Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (1) : 45-52    https://doi.org/10.1007/s11706-018-0410-7
RESEARCH ARTICLE
Hierarchical nano-on-micro copper with enhanced catalytic activity towards electro-oxidation of hydrazine
Xiaodong YAN1, Yuan LIU2, Kyle R. SCHEEL1, Yong LI1, Yunhua YU3, Xiaoping YANG3(), Zhonghua PENG1()
1. Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110, USA
2. State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
3. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
 Download: PDF(407 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The electrochemical properties of catalyst materials are highly dependent on the materials structure and architecture. Herein, nano-on-micro Cu electrodes are fabricated by growing Cu microcrystals on Ni foam substrate, followed by introducing Cu nanocrystals onto the surface of the Cu microcrystals. The introduction of Cu nanocrystals onto the surface of Cu microcrystals is shown to dramatically increase the electrochemically active surface area and thus significantly enhances the catalytic activity of the catalyst electrode towards electro-oxidation of hydrazine. The onset potential (−1.04 V vs. Ag/AgCl) of the nano-on-micro Cu electrode is lower than those of the reported Cu-based catalysts under similar testing conditions, and a current density of 16 mA·cm2, which is 2 times that of the microsized Cu electrode, is achieved at a potential of −0.95 V vs. Ag/AgCl. Moreover, the nano-on-micro Cu electrode demonstrates good long-term stability.

Keywords electrocatalysis      hydrazine oxidation      copper      nanocrystal      hierarchical architecture     
Corresponding Author(s): Xiaoping YANG,Zhonghua PENG   
Online First Date: 12 January 2018    Issue Date: 07 March 2018
 Cite this article:   
Xiaodong YAN,Yuan LIU,Kyle R. SCHEEL, et al. Hierarchical nano-on-micro copper with enhanced catalytic activity towards electro-oxidation of hydrazine[J]. Front. Mater. Sci., 2018, 12(1): 45-52.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0410-7
https://academic.hep.com.cn/foms/EN/Y2018/V12/I1/45
Fig.1  Schematic illustration of the preparation process of the nano-on-micro Cu electrode.
Fig.2  SEM images of (a) the microsized Cu electrode and (b) the Cu2O/Cu/Ni. (c) HRTEM image of the Cu2O nanowires from the Cu2O/Cu/Ni. (d) XRD patterns of the microsized Cu electrode (i) and the Cu2O/Cu/Ni (ii). (e)(f) SEM and (g) TEM images and (h) XRD pattern of the nano-on-micro Cu electrode. The inset in (g) is the corresponding HRTEM image. ♦, *, and ◊ indicate the XRD signals from Cu2O (JCPDS 05-0667), Cu (JCPDS 04-0836), and Ni (JCPDS 04-0850), respectively.
Fig.3  XPS spectra of the Cu2O/Cu/Ni (a) and the nano-on-micro Cu electrode (b).
Fig.4  (a) Polarization curves of the microsized Cu electrode and the nano-on-micro Cu electrode. (b) Stability test of the nano-on-micro Cu electrode.
Sample Electrolyte v/(mV·s−1) c(N2H4)/(mol·L−1) Uonset/V a) Ref.
Cu film/Cu plate 3.0 mol/L NaOH 50 1.0 −0.82 [24]
Cu nanowires on Cu foil 3.0 mol/L NaOH 25 1.0 −0.82 [27]
Cu film on Cu Foil 3.0 mol/L NaOH 5 1.0 −0.76 [28]
Nanostructured Cu 9.0 mol/L KOH 20 2.1 −0.96 [35]
Nano-on-micro Cu 1.0 mol/L KOH 10 0.5 −1.04 this work
Nano-on-micro Cu 3.0 mol/L KOH 10 0.5 −1.07 this work
Tab.1  Comparison of onset potentials for various materials in electro-oxidation of hydrazine
Fig.5  Charging current density difference ?j (jajc) plotted against the scan rate.
  Fig. S1 Voltammograms of (a) the nano-on-micro Cu electrode and (b) the microsized Cu electrode collected at varied scan rates of 10, 20, 40, 60 and 80 mV?s−1 in 1.0 mol/L KOH.
  Fig. S2 SEM image of bare Ni foam.
  Fig. S3 Electrochemical reduction of the Cu2O/Cu/Ni series to achieve the hierarchical nano-on-micro Cu electrode: ten voltammograms collected continuously.
  Fig. S4 Polarization curves of various samples. For comparison, hydrothermal treatments were performed on microsized Cu electrode with only either urea (HT-Cu without Cu(NO3)2) or Cu(NO3)2 (HT-Cu without urea) in the reaction solutions.
  Fig. S5 SEM image of the nano-on-micro Cu electrode after the stability test.
1 Wachsman E D, Lee  K T. Lowering the temperature of solid oxide fuel cells. Science, 2011, 334(6058): 935–939
https://doi.org/10.1126/science.1204090 pmid: 22096189
2 Proietti E, Jaouen  F, Lefèvre M, et al.. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nature Communications, 2011, 2: 416
https://doi.org/10.1038/ncomms1427 pmid: 21811245
3 Serov A, Kwak  C. Direct hydrazine fuel cells: A review. Applied Catalysis B: Environmental, 2010, 98(1‒2): 1–9
https://doi.org/10.1016/j.apcatb.2010.05.005
4 Wang H, Ma  Y, Wang R, et al.. Liquid-liquid interface-mediated room-temperature synthesis of amorphous NiCo pompoms from ultrathin nanosheets with high catalytic activity for hydrazine oxidation. Chemical Communications, 2015, 51(17): 3570–3573
https://doi.org/10.1039/C4CC09928A pmid: 25634299
5 Zhao X, Yin  M, Ma L, et al.. Recent advances in catalysts for direct methanol fuel cells. Energy & Environmental Science, 2011, 4(8): 2736–2753
https://doi.org/10.1039/c1ee01307f
6 Sakamoto T, Deevanhxay  P, Asazawa K, et al.. In-situ visualization of N2 evolution in operating direct hydrazine hydrate fuel cell by soft X-ray radiography. Journal of Power Sources, 2014, 252: 35–42
https://doi.org/10.1016/j.jpowsour.2013.11.108
7 Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486(7401): 43–51
https://doi.org/10.1038/nature11115 pmid: 22678278
8 Winter M, Brodd  R J. What are batteries, fuel cells, and supercapacitors? Chemical Reviews, 2004, 104(10): 4245–4270
https://doi.org/10.1021/cr020730k pmid: 15669155
9 Evans G E, Kordesch  K V. Hydrazine-air fuel cells. Hydrazine-air fuel cells emerge from the laboratory. Science, 1967, 158(3805): 1148–1152
https://doi.org/10.1126/science.158.3805.1148 pmid: 6057287
10 Rees N V, Compton  R G. Carbon-free energy: a review of ammonia- and hydrazine-based electrochemical fuel cells. Energy & Environmental Science, 2011, 4(4): 1255–1260
https://doi.org/10.1039/c0ee00809e
11 Petek M, Bruckenstein  S. An isotopic labeling investigation of the mechanism of the electrooxidation of hydrazine at platinum: An electrochemical mass spectrometric study. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1973, 47(2): 329–333
https://doi.org/10.1016/S0022-0728(73)80458-9
12 Rosca V, Koper  M T. Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions. Electrochimica Acta, 2008, 53(16): 5199–5205
https://doi.org/10.1016/j.electacta.2008.02.054
13 Fleischmann M, Korinek  K, Pletcher D. The oxidation of hydrazine at a nickel anode in alkaline solution. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1972, 34(2): 499–503
https://doi.org/10.1016/S0022-0728(72)80425-X
14 Fukumoto Y, Matsunaga  T, Hayashi T. Electrocatalytic activities of metal electrodes in anodic oxidation of hydrazine in alkaline solution. Electrochimica Acta, 1981, 26(5): 631–636
https://doi.org/10.1016/0013-4686(81)80031-X
15 Sakamoto T, Asazawa  K, Sanabria-Chinchilla J, et al.. Combinatorial discovery of Ni-based binary and ternary catalysts for hydrazine electrooxidation for use in anion exchange membrane fuel cells. Journal of Power Sources, 2014, 247: 605–611
https://doi.org/10.1016/j.jpowsour.2013.08.107
16 Sanabria-Chinchilla J,  Asazawa K,  Sakamoto T, et al.. Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways. Journal of the American Chemical Society, 2011, 133(14): 5425–5431
https://doi.org/10.1021/ja111160r pmid: 21425793
17 Jeon T Y, Watanabe  M, Miyatake K. Carbon segregation-induced highly metallic Ni nanoparticles for electrocatalytic oxidation of hydrazine in alkaline media. ACS Applied Materials & Interfaces, 2014, 6(21): 18445–18449
https://doi.org/10.1021/am5058635 pmid: 25356922
18 Feng G, Kuang  Y, Li Y, et al.. Three-dimensional porous superaerophobic nickel nanoflower electrodes for high-performance hydrazine oxidation. Nano Research, 2015, 8(10): 3365–3371
https://doi.org/10.1007/s12274-015-0836-5
19 Yan X, Liu  Y, Lan J, et al.. Crystalline–amorphous Co@CoO core–shell heterostructures for efficient electro-oxidation of hydrazine. Materials Chemistry Frontiers, 2018, 2: 96–101
https://doi.org/10.1039/C7QM00401J
20 Liu R, Jiang  X, Guo F, et al.. Carbon fiber cloth supported micro- and nano-structured Co as the electrode for hydrazine oxidation in alkaline media. Electrochimica Acta, 2013, 94: 214–218
https://doi.org/10.1016/j.electacta.2013.02.011
21 Yang C C, Kumar  A S, Kuo  M C, et al.. Copper‒palladium alloy nanoparticle plated electrodes for the electrocatalytic determination of hydrazine. Analytica Chimica Acta, 2005, 554(1‒2): 66–73
https://doi.org/10.1016/j.aca.2005.08.027
22 Karim-Nezhad G, Jafarloo  R, Dorraji P S. Copper (hydr)oxide modified copper electrode for electrocatalytic oxidation of hydrazine in alkaline media. Electrochimica Acta, 2009, 54(24): 5721–5726
https://doi.org/10.1016/j.electacta.2009.05.019
23 Gao H, Wang  Y, Xiao F, et al.. Growth of copper nanocubes on graphene paper as free-standing electrodes for direct hydrazine fuel cells. The Journal of Physical Chemistry C, 2012, 116(14): 7719–7725
https://doi.org/10.1021/jp3021276
24 Jia F, Zhao  J, Yu X. Nanoporous Cu film/Cu plate with superior catalytic performance toward electro-oxidation of hydrazine. Journal of Power Sources, 2013, 222: 135–139
https://doi.org/10.1016/j.jpowsour.2012.08.076
25 Liu C, Zhang  H, Tang Y, et al.. Controllable growth of graphene/Cu composite and its nanoarchitecture-dependent electrocatalytic activity to hydrazine oxidation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(13): 4580–4587
https://doi.org/10.1039/C3TA14137C
26 Filanovsky B, Granot  E, Presman I, et al.. Long-term room-temperature hydrazine/air fuel cells based on low-cost nanotextured Cu–Ni catalysts. Journal of Power Sources, 2014, 246: 423–429
https://doi.org/10.1016/j.jpowsour.2013.07.084
27 Huang J, Zhao  S, Chen W, et al.. Three-dimensionally grown thorn-like Cu nanowire arrays by fully electrochemical nanoengineering for highly enhanced hydrazine oxidation. Nanoscale, 2016, 8(11): 5810–5814
https://doi.org/10.1039/C5NR06512G pmid: 26580842
28 Lu Z, Sun  M, Xu T, et al.. Superaerophobic electrodes for direct hydrazine fuel cells. Advanced Materials, 2015, 27(14): 2361–2366
https://doi.org/10.1002/adma.201500064 pmid: 25726935
29 Ma Y, Li  H, Wang R, et al.. Ultrathin willow-like CuO nanoflakes as an efficient catalyst for electro-oxidation of hydrazine. Journal of Power Sources, 2015, 289: 22–25
https://doi.org/10.1016/j.jpowsour.2015.04.151
30 Bidault F, Brett  D, Middleton P, et al.. A new application for nickel foam in alkaline fuel cells. International Journal of Hydrogen Energy, 2009, 34(16): 6799–6808
https://doi.org/10.1016/j.ijhydene.2009.06.035
31 Yu Y, Zhang  L, Wang J, et al.. Preparation of hollow porous Cu2O microspheres and photocatalytic activity under visible light irradiation. Nanoscale Research Letters, 2012, 7(1): 347
https://doi.org/10.1186/1556-276X-7-347 pmid: 22738162
32 Elzey S, Baltrusaitis  J, Bian S, et al.. Formation of paratacamite nanomaterials via the conversion of aged and oxidized copper nanoparticles in hydrochloric acidic media. Journal of Materials Chemistry, 2011, 21(9): 3162–3169
https://doi.org/10.1039/c0jm03705b
33 Lee Y I, Choa  Y H. Adhesion enhancement of ink-jet printed conductive copper patterns on a flexible substrate. Journal of Materials Chemistry, 2012, 22(25): 12517–12522
https://doi.org/10.1039/c2jm31381b
34 Deroubaix G, Marcus  P. X-ray photoelectron spectroscopy analysis of copper and zinc oxides and sulphides. Surface and Interface Analysis, 1992, 18(1): 39–46
https://doi.org/10.1002/sia.740180107
35 Granot E, Filanovsky  B, Presman I, et al.. Hydrazine/air direct-liquid fuel cell based on nanostructured copper anodes. Journal of Power Sources, 2012, 204: 116–121
https://doi.org/10.1016/j.jpowsour.2011.12.008
36 Yan X, Tian  L, Chen X. Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction. Journal of Power Sources, 2015, 300: 336–343
https://doi.org/10.1016/j.jpowsour.2015.09.089
37 Song F, Hu  X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nature Communications, 2014, 5: 4477
https://doi.org/10.1038/ncomms5477 pmid: 25030209
38 Yan X, Tian  L, Murowchick J, et al.. Partially amorphized MnMoO4 for highly efficient energy storage and the hydrogen evolution reaction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(10): 3683–3688
https://doi.org/10.1039/C6TA00744A
[1] Yue ZHANG, Yihong YU, Xiankai FU, Zhisen LIU, Yinglei LIU, Song LI. Light-switchable catalytic activity of Cu for oxygen reduction reaction[J]. Front. Mater. Sci., 2020, 14(4): 481-487.
[2] Abdollah SABOORI, Matteo PAVESE, Claudio BADINI, Paolo FINO. Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization[J]. Front. Mater. Sci., 2017, 11(2): 171-181.
[3] Michael Tanner CAMERON,Jordan A. ROGERSON,Douglas A. BLOM,Albert D. DUKES III. Quantification of the morphological transition in cadmium selenide nanocrystals as a function of reaction temperature[J]. Front. Mater. Sci., 2016, 10(1): 8-14.
[4] Yong-Qin CHANG, Qiang GUO, Jing ZHANG, Lin CHEN, Yi LONG, Fa-Rong WAN. Irradiation effects on nanocrystalline materials[J]. Front Mater Sci, 2013, 7(2): 143-155.
[5] Wen-Guang GUO, Zhi-Ye QIU, Han CUI, Chang-Ming WANG, Xiao-Jun ZHANG, In-Seop LEE, Yu-Qi DONG, Fu-Zhai CUI. Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics[J]. Front Mater Sci, 2013, 7(2): 190-195.
[6] Jun-tao LI, Wei-dong MIAO, Yu-ling HU, Yan-jun ZHENG, Li-shan CUI. Amorphization and crystallization characteristics of TiNi shape memory alloys by severe plastic deformation[J]. Front Mater Sci Chin, 2009, 3(3): 325-328.
[7] QIAO Li-jie. Effect of hydrogen on stress corrosion cracking of copper[J]. Front. Mater. Sci., 2008, 2(1): 60-65.
[8] ALIOFKHAZRAEI Mahmood, ROUHAGHDAM Alireza SABOUR, ROOHZENDEH Mohsen. Study of bipolar pulsed plasma electrolytic carbonitriding on nanostructure of compound layer for a gamma Ti-Al alloy[J]. Front. Mater. Sci., 2008, 2(1): 48-54.
[9] DENG Xiangyun, LI Dejun, WANG Xiaohui, LI Longtu. Investigation of ferroelectric properties on nanocrystalline barium titanate ceramics[J]. Front. Mater. Sci., 2007, 1(3): 319-321.
[10] DENG Xiangyun, LI Dejun, WANG Xiaohui, LI Longtu. Electronic structure of nanograin barium titanate ceramics[J]. Front. Mater. Sci., 2007, 1(3): 316-318.
[11] LIU Yong, SHEN Hui, DENG Youjun. Study on the improved structure of dye-sensitized solar cells for enhancing light absorption[J]. Front. Mater. Sci., 2007, 1(3): 293-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed