Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2017, Vol. 12 Issue (1) : 129802    https://doi.org/10.1007/s11467-016-0611-4
RESEARCH ARTICLE
The zero active mass condition in Friedmann–Robertson–Walker cosmologies
Fulvio Melia()
Department of Physics, The Applied Math Program, and Department of Astronomy, The University of Arizona, AZ 85721, USA
 Download: PDF(129 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Many cosmological measurements today suggest that the Universe is expanding at a constant rate. This is inferred from the observed age versus redshift relationship and various distance indicators, all of which point to a cosmic equation of state (EoS) p = −ρ/3, where ρ and p are, respectively, the total energy density and pressure of the cosmic fluid. It has recently been shown that this result is not a coincidence and simply confirms the fact that the symmetries in the Friedmann–Robertson–Walker (FRW) metric appear to be viable only for a medium with zero active mass, i.e., ρ+ 3p = 0. In their latest paper, however, Kim, Lasenby and Hobson (2016) have provided what they believe to be a counter argument to this conclusion. Here, we show that these authors are merely repeating the conventional mistake of incorrectly placing the observer simultaneously in a comoving frame, where the lapse function gtt is coordinate dependent when ρ+ 3p≠0, and a supposedly different, freefalling frame, in which gtt = 1, implying no time dilation. We demonstrate that the Hubble flow is not inertial when ρ+ 3p≠0, so the comoving frame is generally not in free fall, even though in FRW, the comoving and free-falling frames are supposed to be identical at every spacetime point. So this confusion of frames not only constitutes an inconsistency with the fundamental tenets of general relativity but, additionally, there is no possibility of using a gauge transformation to select a set of coordinates for which gtt = 1 when ρ+ 3p≠0.

Keywords cosmology      gravitation      spacetime metric     
Corresponding Author(s): Fulvio Meliay   
Issue Date: 17 October 2016
 Cite this article:   
Fulvio Melia. The zero active mass condition in Friedmann–Robertson–Walker cosmologies[J]. Front. Phys. , 2017, 12(1): 129802.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0611-4
https://academic.hep.com.cn/fop/EN/Y2017/V12/I1/129802
1 C. L. Bennett, R. S. Hill, G. Hinshaw, M. R. Nolta, N. Odegard, L. Page, D. N. Spergel, J. L. Weiland, E. L. Wright, M. Halpern, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. Wollack, First-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Foreground Emission,Astrophys. J. Suppl. 148(1), 97 (2003)
https://doi.org/10.1086/377252
2 D. N. Spergel, L. Verde, H. V. Peiris, E. Komatsu, M. R. Nolta, C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, First-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Determination of cosmological parameters,Astrophys. J. Suppl. 148(1), 175 (2003)
https://doi.org/10.1086/377226
3 P. A. R. Ade, (Planck Collaboration), Planck 2013 results. XXIII. Isotropy and statistics of the CMB,A&A 571, A23 (2014)
4 F. Melia, The Edge of Infinity: Supermassive Black Holes in the Universe, Cambridge: Cambridge University Press, 1972, p. 119
5 F. Melia, The cosmic horizon, Mon. Not. R. Astron. Soc. 382(4), 1917 (2007)
https://doi.org/10.1111/j.1365-2966.2007.12499.x
6 F. Melia and M. Abdelqader, The cosmological spacetime, Int. J. Mod. Phys. D 18(12), 1889 (2009)
https://doi.org/10.1142/S0218271809015746
7 F. Melia and A. S. H. Shevchuk, The Rh= ct universe, Mon. Not. R. Astron. Soc. 419(3), 2579 (2012)
https://doi.org/10.1111/j.1365-2966.2011.19906.x
8 F. Melia, Physical basis for the symmetries in the Friedmann–Robertson–Walker metric, Front. Phys. 11(4), 119801 (2016)
https://doi.org/10.1007/s11467-016-0557-6
9 D. Y. Kim, A. N. Lasenby, and M. P. Hobson, Friedmann–Robertson–Walker models do not require zero active mass, Mon. Not. R. Astron. Soc. 460(1), L119 (2016), arXiv: 1601.07890
10 S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, New York: Wiley, 1972
11 A. Harvey, The principle of equivalence, Ann. Phys. 29(3), 383 (1964)
https://doi.org/10.1016/0003-4916(64)90005-3
12 M. Carrera and D. Giulini, Influence of global cosmological expansion on local dynamics and kinematics, Rev. Mod. Phys. 82, 169 (2010), arXiv: 0810.2712v2
https://doi.org/10.1103/RevModPhys.82.169
13 H. Liu, Nonlinear resonance for quasilinear hyperbolic equation, J. Math. Phys. 28(11), 1920 (1987)
https://doi.org/10.1063/1.527751
14 H. Liu, Nonlinear resonance for quasilinear hyperbolic equation, J. Math. Phys. 28(11), 1924 (1987)
https://doi.org/10.1063/1.527751
15 S. M. Kopeikin, Local gravitational physics of the Hubble expansion, Eur. Phys. J. Plus 130(1), 11 (2015)
https://doi.org/10.1140/epjp/i2015-15011-y
16 D. Y. Kim, A. N. Lasenby, and M. P. Hobson, Spherically-symmetric solutions in general relativity, Phys. Rev. D (2016) (submitted), arXiv: 1604.06365
17 B. O. J. Tupper, Tetrad field equations and a generalized Friedmann equation, Astrophys. Space Sci. 28(1), 225 (1974)
https://doi.org/10.1007/BF00642252
18 P. van Oirschot, J. Kwan, and G. F. Lewis, Through the looking glass: Why the “Cosmic Horizon” is not a horizon, Mon. Not. R. Astron. Soc. 404, 1633 (2010), arXiv: 1001.4795
https://doi.org/10.1111/j.1365-2966.2010.16398.x
19 G. F. Lewis and P. van Oirschot, How does the Hubble sphere limit our view of the Universe? Mon. Not. R. Astron. Soc. 423(1), L26 (2012)
https://doi.org/10.1111/j.1745-3933.2012.01249.x
20 O. Bikwa, F. Melia, and A. S. H. Shevchuk, Photon geodesics in Friedmann–Robertson–Walker cosmologies, Mon. Not. R. Astron. Soc. 421(4), 3356 (2012)
https://doi.org/10.1111/j.1365-2966.2012.20560.x
21 F. Melia, The cosmic horizon for a universe with Phantom energy, J. Cosmol. Astropart. Phys. 09, 029 (2012)
22 F. Melia, Proper size of the visible Universe in FRW metrics with a constant space-time curvature, Class. Quantum Gravity 30(15), 155007 (2013)
https://doi.org/10.1088/0264-9381/30/15/155007
[1] Xiang-Ru Li, Wo-Liang Yu, Xi-Long Fan, G. Jogesh Babu. Some optimizations on detecting gravitational wave using convolutional neural network[J]. Front. Phys. , 2020, 15(5): 54501-.
[2] He Gao, Shun-Ke Ai, Zhou-Jian Cao, Bing Zhang, Zhen-Yu Zhu, Ang Li, Nai-Bo Zhang, Andreas Bauswein. Relation between gravitational mass and baryonic mass for non-rotating and rapidly rotating neutron stars[J]. Front. Phys. , 2020, 15(2): 24603-.
[3] Bai-Jiong Lin, Xiang-Ru Li, Wo-Liang Yu. Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks[J]. Front. Phys. , 2020, 15(2): 24602-.
[4] Hua-Mei Luo, Wenbin Lin, Zu-Cheng Chen, Qing-Guo Huang. Extraction of gravitational wave signals with optimized convolutional neural network[J]. Front. Phys. , 2020, 15(1): 14601-.
[5] Bing Zhang. The delay time of gravitational wave – gamma-ray burst associations[J]. Front. Phys. , 2019, 14(6): 64402-.
[6] Deng Pan, Hong-Xing Xu. Gravitational field around black hole induces photonic spin–orbit interaction that twists light[J]. Front. Phys. , 2017, 12(5): 128102-.
[7] Fulvio Melia. Physical basis for the symmetries in the Friedmann–Robertson–Walker metric[J]. Front. Phys. , 2016, 11(4): 119801-.
[8] Hongwei Xiong. Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium[J]. Front. Phys. , 2015, 10(4): 100401-.
[9] Ram Gopal Vishwakarma. Mysteries of Rik = 0: A novel paradigm in Einstein’s theory of gravitation[J]. Front. Phys. , 2014, 9(1): 98-112.
[10] Gabriela González, Andrea Viceré, Linqing Wen. Gravitational wave astronomy[J]. Front. Phys. , 2013, 8(6): 771-793.
[11] Li-Xin Li. Photon diffusion in a relativistically expanding sphere[J]. Front. Phys. , 2013, 8(5): 555-563.
[12] Fa-Bo Feng. Radio jets and galaxies as cosmic string probes[J]. Front. Phys. , 2012, 7(4): 461-470.
[13] Zhao-ying WANG (王兆英), Tao CHEN (陈涛), Xiao-long WANG (王肖隆), Zhang ZHANG (张璋), Yun-fei XU (徐云飞), Qiang LIN (林强). A precision analysis and determination of the technical requirements of an atom interferometer for gravity measurement[J]. Front Phys Chin, 2009, 4(2): 174-178.
[14] Vitaly N. MELNIKOV. Models of G time variations in diverse dimensions[J]. Front Phys Chin, 2009, 4(1): 75-93.
[15] HU Zhong-kun, LIU Qi, LUO Jun. Determination of the gravitational constant G[J]. Front. Phys. , 2006, 1(4): 449-457.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed