Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 13304    https://doi.org/10.1007/s11467-022-1198-6
RESEARCH ARTICLE
Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals
Meng Xu1,2, Lei Guo2(), Lei Chen3, Ying Zhang4, Shuang-Shuang Li4, Weiyao Zhao5(), Xiaolin Wang6, Shuai Dong2, Ren-Kui Zheng4()
1. College of Science, Hohai University, Nanjing 210098, China
2. School of Physics, Southeast University, Nanjing 211189, China
3. School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
4. School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University, Nanchang 330031, China
5. Department of Materials Science & Engineering, Monash University, Clayton 3800 VIC, Australia
6. Institute for Superconducting and Electronic Materials, & ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Innovation Campus, University of Wollongong, North Wollongong NSW 2500, Australia
 Download: PDF(7309 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Weak antilocalization (WAL) effect is commonly observed in low-dimensional systems, three-dimensional (3D) topological insulators and semimetals. Here, we report the growth of high-quality Ta0.7Nb0.3Sb2 single crystals via the chemical vapor transport (CVT). Clear sign of the WAL effect is observed below 50 K, probably due to the strong spin−orbital coupling in 3D bulk. In addition, it is worth noting that a relatively large MR of 120% appears under 1 T magnetic field at T = 2 K. Hall measurements and two-band model fitting results reveal high carrier mobility (>1000 cm2·V−1·s−1 in 2–300 K region), and off-compensation electron/hole ratio of ~8:1. Due to the angular dependence of the WAL effect and the fermiology of the Ta0.7Nb0.3Sb2 crystals, interesting magnetic-field-induced changes of the symmetry of the anisotropic magnetoresistance (MR) from two-fold (≤ 0.6 T) to four-fold (0.8–1.5 T) and finally to two-fold (≥ 2 T) are observed. This phenomenon is attributed to the mechanism shift from the low-field WAL dominated MR to WAL and fermiology co-dominated MR and finally to high-field fermiology dominated MR. All these signs indicate that Ta0.7Nb0.3Sb2 may be a topological semimetal candidate, and these magnetotransport properties may attract more theoretical and experimental exploration of the (Ta,Nb)Sb2 family.

Keywords topological semimetal      magnetoresistance      weak antilocalization effect      spin−orbital coupling     
Corresponding Author(s): Lei Guo,Weiyao Zhao,Ren-Kui Zheng   
Issue Date: 30 November 2022
 Cite this article:   
Meng Xu,Lei Guo,Lei Chen, et al. Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals[J]. Front. Phys. , 2023, 18(1): 13304.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1198-6
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/13304
Fig.1  (a) XRD pattern of the Ta0.7Nb0.3Sb2 single crystal. Inset: An optical image of the crystal. (b) XRD rocking curve taken on the ( 4¯02) diffraction peak. (c−g) The element spectrum and element mapping patterns of the Ta0.7Nb0.3Sb2 single crystal. (h) HRTEM image. (i) SAED pattern.
Fig.2  (a) Zero-field resistivity (cyan points) and fitting results (red curve) of the Ta0.7Nb0.3Sb2 single crystal. Inset: schematic geometry of the directions of the magnetic field and the electric current. (b) Temperature dependence of the resistivity under different magnetic fields, as measured using the schematic geometry shown in the inset of (a). The grey shadow areas show the resistance plateau region and the pink dash arrow indicates the resistance minimum temperature (Tm). (c) ∂ρxx/∂T plotted as a function of temperature, taking B = 3 T as an example. Insert: Tm plotted as a function of the magnetic field B.
Fig.3  (a) Hall resistivity as a function of the magnetic field at different fixed temperatures for the Ta0.7Nb0.3Sb2 single crystal. (b) Double-band model fitting of the Hall resistivity versus magnetic field curves. (c) Temperature dependence of the carrier’s density and mobility, obtained via the double-band fitting.
Fig.4  (a) MR plotted as a function of the magnetic field B at different fixed temperatures for the Ta0.7Nb0.3Sb2 single crystal. (b) A zoom-in MR measurements below 50 K ranging from −3 T to 3 T. (c) MR plotted as a function of the magnetic field at various angles θ at T = 2 K. Insets: Schematic diagrams of the directions of the magnetic field, electric current and crystallographic orientation during different types of MR measurements.
Fig.5  (a) Magnetoconductance ΔG~ as a function of the magnetic field. The solid lines are the fitting results using HLN model. (b) Temperature dependence of the parameter α and the phase coherence length lϕ, extracted from the HLN model. The solid blue line is the fitting curve using equation (5). (c) Angular dependence of the magnetoconductance as a function Bsinθ, as measured at T = 2 K.
Fig.6  Angular dependent MR at T = 2 K and various magnetic fields for the Ta0.7Nb0.3Sb2 single crystal.
1 Z. Hasan M., L. Kane C.. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
2 He M., Sun H., L. He Q.. Topological insulator: Spintronics and quantum computations. Front. Phys., 2019, 14(4): 43401
https://doi.org/10.1007/s11467-019-0893-4
3 Yan B., Felser C.. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys., 2017, 8(1): 337
https://doi.org/10.1146/annurev-conmatphys-031016-025458
4 Keimer B., E. Moore J.. The physics of quantum materials. Nat. Phys., 2017, 13(11): 1045
https://doi.org/10.1038/nphys4302
5 Tokura Y., Yasuda K., Tsukazaki A.. Magnetic topological insulators. Nat. Rev. Phys., 2019, 1(2): 126
https://doi.org/10.1038/s42254-018-0011-5
6 P. Sun H., Z. Lu H.. Quantum transport in topological semimetals under magnetic fields (II). Front. Phys., 2019, 14(3): 33405
https://doi.org/10.1007/s11467-019-0890-7
7 Guo L., K. Liu Y., Y. Gao G., Y. Huang Y., Gao H., Chen L., Zhao W., Ren W., Y. Li S., G. Li X., Dong S., K. Zheng R.. Extreme magnetoresistance and SdH oscillation in compensated semimetals of NbSb2 single crystals. J. Appl. Phys., 2018, 123(15): 155103
https://doi.org/10.1063/1.5021637
8 Zhou Y., Gu C., Chen X., Zhou Y., An C., Yang Z.. Structural and transport properties of the topological semimetal TaSb2 at high pressures. J. Solid State Chem., 2018, 265: 359
https://doi.org/10.1016/j.jssc.2018.06.027
9 Wang K., Graf D., Li L., Wang L., Petrovic C.. Anisotropic giant magnetoresistance in NbSb2. Sci. Rep., 2015, 4(1): 7328
https://doi.org/10.1038/srep07328
10 Li Y., Li L., Wang J., Wang T., Xu X., Xi C., Cao C., Dai J.. Resistivity plateau and negative magnetoresistance in the topological semimetal TaSb2. Phys. Rev. B, 2016, 94(12): 121115(R)
https://doi.org/10.1103/PhysRevB.94.121115
11 Pariari A., Singha R., Roy S., Satpati B., Mandal P.. Anisotropic transverse magnetoresistance and Fermi surface in TaSb2. Sci. Rep., 2018, 8(1): 10527
https://doi.org/10.1038/s41598-018-28922-9
12 Guo L., Xu M., Chen L., Huang X., Y. Shi X., S. Ying J., Zhang T., Zhao W., Dong S., K. Zheng R.. Electronic transport properties of Nb1–xTaxSb2 single-crystal semimetals grown by a chemical vapor transport based high-throughput method. Cryst. Growth Des., 2021, 21(1): 653
https://doi.org/10.1021/acs.cgd.0c01457
13 Gresch D., Wu Q., W. Winkler G., A. Soluyanov A.. Hidden Weyl points in centrosymmetric paramagnetic metals. New J. Phys., 2017, 19(3): 035001
https://doi.org/10.1088/1367-2630/aa5de7
14 Xu C., Chen J., X. Zhi G., Li Y., Dai J., Cao C., Electronic structures of transition metal dipnictides XPn2(X = Ta, Nb Pn = Sb). Phys. Rev. B, 2016, 93(19): 195106
https://doi.org/10.1103/PhysRevB.93.195106
15 Belopolski I., S. Sanchez D., Ishida Y., C. Pan X., Yu P., Y. Xu S., Q. Chang G., R. Chang T., Zheng H., Alidoust N., Bian G., Neupane M., M. Huang S., C. Lee C., Song Y., Bu H., Wang G., Li S., Eda G., T. Jeng H., Kondo T., Lin H., Liu Z., Song F., Shin S., Z. Hasan M.. Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2. Nat. Commun., 2016, 7(1): 13643
https://doi.org/10.1038/ncomms13643
16 R. Chang T., Y. Xu S., Chang G., C. Lee C., M. Huang S., K. Wang B., Bian G., Zheng H., S. Sanchez D., Belopolski I., Alidoust N., Neupane M., Bansil A., T. Jeng H., Lin H., Z. Hasan M.. Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2. Nat. Commun., 2016, 7(1): 10639
https://doi.org/10.1038/ncomms10639
17 Wang Y., Liu E., Liu H., Pan Y., Zhang L., Zeng J., Fu Y., Wang M., Xu K., Huang Z., Wang Z., Z. Lu H., Xing D., Wang B., Wan X., Miao F.. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. Nat. Commun., 2016, 7(1): 13142
https://doi.org/10.1038/ncomms13142
18 Liu H., Liu S., Yi Y., He H., Wang J.. Shubnikov–de Haas oscillations in n and p type Bi2Se3 flakes. 2D Mater., 2015, 2(4): 045002
https://doi.org/10.1088/2053-1583/2/4/045002
19 Xing Y., Sun Y., Singh M., F. Zhao Y., H. W. Chan M., Wang J.. Electronic transport properties of topological insulator films and low dimensional superconductors. Front. Phys., 2013, 8(5): 491
https://doi.org/10.1007/s11467-013-0380-2
20 Laitinen A., Kumar M., J. Hakonen P.. Weak antilocalization of composite fermions in graphene. Phys. Rev. B, 2018, 97(7): 075113
https://doi.org/10.1103/PhysRevB.97.075113
21 Jenderka M., Barzola-Quiquia J., Zhang Z., Frenzel H., Grundmann M., Lorenz M.. Mott variable-range hopping and weak antilocalization effect in heteroepitaxial Na2IrO3 thin films. Phys. Rev. B, 2013, 88(4): 045111
https://doi.org/10.1103/PhysRevB.88.045111
22 Xu M., W. Chen T., M. Yan J., Guo L., Wang H., Y. Gao G., S. Luo H., Chai Y., K. Zheng R.. Tunable magnetoresistance and charge carrier density in Cr: In2O3/PbMg1/3Nb2/3O3−PbTiO3 ferroelectric field-effect devices. Phys. Rev. Appl., 2020, 13(6): 064006
https://doi.org/10.1103/PhysRevApplied.13.064006
23 Gan Y., Liang J., Cho C., Li S., Guo Y., Ma X., Wu X., Wen J., Du X., He M., Liu C., A. Yang S., Wang K., Zhang L.. Bandgap opening in MoTe2 thin flakes induced by surface oxidation. Front. Phys., 2020, 15(3): 33602
https://doi.org/10.1007/s11467-020-0952-x
24 Shrestha K., Chou M., Graf D., D. Yang H., Lorenz B., W. Chu C.. Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator. Phys. Rev. B, 2017, 95(19): 195113
https://doi.org/10.1103/PhysRevB.95.195113
25 Chiatti O., Riha C., Lawrenz D., Busch M., Dusari S., Sanchez-Barriga J., Mogilatenko A., V. Yashina L., Valencia S., A. Unal A., Rader O., F. Fischer S.. 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes. Sci. Rep., 2016, 6(1): 27483
https://doi.org/10.1038/srep27483
26 Shekhar C., E. ViolBarbosa C., Yan B., Ouardi S., Schnelle W., H. Fecher G., Felser C.. Evidence of surface transport and weak antilocalization in a single crystal of the Bi2Te2Se topological insulator. Phys. Rev. B, 2014, 90(16): 165140
https://doi.org/10.1103/PhysRevB.90.165140
27 Shrestha K., Graf D., Marinova V., Lorenz B., W. Chu C.. Weak antilocalization effect due to topological surface states in Bi2Se2.1Te0.9. J. Appl. Phys., 2017, 122(14): 145901
https://doi.org/10.1063/1.4997947
28 Zhao W., Chen L., Yue Z., Li Z., Cortie D., Fuhrer M., Wang X.. Quantum oscillations of robust topological surface states up to 50 K in thick bulk-insulating topological insulator. npj Quantum Mater., 2019, 4(1): 56
https://doi.org/10.1038/s41535-019-0195-7
29 Xu G., Wang W., Zhang X., Du Y., Liu E., Wang S., Wu G., Liu Z., X. Zhang X.. Weak antilocalization effect and noncentrosymmetric superconductivity in a topologically nontrivial semimetal LuPdBi. Sci. Rep., 2015, 4(1): 5709
https://doi.org/10.1038/srep05709
30 Pavlosiuk O., Kaczorowski D., Wisniewski P.. Shubnikov−de Haas oscillations, weak antilocalization effect and large linear magnetoresistance in the putative topological superconductor LuPdBi. Sci. Rep., 2015, 5(1): 9158
https://doi.org/10.1038/srep09158
31 Hou Z., Wang Y., Liu E., Zhang H., Wang W., Wu G.. Large low-field positive magnetoresistance in nonmagnetic half-Heusler ScPtBi single crystal. Appl. Phys. Lett., 2015, 107(20): 202103
https://doi.org/10.1063/1.4936179
32 Laha A., Malick S., Singha R., Mandal P., Rambabu P., Kanchana V., Hossain Z.. Magnetotransport properties of the correlated topological nodal-line semimetal YbCdGe. Phys. Rev. B, 2019, 99(24): 241102(R)
https://doi.org/10.1103/PhysRevB.99.241102
33 Laha A., Rambabu P., Kanchana V., Petit L., Szotek Z., Hossain Z.. Experimental and theoretical study of the correlated compound YbCdSn: Evidence for large magnetoresistance and mass enhancement. Phys. Rev. B, 2020, 102(23): 235135
https://doi.org/10.1103/PhysRevB.102.235135
34 Sasmal S., Mondal R., Kulkarni R., Thamizhavel A., Singh B.. Magnetotransport properties of noncentrosymmetric CaAgBi single crystal. J. Phys.: Condens. Matter, 2020, 32(33): 335701
https://doi.org/10.1088/1361-648X/ab8520
35 Zhang J., Hou Z., Zhang C., Chen J., Li P., Wen Y., Zhang Q., Wang W., Zhang X.. Weak antilocalization effect and high-pressure transport properties of ScPdBi single crystal. Appl. Phys. Lett., 2019, 115(17): 172407
https://doi.org/10.1063/1.5123349
36 Deng L., H. Liu Z., Q. Ma X., P. Hou Z., K. Liu E., K. Xi X., H. Wang W., H. Wu G., X. Zhang X.. Observation of weak antilocalization effect in high-quality ScNiBi single crystal. J. Appl. Phys., 2017, 121(10): 105106
https://doi.org/10.1063/1.4978015
37 Chen J., Li H., Ding B., Hou Z., Liu E., Xi X., Zhang H., Wu G., Wang W.. Structural and magnetotransport properties of topological trivial LuNiBi single crystals. J. Alloys Compd., 2019, 784: 822
https://doi.org/10.1016/j.jallcom.2019.01.128
38 Hou Z., Wang Y., Xu G., Zhang X., Liu E., Wang W., Liu Z., Xi X., Wang W., Wu G.. Transition from semiconducting to metallic-like conducting and weak antilocalization effect in single crystals of LuPtSb. Appl. Phys. Lett., 2015, 106(10): 102102
https://doi.org/10.1063/1.4914545
39 Hikami S., I. Larkin A., Nagaoka Y.. Spin−orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys., 1980, 63(2): 707
https://doi.org/10.1143/PTP.63.707
40 A. Assaf B., Cardinal T., Wei P., Katmis F., S. Moodera J., Heiman D.. Linear magnetoresistance in topological insulator thin films: Quantum phase coherence effects at high temperatures. Appl. Phys. Lett., 2013, 102(1): 012102
https://doi.org/10.1063/1.4773207
41 Rehr A., M. Kauzlarich S.. NbSb2. Acta Crystallogr. C, 1994, 50(8): 1177
https://doi.org/10.1107/S0108270193010996
42 Singha R., K. Pariari A., Satpati B., Mandal P.. Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS. Proc. Natl. Acad. Sci. USA, 2017, 114(10): 2468
https://doi.org/10.1073/pnas.1618004114
43 Sun S., Wang Q., J. Guo P., Liu K., Lei H.. Large magnetoresistance in LaBi: Origin of field-induced resistivity upturn and plateau in compensated semimetals. New J. Phys., 2016, 18(8): 082002
https://doi.org/10.1088/1367-2630/18/8/082002
44 F. Tafti F., D. Gibson Q., K. Kushwaha S., Haldolaarachchige N., J. Cava R.. Resistivity plateau and extreme magnetoresistance in LaSb. Nat. Phys., 2016, 12(3): 272
https://doi.org/10.1038/nphys3581
45 Guo L., W. Chen T., Chen C., Chen L., Zhang Y., Y. Gao G., Yang J., G. Li X., Y. Zhao W., Dong S., K. Zheng R.. Electronic transport evidence for topological nodal-line semimetals of ZrGeSe single crystals. ACS Appl. Electron. Mater., 2019, 1(6): 869
https://doi.org/10.1021/acsaelm.9b00061
46 M. Ziman J., Electrons and Phonons: The Theory of Transport Phenomena in Solids, Oxford University Press, 1960
47 L. Wang Y., R. Thoutam L., L. Xiao Z., Hu J., Das S., Q. Mao Z., Wei J., Divan R., Luican-Mayer A., W. Crabtree G., K. Kwok W.. Origin of the turn-on temperature behavior in WTe2. Phys. Rev. B, 2015, 92(18): 180402(R)
48 Kopelevich Y., C. M. Pantoja J., R. da Silva R., Moehlecke S.. Universal magnetic-field-driven metal−insulator−metal transformations in graphite and bismuth. Phys. Rev. B, 2006, 73(16): 165128
https://doi.org/10.1103/PhysRevB.73.165128
49 M. Hurd C., The Hall Effect in Metals and Alloys, Plenum, New York, 1972
50 T. He H., Wang G., Zhang T., K. Sou I., K. L. Wong G., N. Wang J., Z. Lu H., Q. Shen S., C. Zhang F.. Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys. Rev. Lett., 2011, 106(16): 166805
https://doi.org/10.1103/PhysRevLett.106.166805
51 Yuan Z., Lu H., Liu Y., Wang J., Jia S.. Large magnetoresistance in compensated semimetals TaAs2 and NbAs2. Phys. Rev. B, 2016, 93(18): 184405
https://doi.org/10.1103/PhysRevB.93.184405
52 Collaudin A., Fauqué B., Fuseya Y., Kang W., Behnia K.. Angle dependence of the orbital magnetoresistance in Bismuth. Phys. Rev. X, 2015, 5(2): 021022
https://doi.org/10.1103/PhysRevX.5.021022
53 Luo Y., D. McDonald R., F. S. Rosa P., Scott B., Wakeham N., J. Ghimire N., D. Bauer E., D. Thompson J., Ronning F.. Anomalous electronic structure and magnetoresistance in TaAs2. Sci. Rep., 2016, 6(1): 27294
https://doi.org/10.1038/srep27294
[1] Lei Shi, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (III)[J]. Front. Phys. , 2023, 18(2): 21307-.
[2] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
[3] Jun-Ran Zhang, Bo Liu, Ming Gao, Yong-Bing Xu, Rong Zhang. Evidence of anisotropic Landau level splitting in topological semimetal ZrSiS under high magnetic fields[J]. Front. Phys. , 2019, 14(6): 63602-.
[4] Hai-Peng Sun, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (II)[J]. Front. Phys. , 2019, 14(3): 33405-.
[5] Yang Gao. Semiclassical dynamics and nonlinear charge current[J]. Front. Phys. , 2019, 14(3): 33404-.
[6] Ali Ebrahimian, Mehrdad Mehrdad Dadsetaniz. Alkali-metal-induced topological nodal line semimetalin layered XN2 (X= Cr, Mo, W)[J]. Front. Phys. , 2018, 13(5): 137309-.
[7] Jianing Zhuang,Yin Wang,Yan Zhou,Jian Wang,Hong Guo. Impurity-limited quantum transport variability in magnetic tunnel junctions[J]. Front. Phys. , 2017, 12(4): 127304-.
[8] Hai-Zhou Lu,Shun-Qing Shen. Quantum transport in topological semimetals under magnetic fields[J]. Front. Phys. , 2017, 12(3): 127201-.
[9] Rui Yu,Zhong Fang,Xi Dai,Hongming Weng. Topological nodal line semimetals predicted from first-principles calculations[J]. Front. Phys. , 2017, 12(3): 127202-.
[10] Yupeng Li,Zhen Wang,Pengshan Li,Xiaojun Yang,Zhixuan Shen,Feng Sheng,Xiaodong Li,Yunhao Lu,Yi Zheng,Zhu-An Xu. Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects[J]. Front. Phys. , 2017, 12(3): 127205-.
[11] Xing-Chen Pan,Yiming Pan,Juan Jiang,Huakun Zuo,Huimei Liu,Xuliang Chen,Zhongxia Wei,Shuai Zhang,Zhihe Wang,Xiangang Wan,Zhaorong Yang,Donglai Feng,Zhengcai Xia,Liang Li,Fengqi Song,Baigeng Wang,Yuheng Zhang,Guanghou Wang. Carrier balance and linear magnetoresistance in type-II Weyl semimetal WTe2[J]. Front. Phys. , 2017, 12(3): 127203-.
[12] Xiao Yan,Cheng Zhang,Shan-Shan Liu,Yan-Wen Liu,David Wei Zhang,Fa-Xian Xiu,Peng Zhou. Two-carrier transport in SrMnBi2 thin films[J]. Front. Phys. , 2017, 12(3): 127209-.
[13] Yue-Wei Yin, Muralikrishna Raju, Wei-Jin Hu, Xiao-Jun Weng, Ke Zou, Jun Zhu, Xiao-Guang Li, Zhi-Dong Zhang, Qi Li. Multiferroic tunnel junctions[J]. Front. Phys. , 2012, 7(4): 380-385.
[14] DONG Shuai, ZHU Han, LIU Jun-ming. Colossal resistivity change associated with the charge ordered / disordered transition: Monte Carlo study[J]. Front. Phys. , 2006, 1(3): 362-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed