Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (2) : 182-189    https://doi.org/10.1007/s11706-017-0376-x
RESEARCH ARTICLE
Electronic structure and bonding interactions in Ba1--xSrxZr0.1Ti0.9O3 ceramics
Jegannathan MANGAIYARKKARASI1(), Subramanian SASIKUMAR2, Olai Vasu SARAVANAN2, Ramachandran SARAVANAN2
1. PG and Research Department of Physics, NMSSVN College, Nagamalai, Madurai-625 019, Tamil Nadu, India
2. Research Centre and PG Department of Physics, The Madura College, Madurai-625 011, Tamil Nadu, India
 Download: PDF(488 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An investigation on the precise electronic structure and bonding interactions has been carried out on Ba1xSrxZr0.1Ti0.9O3 (short for BSZT, x = 0, 0.05, 0.07 and 0.14) ceramic systems prepared via high-temperature solid state reaction technique. The influence of Sr doping on the BSZT structure has been examined by characterizing the prepared samples using PXRD, UV-visible spectrophotometry, SEM and EDS. Powder profile refinement of X-ray data confirms that all the synthesized samples have been crystallized in cubic perovskite structure with single phase. Charge density distribution of the BSZT systems has been completely analyzed by the maximum entropy method (MEM). Co-substitution of Sr at the Ba site and Zr at the Ti site into the BaTiO3 structure presents the ionic nature between Ba and O ions and the covalent nature between Ti and O ions, revealed from MEM calculations. Optical band gap values have been evaluated from UV-visible absorption spectra. Particles with irregular shapes and well defined grain boundaries are clearly visualized from SEM images. The phase purity of the prepared samples is further confirmed by EDS qualitative spectral analysis.

Keywords barium titanate      X-ray diffraction      Rietveld refinement      maximum entropy method      bonding     
Corresponding Author(s): Jegannathan MANGAIYARKKARASI   
Online First Date: 07 April 2017    Issue Date: 26 May 2017
 Cite this article:   
Jegannathan MANGAIYARKKARASI,Subramanian SASIKUMAR,Olai Vasu SARAVANAN, et al. Electronic structure and bonding interactions in Ba1--xSrxZr0.1Ti0.9O3 ceramics[J]. Front. Mater. Sci., 2017, 11(2): 182-189.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0376-x
https://academic.hep.com.cn/foms/EN/Y2017/V11/I2/182
Fig.1  Ba1−xSrxZr0.1Ti0.9O3 samples synthesized by the solid state reaction method.
Fig.2  (a) Observed PXRD patterns of Ba1−xSrxZr0.1Ti0.9O3 with x = 0, 0.05, 0.07 and 0.14. (b)Enlarged XRD peaks of the (220) plane.
Fig.3  Fitted PXRD profiles for Ba1-xSrxZr0.1Ti0.9O3: (a)x = 0; (b)x = 0.05; (c)x = 0.07; (d)x = 0.14.
Tab.1  Refined parameters of Ba1−xSrxZr0.1Ti0.9O3 with x = 0, 0.05, 0.07 and 0.14 through refinement of powder XRD data
Fig.4  (a) 3D unit cell with the (100) plane shaded for x = 0. (b) 2D contour map on the (100) plane for x = 0. (c)(d)(e)(f) Enlarged views of Ba−O bonds for x = 0, 0.05, 0.07 and 0.14 on the (100) plane.
Fig.5  (a)3D unit cell with the (200) plane shaded for x = 0. (b)2D contour map on the (200) plane for x = 0. (c)(d)(e)(f)Enlarged views of Ti−O bonds for x = 0, 0.05, 0.07 and 0.14 on the (200) plane.
Fig.6  1D electron density profiles along Ba and O atoms in Ba1−xSrxZr0.1Ti0.9O3 with x = 0, 0.05, 0.07 and 0.14.
Fig.7  1D electron density profiles along Ti and O atoms in Ba1−xSrxZr0.1Ti0.9O3 with x = 0, 0.05, 0.07 and 0.14.
Tab.2  Bond lengths and electron density values at bond critical point (BCP) for Ba−O and Ti−O bonds for Ba1−xSrxZr0.1Ti0.9O3 with x = 0, 0.05, 0.07 and 0.14
Fig.8  SEM images for Ba1−xSrxZr0.1Ti0.9O3: (a)x = 0; (b)x = 0.05; (c)x = 0.07; (d)x = 0.14.
Fig.9  EDS spectra for Ba1−xSrxZr0.1Ti0.9O3: (a)x = 0; (b)x = 0.05; (c)x = 0.07; (d)x = 0.14.
Fig.10  UV-visible plots for Ba1−xSrxZr0.1Ti0.9O3 with x = 0, 0.05, 0.07 and 0.14, the inset showing the UV-vis absorption spectra.
Tab.3  UV-visible parameters for Ba1−xSrxZr0.1Ti0.9O3 with x = 0, 0.05, 0.07 and 0.14
1 Rani R, Singh  S, Juneja J K , et al.. Dielectric properties of Zr substituted BST ceramics. Ceramics International, 2011, 37(8): 3755–3758
https://doi.org/10.1016/j.ceramint.2011.03.080
2 Buscaglia M T ,  Buscaglia V ,  Viviani M , et al.. Influence of foreign ions on the crystal structure of BaTiO3. Journal of the European Ceramic Society, 2000, 20(12): 1997–2007
https://doi.org/10.1016/S0955-2219(00)00076-5
3 Nanakorn N, Jalupoom  P, Vaneesorn N , et al.. Dielectric and ferroelectric properties of Ba(ZrxTi1−x)O3 ceramics. Ceramics International, 2008, 34(4): 779–782
https://doi.org/10.1016/j.ceramint.2007.09.024
4 Wu T B, Wu  C M, Chen  M L. High insulative barium zirconate–titanate thin films prepared by rf magnetron sputtering for dynamic random access memory applications. Applied Physics Letters, 1996, 69(18): 2659–2661
https://doi.org/10.1063/1.117550
5 Dixit A, Majumder  S B, Katiyar  R S, et al.. Relaxor behavior in sol–gel derived BaZr0.40Ti0.60O3. Applied Physics Letters, 2003, 82(16): 2679–2681
https://doi.org/10.1063/1.1568166
6 Swartz S L. Topics in electronic ceramics. IEEE Transactions on Electrical Insulation, 1990, 25(5): 935–987
https://doi.org/10.1109/14.59868
7 Cavalcante L S ,  Sczancoski J C ,  De Vicente F S , et al.. Microstructure, dielectric properties and optical band gap control on the photoluminescence behavior of Ba[Zr0.25Ti0.75]O3 thin films. Journal of Sol-Gel Science and Technology, 2009, 49(1): 35–46
https://doi.org/10.1007/s10971-008-1841-x
8 Brankovic G, Brankovic  Z, Goes M S , et al.. Barium strontium titanate powders prepared by spray pyrolysis. Materials Science and Engineering B, 2005, 122(2): 140–144
https://doi.org/10.1016/j.mseb.2005.05.016
9 Caruntu G, Rarig  R Jr, Dumitru I , et al.. Annealing effects on the crystallite size and dielectric properties of ultra fine Ba1−xSrxTiO3 (0<x<1) powders synthesized through an oxalate-complex precursor. Journal of Materials Chemistry, 2006, 16(8): 752–758
https://doi.org/10.1039/B506578J
10 Nedelcu L, Ioachim  A, Toacsan M , et al.. Synthesis and dielectric characterization of Ba0.6Sr0.4TiO3 ferroelectric ceramics. Thin Solid Films, 2011, 519(17): 5811–5815
https://doi.org/10.1016/j.tsf.2010.12.191
11 Chan N Y, Choy  S H, Wang  D Y, et al.. High dielectric tunability of ferroelectric (Ba1−x,Srx)(Zr0.1,Ti0.9)O3 ceramics. Journal of Materials Science Materials in Electronics, 2014, 25(6): 2589–2594
https://doi.org/10.1007/s10854-014-1915-1
12 Kumar M, Garg  A, Kumar R , et al.. Structural, dielectric and ferroelectric study of Ba0.9Sr0.1ZrxTi1−xO3 ceramics prepared by the sol–gel method. Physica B: Condensed Matter, 2008, 403(10–11): 1819–1823
https://doi.org/10.1016/j.physb.2007.10.144
13 Bhaskar Reddy S ,  Prasad Rao K ,  Ramachandra Rao M S . Structural and dielectric characterization of Sr substituted Ba(Zr,Ti)O3 based functional materials. Applied Physics A: Materials Science & Processing, 2007, 89(4): 1011–1015
https://doi.org/10.1007/s00339-007-4208-1
14 Bhaskar Reddy S ,  Prasad Rao K ,  Ramachandra Rao M S . Effect of La substitution on the structural and dielectric properties of BaZr0.1Ti0.9O3 ceramics. Journal of Alloys and Compounds, 2009, 481(1–2): 692–696
https://doi.org/10.1016/j.jallcom.2009.03.075
15 Jain A, Saroha  R, Pastor M , et al.. Effect of sintering duration on structural and electrical properties of Ba0.9Sr0.1Ti0.96Zr0.04O3 solid solution. Current Applied Physics, 2016, 16(8): 859–866
https://doi.org/10.1016/j.cap.2016.04.022
16 Wang X, Huang  R, Zhao Y , et al.. Dielectric and tunable properties of Zr doped BST ceramics prepared by spark plasma sintering. Journal of Alloys and Compounds, 2012, 533(1): 25–28
17 Tawade C M, Madolappa  S, Sharanappa N , et al.. Microstructural and electrical study of (Ba0.6Sr0.4)(Zr1−xTix)O3 ceramics. IJRET, 2013, 2(8): 184–187
https://doi.org/10.15623/ijret.2013.0208031
18 Deng X Y, Wang  X H, Li  D J, et al.. Electronic structure of nanograin barium titanate ceramics. Frontiers of Materials Science, 2007, 1(3): 316–318
https://doi.org/10.1007/s11706-007-0058-1
19 Saravanan R. Practical application of maximum entropy method in electron density and bonding studies. Physica Scripta, 2009, 79(4): 048303 (8 pages) 
https://doi.org/10.1088/0031-8949/79/04/048303
20 Rietveld H M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 1969, 2(2): 65–71
https://doi.org/10.1107/S0021889869006558
21 Collins D M. Electron density images from imperfect data by iterative entropy maximization. Nature, 1982, 298(5869): 49–51
https://doi.org/10.1038/298049a0
22 Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, 1976, 32(5): 751–767
https://doi.org/10.1107/S0567739476001551
23 Petricek V, Dusek  M, Palatinus L . The crystallographic computing system JANA 2006: General features. Zeitschrift fur Kristallographie, 2014, 229(5): 345–352
24 Wyckoff R W G . Crystal Structures, Vol. 2. London: Inter-space Publishers, 1963
25 Thongtha A, Angsukased  K, Riyamongkol N , et al.. Preparation of (Ba1−xSrx)(ZrxTi1−x)O3 ceramics via the solid state reaction method. Ferroelectrics, 2010, 403(1): 68–75 
https://doi.org/10.1080/00150191003748907
26 Saravanan R. GRAIN software (personal communication)
27 Izumi F, Dilanien  R A. Recent Research Developments in Physics, Part II , Vol. 3. Trivandrum, India: Transworld Research Network, 2002
28 MommaK, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis.Journal of Applied Crystallography, 2008, 41(3): 653–658 
https://doi.org/10.1107/S0021889808012016
29 Tauc J, Grigorovici  R, Vancu Y . Optical properties and electronic structure of amorphous germanium. Physica Status Solidi B, 1966, 15(2): 627–637
https://doi.org/10.1002/pssb.19660150224
[1] Bing TENG,Weijin KONG,Ke FENG,Fei YOU,Lifeng CAO,Degao ZHONG,Lun HAO,Qing SUN,Sander van SMAALEN,Wenhui GONG. Synthesis, crystal structure and thermal analysis of a new stilbazolium salt crystal[J]. Front. Mater. Sci., 2015, 9(2): 147-150.
[2] Rong-Chang ZENG,Ke JIANG,Shuo-Qi LI,Fen ZHANG,Hong-Zhi CUI,En-Hou HAN. Mechanical and corrosion properties of Al/Ti film on magnesium alloy AZ31B[J]. Front. Mater. Sci., 2015, 9(1): 66-76.
[3] Leyun WANG, Meimei LI, Jonathan ALMER, Thomas BIELER, Rozaliya BARABASH. Microstructural characterization of polycrystalline materials by synchrotron X-rays[J]. Front Mater Sci, 2013, 7(2): 156-169.
[4] M. K. R. KHAN, M. ITO, M. ISHIDA. Epitaxial growth of SrRuO3 thin films by RF sputtering and study of surface morphology[J]. Front Mater Sci Chin, 2010, 4(4): 387-393.
[5] Qiang WEI, Zhen-Duo CUI, Xian-Jin YANG, Lian-Yun ZHANG, Jia-Yin DENG, . Design and characterization of bioceramic coating materials for Ti6Al4V[J]. Front. Mater. Sci., 2010, 4(2): 171-174.
[6] YANG Lin, NIE Jun, WU Wei, JIA Pei-zeng, XU Bao-hua. Study of UV-curable composite resin of transfer tray for orthodontics[J]. Front. Mater. Sci., 2008, 2(4): 430-436.
[7] ZHOU Jicheng, YAN Qinyun, JIANG Qinming, YANG Dan, HUANG Yun. Research on Au-Al bonding properties based on a thermal shock environment[J]. Front. Mater. Sci., 2007, 1(3): 280-283.
[8] WANG Juan, LI Yajiang, XIA Chunzhi. Stress analysis of a Fe3Al/Q235 diffusion bonded joint using finite element analysis[J]. Front. Mater. Sci., 2007, 1(2): 215-219.
[9] WANG Xuegang, YAN Fengjie, YAN Qian, LI Xingeng. Amorphous diffusion bonding of steel pipe and its impact toughness[J]. Front. Mater. Sci., 2007, 1(2): 225-227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed