
4 Burroughs J H, Bradley D D C, Brown A R, Marks R N, MacKay K, Friend R H, Burn P L, Holmes A B. Light-emitting diodes based on conjugated polymers. Nature , 1990, 347(6293): 593–541
5 Li Y Q, Tan L W, Hao X T, Ong K S, Zhu F R, Hung L S. Flexible top-emitting electroluminescent devices on polyethylene terephthalate substrates. Applied Physics Letters , 2005, 86(15): 153508-1–153508-3
doi: 10.1063/1.1900940
6 Bao Z A, Dodabalapur A, Lovinger A J. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Applied Physics Letters , 1996, 69(26): 4108–4110
doi: 10.1063/1.117834
7 Moller S, Perlov C, Jackson W, Taussig C, Forrest S R. A polymer/semiconductor write-once read-many-times memory. Nature , 2003, 426(6963): 166–169
pmid:14614502
8 Peumans P, Yakimov A, Forrest S R. Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics , 2003, 93(7): 3693–3723
doi: 10.1063/1.1534621
9 Tang C W. Two-layer organic photovoltaic cell. Applied Physics Letters , 1986, 48(2): 183–185
doi: 10.1063/1.96937
10 Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H. Photovoltaic technology: the case for thin-film solar cells. Science , 1999, 285(5428): 692–698
doi: 10.1126/science.285.5428.692 pmid:10426984
11 Yu G, Gao J, Wudl F, Heeger A J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science , 1995, 270(5243): 1789–1791
doi: 10.1126/science.270.5243.1789
12 Halls J J M, Walsh C A, Greenham N C, Friend R H, Holmes A B. Efficient photodiodes from interpenetrating polymer networks. Nature , 1995, 376(6540): 498–500
doi: 10.1038/376498a0
13 Tsuzuki T, Shirota Y, Meissner D. The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment. Solar Energy Materials and Solar Cells , 2000, 61(1): 1–8
doi: 10.1016/S0927-0248(99)00091-4
14 Zhang F, Svensson M, Inganas O. Soluble polythiophenes with pendant fullerene groups as double cable materials for photodiodes. Advanced Materials , 2001, 13(24): 1871–1874
doi: 10.1002/1521-4095(200112)13:24<1871::AID-ADMA1871>3.0.CO;2-3
15 Kietzke T, Neher D, Landfester K, Montenegro R, Güntner R, Scherf U. Novel approaches to polymer blends based on polymer nanoparticles. Nature Materials , 2003, 2(6): 408–412
doi: 10.1038/nmat889 pmid:12738959
16 Marks R N, Halls J J M, Bradley D D C, Friend R H, Holmes A B. The photovoltaic response in poly(p-phenylene vinylene) thin-film devices. Journal of Physics Condensed Matter , 1994, 6(7): 1379–1394
doi: 10.1088/0953-8984/6/7/009
17 Barth S, B?ssler H, Rost H, H?rhold H H. Intrinsic photoconduction in PPV-type conjugated polymers. Physical Review Letters , 1997, 79(22): 4445–4448
doi: 10.1103/PhysRevLett.79.4445
18 Miranda P B, Moses D, Heeger A J. Ultrafast photogeneration of charged polarons in conjugated polymers. Physical Review B: Condensed Matter and Materials Physics , 2001, 64(8): 81201-1–81201-4
doi: 10.1103/PhysRevB.64.081201
19 Brabec C J, Zerza G, Cerullo G, De Silvestri S, Luzzati S, Hummele J C, Sariciftci N S. Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chemical Physics Letters , 2001, 340(3–4): 232–236
doi: 10.1016/S0009-2614(01)00431-6
20 Orenstein J. In: Skotheim T J, ed. Handbook on Conducting Polymers, Vol 2, p1297 ; or Kuzmany H, Mehring M, Roth S, eds. Springer Series in Solid State Sciences 76, Electronic Properties of Conjugated Polymers
21 Vardeny Z, Tauc J. Method for direct determination of the effective correlation energy of defects in semiconductors: optical modulation spectroscopy of dangling bonds. Physical Review Letters , 1985, 54(16): 1844–1847
doi: 10.1103/PhysRevLett.54.1844 pmid:10031155
22 Vardeny Z, Ehrenfreund E, Brafman O, Nowak M, Schaffer H, Heeger A J, Wudl F. Photogeneration of confined soliton pairs (bipolarons) in polythiophene. Physical Review Letters , 1986, 56(6): 671–674
doi: 10.1103/PhysRevLett.56.671 pmid:10033254
23 ?sterbacka R, An C P, Jiang X M, Vardeny Z V. Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. Science , 2000, 287(5454): 839–842
doi: 10.1126/science.287.5454.839 pmid:10657294
24 Jiang X M, ?sterbacka R, Korovyanko O, An C P, Horovitz B, Janssen R A J, Vardeny Z V. Spectroscopic studies of photoexcitations in regioregular and regiorandom polythiophene films. Advanced Functional Materials , 2002, 12(9): 587–597
doi: 10.1002/1616-3028(20020916)12:9<587::AID-ADFM587>3.0.CO;2-T
25 De S, Pascher T, Maiti M, Jespersen K G, Kesti T, Zhang F, Ingan?s O, Yartsev A, Sundstr?m V. Geminate charge recombination in alternating polyfluorene copolymer/fullerene blends. Journal of the American Chemical Society , 2007, 129(27): 8466–8472
doi: 10.1021/ja068909q pmid:17567128
26 Brabec C J, Zerza G, Cerullo G, De Silvestri S, Luzzati S, Hummelen J C, Sariciftci S. Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chemical Physics Letters , 2001, 340(3-4): 232–236
doi: 10.1016/S0009-2614(01)00431-6
27 Clarke T, Ballantyne A, Jamieson F, Brabec C, Nelson J, Durrant J. Transient absorption spectroscopy of charge photogeneration yields and lifetimes in a low bandgap polymer/fullerene film. Chemical Communications (Cambridge) , 2009, 1(1): 89–91
doi: 10.1039/b813815j
28 Hwang I W, Moses D, Heeger A J. Photoinduced carrier generation in P3HT/PCBM bulk heterojunction materials. Journal of Physical Chemistry C , 2008, 112(11): 4350–4354
doi: 10.1021/jp075565x
29 Hwang I W, Soci C, Moses D, Zhu Z, Waller D, Gaudiana R, Brabex C J, Heeger A J. Ultrafast electron transfer and decay dynamics in a small band gap bulk heterojunction material. Advanced Materials , 2007, 19(17): 2307–2312
doi: 10.1002/adma.200602437
30 Clarke T M, Ballantyne A M, Nelson J, Bradley D D C, Durrant J. Free energy control of charge photogeneration in polythiophene/fullerene solar cells: the influence of thermal annealing on P3HT/PCBM blends. Advanced Functional Materials , 2008, 18(24): 4029–4035
doi: 10.1002/adfm.200800727
31 Saricifci N S, Smilowitz L, Heeger A J, Wudi F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science , 1994, 258(5087): 1474–1476
doi: 10.1126/science.258.5087.1474
32 Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials , 2007, 6(7): 497–500
doi: 10.1038/nmat1928 pmid:17529968
33 Wang X Z, Tam H L, Yong K S, Chen Z K, Zhu F R. High performance optoelectronic device based on semitransparent organic photovoltaic cell integrated with organic light-emitting diode. Organic Electronics , 2011, 12(8): 1429–1433
doi: 10.1016/j.orgel.2011.05.012
[1] Petri MUSTONEN, David M. A. MACKENZIE, Harri LIPSANEN. Review of fabrication methods of large-area transparent graphene electrodes for industry[J]. Front. Optoelectron., 2020, 13(2): 91-113.
[2] Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Front. Optoelectron., 2017, 10(4): 402-408.
[3] Mingzhang DENG,Weina SHI,Chen ZHAO,Bingbing CHEN,Yan SHEN. ITO surface modification for inverted organic photovoltaics[J]. Front. Optoelectron., 2015, 8(3): 269-273.
[4] Debin NI, Dong YANG, Shuying MA, Guoli TU, Jian ZHANG. Side chains and backbone structures influence on 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based low-bandgap conjugated copolymers for organic photovoltaics[J]. Front Optoelec, 2013, 6(4): 418-428.
[5] Yanli ZHAO, Qiuyan MO. Electrical properties of transparent conducting carbon nanotube films[J]. Front Optoelec Chin, 2009, 2(4): 425-428.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed