Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2016, Vol. 10 Issue (1) : 66-72    https://doi.org/10.1007/s11706-016-0325-0
RESEARCH ARTICLE
Early-stage nucleation of manganese sulfide particle and its processing evolution in Fe--3wt.%Si alloys
Wei GUO1,Li MENG2,3,*(),Hongcai WANG4,Guochun YAN2,Weimin MAO2
1. Department of Microstructures and Alloy Design, Max-Planck Institute für Eisenforschung, Düsseldorf, 40237, Germany
2. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
3. Department of Beijing Research and Development, East China Branch of Central Iron and Steel Research Institute, Beijing 100081, China
4. Institute fu?r Werkstoffe, Ruhr-Universität Bochum, Bochum, 44801, Germany
 Download: PDF(1914 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Manganese sulfide is often referred to as one of important inhibitors in grain-oriented electrical steels, which is of great importance to yield strong Goss texture. However, the early stage of nucleation for such inhibitors and their evolution during the processing has not been well understood. In present work we selected a Fe--3.12wt.%Si--0.11wt.%Mn--0.021wt.%S model system and used FE-SEM and atom probe tomography (APT) to investigate the precipitation behavior of MnS inhibitors at near atomic scale. It was found that the Si--S enriched clusters with sizes of 5--15 nm were formed close to the MnS particles. The density of inhibitors decreased after large pseudo-plane-strain compression because of the effect of dislocation motion, and then slightly increased again when sample was aged at 200°C for 48 h. The dislocations and grain boundaries can act as fast diffusion paths and assist the reemergence of Si--S enriched clusters.

Keywords manganese sulfide (MnS)      inhibitor      nucleation      precipitation      grain-oriented electrical steels     
Corresponding Author(s): Li MENG   
Online First Date: 31 December 2015    Issue Date: 15 January 2016
 Cite this article:   
Wei GUO,Li MENG,Hongcai WANG, et al. Early-stage nucleation of manganese sulfide particle and its processing evolution in Fe--3wt.%Si alloys[J]. Front. Mater. Sci., 2016, 10(1): 66-72.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-016-0325-0
https://academic.hep.com.cn/foms/EN/Y2016/V10/I1/66
Fig.1  FE-SEM observations of particles distributions at different processing stages of Fe–3wt.%Si alloys: (a) high-temperature solid-soluted sample annealed at 800°C for 20 h (normalized sample); (b) annealed sample deformed with 60% reduction; (c) 60% deformed sample aged at 200°C for 20 h. (d) Also shown are the statistical counts of inhibitors within an area of 6 μm × 6 μm.
Fig.2  (a) FE-SEM image showing the existence of MnS particles after 800°C for 20 h. (b) APT reconstructed atomic map containing the MnS particle as marked in (a). (c) APT reconstruction showing the atom maps of Fe (pink), Mn (gray), Si (green) and S (red). Selected volumes of APT reconstruction containing (d) MnS particles and (e) S-enriched zones are taken for exact chemical analysis. (f) 1D concentration profiles showing the concentration along the interface of Fe–Si matrix/MnS precipitate. (g) Proximity histogram analysis mapped across the 15 at.% S isoconcentration surface.
Fig.3  APT analysis of sulfur segregation at the grain boundary of ferrite aged at 800°C for 20 h: (a) a top view of element map clearly show the segregation of sulfur atoms; (b) proxigram shows the concentration profiles across the 1 at.% S isoconcentration surface.
Fig.4  Representative APT reconstruction map showing the atomic distribution Fe (pink), Mn (gray), Si (green) and S (red) atoms in the sample after 60% cold reduction.
Fig.5  Influence of temperature on calculated nucleation driving force of MnS and FeS particles in Fe–3wt.%Si alloy.
Element D0 /(cm2·s−1) Q /(kJ·mol−1) Diffusion distance /nm
at 800°C for 20 h at 200°C for 48 h
Mn [8] 0.35 219.7 7.14×103 1.83×10−3
Si [8] 0.19 213.8 7.32×103 2.85×10−3
S [8] 34.6 231.4 3.68×104 4.12×10−3
S/boundary [11] 19.1 135.1 6.04×106 6.33×102
S/dislocation [7] 1.56 135.0 1.74×106 1.83×102
Tab.1  Diffusion constant, activation energy and related effective distance for diffusion of Mn, Si and S atoms in pure ferrite iron
APTatom probe tomography
FE-SEMfield-emission scanning electron microscopy
FIBfocused ion beam
HDlarge deformed
LTAlow-temperature aging
NAnormalizing annealed
SEMscanning electron microscopy
Tab.1  
1 Bernier  N, Xhoffer  C, Van De Putte  T, . Structure analysis of aluminum silicon manganese nitride precipitates formed in grain-oriented electrical steels. Materials Characterization, 2013, 86: 116–126
2 Homma  H, Hutchinson  B. Orientation dependence of secondary recrystallisation in silicon–iron. Acta Materialia, 2003, 51(13): 3795–3805
3 Guo  W, Mao  W, Li  Y, . Influence of intermediate annealing on final Goss texture formation in low temperature reheated Fe–3%Si steel. Materials Science and Engineering A, 2011, 528(3): 931–934
4 Guo  W, Mao  W M. Abnormal growth of Goss grains in grain-oriented electrical steels. Journal of Materials Science and Technology, 2010, 26(8): 759–762
5 Mao  W, Li  Y, Yang  P, . Abnormal growth mechanisms of Goss grains in grain-oriented electrical steels. Materials Science Forum, 2011, 702–703: 585–590
6 Mao  W, Guo  W, Li  Y. Growth process of Goss grains during secondary recrystallization of grain-oriented electrical steels. Steel Research International, 2010, 81(12): 1117–1120
7 Kohler  D. Promotion of cubic grain growth in 3% silicon iron by control of annealing atmosphere composition. Journal of Applied Physics, 1960, 31(5): S408–S409
8 Chen  N, Zaefferer  S, Lahn  L, . Effects of topology on abnormal grain growth in silicon steel. Acta Materialia, 2003, 51(6): 1755–1765
9 Heo  N H, Chai  K H, Na  J G. Correlation between interfacial segregation and surface-energy-induced selective grain growth in 3% silicon–iron alloy. Acta Materialia, 2000, 48(11): 2901–2910
10 Dorner  D, Zaefferer  S, Lahn  L, . Overview of microstructure and microtexture development in grain-oriented silicon steel. Journal of Magnetism and Magnetic Materials, 2006, 304(2): 183–186
11 Miller  M K, Russell  K F. Atom probe specimen preparation with a dual beam SEM/FIB miller. Ultramicroscopy, 2007, 107(9): 761–766
12 Thompson  K, Lawrence  D, Larson  D J, . In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy, 2007, 107(2–3): 131–139
13 Bas  P, Bostel  A, Deconihout  B, . A general protocol for the reconstruction of 3D atom probe data. Applied Surface Science, 1995, 87–88: 298–304
14 Hellman  O C, Seidman  D N. Measurement of the Gibbsian interfacial excess of solute at an interface of arbitrary geometry using three-dimensional atom probe microscopy. Materials Science and Engineering A, 2002, 327: 24–28
15 Oikawa  H. Technology Reports. Tohoku University, 1983, 48: 7–77
16 Arabczyk  W, Militzer  M, Mussig  H J, . Contribution of pipe diffusion to surface segregation kinetics. Surface Science, 1988, 198(1–2): 167–179
17 Sun  W P, Militzer  M, Jonas  J J. Diffusion-controlled growth and coarsening of MnS during hot deformation. Metallurgical Transactions A: Physical Metallurgy and Materials Science, 1992, 23(11): 3013–3023
18 Kaur  W G, Kozma  L. Handbook of Grain and Interface Boundary Diffusion Data. Stuttgart: Ziegler Press, 1989
[1] Wei LI, Lizhong ZHAO, Zhongwu LIU. Micromagnetic investigation by a simplified approach on the demagnetization field of permanent magnets with nonmagnetic phase inside[J]. Front. Mater. Sci., 2019, 13(3): 323-333.
[2] Xinyue ZHANG, Chunhui XIA, Kaitao LI, Yanjun LIN. Surface nucleation and independent growth of Ce(OH)4 within confinement space on modified carbon black surface to prepare nano-CeO2 without agglomeration[J]. Front. Mater. Sci., 2018, 12(2): 168-175.
[3] Yingfang ZHU, Jingwei YOU, Haifu HUANG, Guangxu LI, Wenzheng ZHOU, Jin GUO. Facile synthesis and electrochemical properties of layered Li[Ni1/3Mn1/3Co1/3]O2 as cathode materials for lithium-ion batteries[J]. Front. Mater. Sci., 2017, 11(2): 155-161.
[4] Xuran GUO,Kaile ZHANG,Mohamed EL-AASSAR,Nanping WANG,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Qiang FU,Xiumei MO. The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty[J]. Front. Mater. Sci., 2016, 10(4): 346-357.
[5] Sushilkumar A. JADHAV,Suresh V. PATIL. Facile synthesis of magnetic iron oxide nanoparticles and their characterization[J]. Front. Mater. Sci., 2014, 8(2): 193-198.
[6] A. SUGISAKA, H. INOUE, H. NAGASAWA. Structure-activity relationship of CAP-1, a cuticle peptide of the crayfish Procambarus clarkii, in terms of calcification inhibitory activity[J]. Front Mater Sci Chin, 2009, 3(2): 183-186.
[7] YU Zhi-ming, FANG Mei, XIAO Zhu. Effects of enhanced nucleation on the growth and thermal performance of diamond films deposited on BeO by hot filament CVD technique[J]. Front. Mater. Sci., 2008, 2(4): 369-374.
[8] XIA Zhi-dong, XIE Xiao-qian, SHI Yao-wu, LEI Yong-ping, GUO Fu. Recycling cobalt from spent lithium ion battery[J]. Front. Mater. Sci., 2008, 2(3): 281-285.
[9] MAO Wei-min, AN Zhi-guo, LI Yang. Challenges of the study on precipitation behaviors of MnS in oriented electrical steels[J]. Front. Mater. Sci., 2008, 2(3): 233-238.
[10] REN Huiping, WANG Haiyan, LIU Zongchang. Cu clusters evolvement in Fe-1.18%Cu binary alloy[J]. Front. Mater. Sci., 2007, 1(4): 342-345.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed