Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (1) : 83-94    https://doi.org/10.1007/s11706-018-0407-2
RESEARCH ARTICLE
Development of new ionic gelation strategy: Towards the preparation of new monodisperse and stable hyaluronic acid/β-cyclodextrin-grafted chitosan nanoparticles as drug delivery carriers for doxorubicin
Amina Ben MIHOUB1,2, Boubakeur SAIDAT2, Youssef BAL3,4, Céline FROCHOT5, Régis VANDERESSE1, Samir ACHERAR1()
1. Laboratoire de Chimie Physique Macromoléculaire (LCPM), Université de Lorraine-CNRS, UMR 7375, 1 Rue Grandville, BP 20451, 54001, Nancy Cedex, France
2. Laboratory of Physical Chemistry of Materials (LPCM), Faculty of Sciences, (UATL) BP 37G Laghouat 03000, Algeria
3. Laboratory of Biomaterials & Transport Phenomena (LBTP), Quartier Ain D’Heb, 26000, Medea, Algeria
4. Department of Chemistry, Faculty of Sciences, University Saéd Dahleb of Blida (USDB), route de Soumaé, 09000, Blida, Algeria
5. Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine-CNRS, UMR 7274, 1 Rue Grandville, BP 20451, 54001, Nancy Cedex, France
 Download: PDF(547 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the present study, β-cyclodextrin-grafted chitosan nanoparticles (β-CD-g-CS NPs) were prepared using a new ionic gelation strategy involving a synergistic effect of NaCl (150 mmol/L), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, 10 mmol/L), and water bath sonication. This new strategy afforded smaller and more monodisperse β-CD-g-CS NPs vs. the classical ionic gelation method. New HA/β-CD-g-CS NPs were also prepared using the above-mentioned strategy by adding hyaluronic acid (HA) to the β-CD-g-CS copolymer at different weight ratios until the ZP values conversion. The best result was obtained with the weight ratio of w(HA):w(β-CD-g-CS) = 2:1 and furnished new spherical and smooth HA/β-CD-g-CS NPs. Furthermore, the stability of β-CD-g-CS NPs and HA/β-CD-g-CS NPs at 4°C in physiological medium (pH 7.4) was compared for 3 weeks period and showed that HA/β-CD-g-CS NPs were more stable all maintaining their monodispersity and high negative ZP values compared to β-CD-g-CS NPs. Finally, preliminary study of HA/β-CD-g-CS NPs as carrier for the controlled release of the anticancer drug doxorubicin was investigated. These new HA/β-CD-g-CS NPs can potentially be used as drug delivery and targeting systems for cancer treatment.

Keywords β-cyclodextrin-grafted chitosan      hyaluronic acid      ionic gelation      drug delivery      physicochemical parameters control     
Corresponding Author(s): Samir ACHERAR   
Online First Date: 11 January 2018    Issue Date: 08 March 2018
 Cite this article:   
Amina Ben MIHOUB,Boubakeur SAIDAT,Youssef BAL, et al. Development of new ionic gelation strategy: Towards the preparation of new monodisperse and stable hyaluronic acid/β-cyclodextrin-grafted chitosan nanoparticles as drug delivery carriers for doxorubicin[J]. Front. Mater. Sci., 2018, 12(1): 83-94.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0407-2
https://academic.hep.com.cn/foms/EN/Y2018/V12/I1/83
Fig.1  Syntheses of (a) intermediate Ts-β-CD and (b)β-CD-g-CS copolymer.
Fig.2  FTIR spectra of β-CD, Ts-β-CD, CS and β-CD-g-CS copolymer.
Product Refs. Wavenumber/cm−1 Functional group
β-CD [28,30] 2922 and 1413 C−H stretching and O−H bending
1019, 1100 and 1150 C−O−C symmetric stretching
3277 O−H stretching
940 α-1,4 linkage skeletal vibration
Ts-β-CD [28,31] 1599 C=C stretching of benzene
1153 S=O stretching
941 α-1,4 linkage skeletal vibration
CS [28,30?31] 3200?3600 O−H and NH2 stretching
2921 and 2869 C−H stretching
1644 C=O and C−O stretch amide group
1156?1024 C−O−C and C−O stretching
1585 NH2 deformation
893 β-pyranyl vibration
Tab.1  IR absorption bands attribution for β-CD, Ts-β-CD and CS
Fig.3  1H NMR spectra of (a)β-CD in DMSO-d6, (b) Ts-β-CD in DMSO-d6, and (c)β-CD-g-CS in D2O.
Fig.4  XRD patterns of CS and β-CD-g-CS copolymer.
Trial pH c(β-CD-g-CS)/(mg·mL−1) n(β-CD-g-CS)/n(STPP) Particle size/nm PZ/mV PDI
A1 3 1 5/1 nd a) nd a) nd a)
A2 3.5 1 4/1 218.7 +37.6 0.24
A3 3.5 1 5/1 202.1 +40.9 0.22
A4 4 0.5 5/1 nd a) nd a) nd a)
A5 4 1 5/1 239.7 +36.2 0.25
A8 5 1 5/1 225.7 +32.1 0.17
A9 5 1 4/1 245.7 +29.0 0.33
A10 5 1.5 4/1 nd b) nd b) nd b)
A11 5 1.5 6/1 352.8 +25.1 0.24
Tab.2  Physicochemical properties of β-CD-g-CS NPs
Fig.5  Schematic representation of the formation process of HA/β-CD-g-CS NPs.
Trial Particle size/nm ZP/mV PDI
A3 a) 202.11 +40.9 0.220
B1 b) 191.20 +41.7 0.193
B2 c) 187.17 +31.3 0.175
B3 b)c) 175.96 +31.5 0.070
Tab.3  Effect of 150 mmol/L NaCl+10 mmol/L HEPES mixture and ultrasonication on the size distribution, PDI and ZP control of β-CD-g-CS NPs
Fig.6  (a) Particle size distribution and (b) ZP histograms of B3 in Table 3.
Trial w(HA):w(β-CD-g-CS) Particle size/nm ZP/mV PDI Appearance
B3 a) 0:1 175.96 +31.5 0.070 medium opacity
C1 1:2 182.23 +25.8 0.210 medium opacity
C2 1:1 205.01 +17.8 0.352 high opacity
C3 2:1 193.20 −31.0 0.122 medium opacity
C4 3:1 nd nd nd low opacity
Tab.4  Characteristics of HA/β-CD-g-CS NPs with different w(HA):w(β-CD-g-CS) weight ratios
Fig.7  (a) Particle size distribution and (b) ZP histograms of C3 in Table 4.
NPs Storage period/week Particle size/nm ZP/mV PDI
β-CD-g-CS 0 175.96 +31.5 0.07
1 181.32 +30.4 0.252
2 210.21 +28.7 0.341
3 217.11 +25.1 0.401
HA/β-CD-g-CS 0 193.20 −31.7 0.122
1 200.23 −31.5 0.149
2 212.71 −30.2 0.205
3 220.17 −29.8 0.227
Tab.5  HA effect on β-CD-g-CS and HA/β-CD-g-CS NPs stability at 4°C in physiological media (pH 7.4)
Fig.8  (a) TEM and (b) SEM images of HA/β-CD-g-CS NPs.
NPs Size/nm ZP/mV PDI EE/%
Dox-HA/β-CD-g-CS 220.1 −28.2 0.183 47.6
Tab.6  Physicochemical properties of Dox-HA/β-CD-g-CS NPs
Fig.9  In vitro cumulative release of Dox from HA/β-CD-g-CS NPs at 37°C in acetate buffer solution (pH 4.6).
1 Dey A, Koli  U, Dandekar P, et al.. Investigating behaviour of polymers in nanoparticles of chitosan oligosaccharides coated with hyaluronic acid. Polymer, 2016, 93: 44–52
https://doi.org/10.1016/j.polymer.2016.04.027
2 Al-Qadi S, Grenha  A, Remuñán-López  C. Chitosan and its derivatives as nanocarriers for siRNA delivery. Journal of Drug Delivery Science and Technology, 2012, 22(1): 29–42
https://doi.org/10.1016/S1773-2247(12)50003-1
3 Al-Qadi S, Alatorre-Meda  M, Zaghloul E M, et al.. Chitosan–hyaluronic acid nanoparticles for gene silencing: The role of hyaluronic acid on the nanoparticles’ formation and activity. Colloids and Surfaces B: Biointerfaces, 2013, 103: 615–623
https://doi.org/10.1016/j.colsurfb.2012.11.009 pmid: 23274155
4 Amidi M, Mastrobattista  E, Jiskoot W, et al.. Chitosan-based delivery systems for protein therapeutics and antigens. Advanced Drug Delivery Reviews, 2010, 62(1): 59–82
https://doi.org/10.1016/j.addr.2009.11.009 pmid: 19925837
5 Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chemical Reviews, 1998, 98(5): 1743–1754
https://doi.org/10.1021/cr970022c pmid: 11848947
6 Duchêne D, Bochot  A. Thirty years with cyclodextrins. International Journal of Pharmaceutics, 2016, 514(1): 58–72
https://doi.org/10.1016/j.ijpharm.2016.07.030 pmid: 27863683
7 Otero-Espinar F J,  Torres-Labandeira J J,  Alvarez-Lorenzo J C, et al.. Cyclodextrins in drug delivery systems. Journal of Drug Delivery Science and Technology, 2010, 20(4): 289–301
https://doi.org/10.1016/S1773-2247(10)50046-7
8 Zhang J, Ma  P X. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Advanced Drug Delivery Reviews, 2013, 65(9): 1215–1233
https://doi.org/10.1016/j.addr.2013.05.001 pmid: 23673149
9 Prabaharan M, Mano  J F. Chitosan derivatives bearing cyclodextrin cavities as novel adsorbent matrices. Carbohydrate Polymers, 2006, 63(2): 153–166
https://doi.org/10.1016/j.carbpol.2005.08.051
10 Zhang X G, Wu  Z M, Gao  X J, et al.. Chitosan bearing pendant cyclodextrin as a carrier for controlled protein release. Carbohydrate Polymers, 2009, 77(2): 394–401
https://doi.org/10.1016/j.carbpol.2009.01.018
11 Lu L, Shao  X, Jiao Y, et al.. Synthesis of chitosan-graft-β-cyclodextrin for improving the loading and release of doxorubicin in the nanoparticles. Journal of Applied Polymer Science, 2014, 131(21): 41034
https://doi.org/10.1002/app.41034
12 Yuan Z, Ye  Y, Gao F, et al.. Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release. International Journal of Pharmaceutics, 2013, 446(1–2): 191–198
https://doi.org/10.1016/j.ijpharm.2013.02.024 pmid: 23422276
13 Zhang H, Oh  M, Allen C, et al.. Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules, 2004, 5(6): 2461–2468
https://doi.org/10.1021/bm0496211 pmid: 15530064
14 Fan W, Yan  W, Xu Z, et al.. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids and Surfaces B: Biointerfaces, 2012, 90: 21–27
https://doi.org/10.1016/j.colsurfb.2011.09.042 pmid: 22014934
15 Nasti A, Zaki  N M, de Leonardis  P, et al.. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation. Pharmaceutical Research, 2009, 26(8): 1918–1930
https://doi.org/10.1007/s11095-009-9908-0 pmid: 19507009
16 Jonassen H, Kjoniksen  A L, Hiorth  M. Effects of ionic strength on the size and compactness of chitosan nanoparticles. Colloid & Polymer Science, 2012, 290(10): 919–929
https://doi.org/10.1007/s00396-012-2604-3
17 Sawtarie N, Cai  Y, Lapitsky Y. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity. Colloids and Surfaces B: Biointerfaces, 2017, 157: 110–117
https://doi.org/10.1016/j.colsurfb.2017.05.055 pmid: 28578269
18 Gokce Y, Cengiz  B, Yildiz N, et al.. Ultrasonication of chitosan nanoparticle suspension: influence on particle size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462: 75–81
https://doi.org/10.1016/j.colsurfa.2014.08.028
19 Kedjarune-Leggat U,  Supaprutsakul C,  Chotigeat W. Ultrasound treatment increases transfection efficiency of low molecular weight chitosan in fibroblasts but not in KB cells. PLoS One, 2014, 9(3): e92076
https://doi.org/10.1371/journal.pone.0092076 pmid: 24651870
20 So M H, Ho  C M, Chen  R, et al.. Hydrothermal synthesis of platinum-group-metal nanoparticles by using HEPES as a reductant and stabilizer. Chemistry – An Asian Journal, 2010, 5(6): 1322–1331
pmid: 20512785
21 Stern R, Kogan  G, Jedrzejas M J, et al.. The many ways to cleave hyaluronan. Biotechnology Advances, 2007, 25(6): 537–557
https://doi.org/10.1016/j.biotechadv.2007.07.001 pmid: 17716848
22 Sivadas N, O’Rourke  D, Tobin A, et al.. A comparative study of a range of polymeric microspheres as potential carriers for the inhalation of proteins. International Journal of Pharmaceutics, 2008, 358(1–2): 159–167
https://doi.org/10.1016/j.ijpharm.2008.03.024 pmid: 18448288
23 Kalam M A. Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone. International Journal of Biological Macromolecules, 2016, 89: 127–136
https://doi.org/10.1016/j.ijbiomac.2016.04.070 pmid: 27126165
24 Li L, Qian  Y, Jiang C, et al.. The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds. Biomaterials, 2012, 33(12): 3428–3445
https://doi.org/10.1016/j.biomaterials.2012.01.038 pmid: 22300743
25 Lokeshwar V B,  Mirza S,  Jordan A. Targeting hyaluronic acid family for cancer chemoprevention and therapy. Advances in Cancer Research, 2014, 123: 35–65
https://doi.org/10.1016/B978-0-12-800092-2.00002-2 pmid: 25081525
26 Mok H, Park  J W, Park  T G. Antisense oligodeoxynucleotide-conjugated hyaluronic acid/protamine nanocomplexes for intracellular gene inhibition. Bioconjugate Chemistry, 2007, 18(5): 1483–1489
https://doi.org/10.1021/bc070111o pmid: 17602578
27 Melton L D, Slessor  K N. Synthesis of monosubstituted cyclohexaamyloses. Carbohydrate Research, 1971, 18(1): 29–37
https://doi.org/10.1016/S0008-6215(00)80256-6
28 Gonil P, Sajomsang  W, Ruktanonchai U R, et al.. Novel quaternized chitosan containing β-cyclodextrin moiety: Synthesis, characterization and antimicrobial activity. Carbohydrate Polymers, 2011, 83(2): 905–913
https://doi.org/10.1016/j.carbpol.2010.08.080
29 Kievit F M, Wang  F Y, Fang  C, et al.. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. Journal of Controlled Release, 2011, 152(1): 76–83
https://doi.org/10.1016/j.jconrel.2011.01.024 pmid: 21277920
30 Ji J, Hao  S, Liu W, et al.. Preparation, characterization of hydrophilic and hydrophobic drug in combine loaded chitosan/cyclodextrin nanoparticles and in vitro release study. Colloids and Surfaces B: Biointerfaces, 2011, 83(1): 103–107
https://doi.org/10.1016/j.colsurfb.2010.11.005 pmid: 21112190
31 Yuan Z, Ye  Y, Gao F, et al.. Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release. International Journal of Pharmaceutics, 2013, 446(1–2): 191–198
https://doi.org/10.1016/j.ijpharm.2013.02.024 pmid: 23422276
32 Prabaharan M, Gong  S. Novel thiolated carboxymethyl chitosan-g-β-cyclodextrin as mucoadhesive hydrophobic drug delivery carriers. Carbohydrate Polymers, 2008, 73(1): 117–125
https://doi.org/10.1016/j.carbpol.2007.11.005
33 Ito T, Iida-Tanaka  N, Niidome T, et al.. Hyaluronic acid and its derivative as a multi-functional gene expression enhancer: protection from non-specific interactions, adhesion to targeted cells, and transcriptional activation. Journal of Controlled Release, 2006, 112(3): 382–388
https://doi.org/10.1016/j.jconrel.2006.03.013 pmid: 16647780
34 Deng X, Cao  M, Zhang J, et al.. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials, 2014, 35(14): 4333–4344
https://doi.org/10.1016/j.biomaterials.2014.02.006 pmid: 24565525
35 Singh R, Lillard  J W Jr. Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 2009, 86(3): 215–223
https://doi.org/10.1016/j.yexmp.2008.12.004 pmid: 19186176
[1] Yimin ZHOU, Qingni XU, Chaohua LI, Yuqi CHEN, Yueli ZHANG, Bo LU. Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review[J]. Front. Mater. Sci., 2020, 14(4): 373-386.
[2] Lulu WEI, Beibei LU, Lin CUI, Xueying PENG, Jianning WU, Deqiang LI, Zhiyong LIU, Xuhong GUO. Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin[J]. Front. Mater. Sci., 2017, 11(4): 328-343.
[3] Lei LIU,Peng LIU. Synthesis strategies for disulfide bond-containing polymer-based drug delivery system for reduction-responsive controlled release[J]. Front. Mater. Sci., 2015, 9(3): 211-226.
[4] Jing LI,Fang-Kui MA,Qi-Feng DANG,Xing-Guo LIANG,Xi-Guang CHEN. Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells[J]. Front. Mater. Sci., 2014, 8(4): 363-372.
[5] Min-Dan WANG, Peng ZHAI, David J. SCHREYER, Ruo-Shi ZHENG, Xiao-Dan SUN, Fu-Zhai CUI, Xiong-Biao CHEN. Novel crosslinked alginate/hyaluronic acid hydrogels for nerve tissue engineering[J]. Front Mater Sci, 2013, 7(3): 269-284.
[6] Swamiappan SASIKUMAR. Effect of particle size of calcium phosphate based bioceramic drug delivery carrier on the release kinetics of ciprofloxacin hydrochloride: an invitro study[J]. Front Mater Sci, 2013, 7(3): 261-268.
[7] Hai WANG, Yu-Liang ZHAO, Guang-Jun NIE. Multifunctional nanoparticle systems for combined chemo- and photothermal cancer therapy[J]. Front Mater Sci, 2013, 7(2): 118-128.
[8] Zhen-Hua CHEN, Xiu-Li REN, Hui-Hui ZHOU, Xu-Dong LI. The role of hyaluronic acid in biomineralization[J]. Front Mater Sci, 2012, 6(4): 283-296.
[9] Yue-teng WEI, Fu-zhai CUI, Wei-ming TIAN, . Fabrication and characterization of hyaluronic-acid-based antigen sensitive degradable hydrogel[J]. Front. Mater. Sci., 2009, 3(4): 353-358.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed