|
|
Electronic structure and bonding interactions in Ba1--xSrxZr0.1Ti0.9O3 ceramics |
Jegannathan MANGAIYARKKARASI1( ), Subramanian SASIKUMAR2, Olai Vasu SARAVANAN2, Ramachandran SARAVANAN2 |
1. PG and Research Department of Physics, NMSSVN College, Nagamalai, Madurai-625 019, Tamil Nadu, India 2. Research Centre and PG Department of Physics, The Madura College, Madurai-625 011, Tamil Nadu, India |
|
|
Abstract An investigation on the precise electronic structure and bonding interactions has been carried out on Ba1−xSrxZr0.1Ti0.9O3 (short for BSZT, x = 0, 0.05, 0.07 and 0.14) ceramic systems prepared via high-temperature solid state reaction technique. The influence of Sr doping on the BSZT structure has been examined by characterizing the prepared samples using PXRD, UV-visible spectrophotometry, SEM and EDS. Powder profile refinement of X-ray data confirms that all the synthesized samples have been crystallized in cubic perovskite structure with single phase. Charge density distribution of the BSZT systems has been completely analyzed by the maximum entropy method (MEM). Co-substitution of Sr at the Ba site and Zr at the Ti site into the BaTiO3 structure presents the ionic nature between Ba and O ions and the covalent nature between Ti and O ions, revealed from MEM calculations. Optical band gap values have been evaluated from UV-visible absorption spectra. Particles with irregular shapes and well defined grain boundaries are clearly visualized from SEM images. The phase purity of the prepared samples is further confirmed by EDS qualitative spectral analysis.
|
Keywords
barium titanate
X-ray diffraction
Rietveld refinement
maximum entropy method
bonding
|
Corresponding Author(s):
Jegannathan MANGAIYARKKARASI
|
Online First Date: 07 April 2017
Issue Date: 26 May 2017
|
|
1 |
Rani R, Singh S, Juneja J K , et al.. Dielectric properties of Zr substituted BST ceramics. Ceramics International, 2011, 37(8): 3755–3758
https://doi.org/10.1016/j.ceramint.2011.03.080
|
2 |
Buscaglia M T , Buscaglia V , Viviani M , et al.. Influence of foreign ions on the crystal structure of BaTiO3. Journal of the European Ceramic Society, 2000, 20(12): 1997–2007
https://doi.org/10.1016/S0955-2219(00)00076-5
|
3 |
Nanakorn N, Jalupoom P, Vaneesorn N , et al.. Dielectric and ferroelectric properties of Ba(ZrxTi1−x)O3 ceramics. Ceramics International, 2008, 34(4): 779–782
https://doi.org/10.1016/j.ceramint.2007.09.024
|
4 |
Wu T B, Wu C M, Chen M L. High insulative barium zirconate–titanate thin films prepared by rf magnetron sputtering for dynamic random access memory applications. Applied Physics Letters, 1996, 69(18): 2659–2661
https://doi.org/10.1063/1.117550
|
5 |
Dixit A, Majumder S B, Katiyar R S, et al.. Relaxor behavior in sol–gel derived BaZr0.40Ti0.60O3. Applied Physics Letters, 2003, 82(16): 2679–2681
https://doi.org/10.1063/1.1568166
|
6 |
Swartz S L. Topics in electronic ceramics. IEEE Transactions on Electrical Insulation, 1990, 25(5): 935–987
https://doi.org/10.1109/14.59868
|
7 |
Cavalcante L S , Sczancoski J C , De Vicente F S , et al.. Microstructure, dielectric properties and optical band gap control on the photoluminescence behavior of Ba[Zr0.25Ti0.75]O3 thin films. Journal of Sol-Gel Science and Technology, 2009, 49(1): 35–46
https://doi.org/10.1007/s10971-008-1841-x
|
8 |
Brankovic G, Brankovic Z, Goes M S , et al.. Barium strontium titanate powders prepared by spray pyrolysis. Materials Science and Engineering B, 2005, 122(2): 140–144
https://doi.org/10.1016/j.mseb.2005.05.016
|
9 |
Caruntu G, Rarig R Jr, Dumitru I , et al.. Annealing effects on the crystallite size and dielectric properties of ultra fine Ba1−xSrxTiO3 (0<x<1) powders synthesized through an oxalate-complex precursor. Journal of Materials Chemistry, 2006, 16(8): 752–758
https://doi.org/10.1039/B506578J
|
10 |
Nedelcu L, Ioachim A, Toacsan M , et al.. Synthesis and dielectric characterization of Ba0.6Sr0.4TiO3 ferroelectric ceramics. Thin Solid Films, 2011, 519(17): 5811–5815
https://doi.org/10.1016/j.tsf.2010.12.191
|
11 |
Chan N Y, Choy S H, Wang D Y, et al.. High dielectric tunability of ferroelectric (Ba1−x,Srx)(Zr0.1,Ti0.9)O3 ceramics. Journal of Materials Science Materials in Electronics, 2014, 25(6): 2589–2594
https://doi.org/10.1007/s10854-014-1915-1
|
12 |
Kumar M, Garg A, Kumar R , et al.. Structural, dielectric and ferroelectric study of Ba0.9Sr0.1ZrxTi1−xO3 ceramics prepared by the sol–gel method. Physica B: Condensed Matter, 2008, 403(10–11): 1819–1823
https://doi.org/10.1016/j.physb.2007.10.144
|
13 |
Bhaskar Reddy S , Prasad Rao K , Ramachandra Rao M S . Structural and dielectric characterization of Sr substituted Ba(Zr,Ti)O3 based functional materials. Applied Physics A: Materials Science & Processing, 2007, 89(4): 1011–1015
https://doi.org/10.1007/s00339-007-4208-1
|
14 |
Bhaskar Reddy S , Prasad Rao K , Ramachandra Rao M S . Effect of La substitution on the structural and dielectric properties of BaZr0.1Ti0.9O3 ceramics. Journal of Alloys and Compounds, 2009, 481(1–2): 692–696
https://doi.org/10.1016/j.jallcom.2009.03.075
|
15 |
Jain A, Saroha R, Pastor M , et al.. Effect of sintering duration on structural and electrical properties of Ba0.9Sr0.1Ti0.96Zr0.04O3 solid solution. Current Applied Physics, 2016, 16(8): 859–866
https://doi.org/10.1016/j.cap.2016.04.022
|
16 |
Wang X, Huang R, Zhao Y , et al.. Dielectric and tunable properties of Zr doped BST ceramics prepared by spark plasma sintering. Journal of Alloys and Compounds, 2012, 533(1): 25–28
|
17 |
Tawade C M, Madolappa S, Sharanappa N , et al.. Microstructural and electrical study of (Ba0.6Sr0.4)(Zr1−xTix)O3 ceramics. IJRET, 2013, 2(8): 184–187
https://doi.org/10.15623/ijret.2013.0208031
|
18 |
Deng X Y, Wang X H, Li D J, et al.. Electronic structure of nanograin barium titanate ceramics. Frontiers of Materials Science, 2007, 1(3): 316–318
https://doi.org/10.1007/s11706-007-0058-1
|
19 |
Saravanan R. Practical application of maximum entropy method in electron density and bonding studies. Physica Scripta, 2009, 79(4): 048303 (8 pages)
https://doi.org/10.1088/0031-8949/79/04/048303
|
20 |
Rietveld H M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 1969, 2(2): 65–71
https://doi.org/10.1107/S0021889869006558
|
21 |
Collins D M. Electron density images from imperfect data by iterative entropy maximization. Nature, 1982, 298(5869): 49–51
https://doi.org/10.1038/298049a0
|
22 |
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, 1976, 32(5): 751–767
https://doi.org/10.1107/S0567739476001551
|
23 |
Petricek V, Dusek M, Palatinus L . The crystallographic computing system JANA 2006: General features. Zeitschrift fur Kristallographie, 2014, 229(5): 345–352
|
24 |
Wyckoff R W G . Crystal Structures, Vol. 2. London: Inter-space Publishers, 1963
|
25 |
Thongtha A, Angsukased K, Riyamongkol N , et al.. Preparation of (Ba1−xSrx)(ZrxTi1−x)O3 ceramics via the solid state reaction method. Ferroelectrics, 2010, 403(1): 68–75
https://doi.org/10.1080/00150191003748907
|
26 |
Saravanan R. GRAIN software (personal communication)
|
27 |
Izumi F, Dilanien R A. Recent Research Developments in Physics, Part II , Vol. 3. Trivandrum, India: Transworld Research Network, 2002
|
28 |
MommaK, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis.Journal of Applied Crystallography, 2008, 41(3): 653–658
https://doi.org/10.1107/S0021889808012016
|
29 |
Tauc J, Grigorovici R, Vancu Y . Optical properties and electronic structure of amorphous germanium. Physica Status Solidi B, 1966, 15(2): 627–637
https://doi.org/10.1002/pssb.19660150224
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|