|
|
Quantum transport in topological semimetals under magnetic fields (III) |
Lei Shi1,2, Hai-Zhou Lu1,2( ) |
1. Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China 2. Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China |
|
|
Abstract We review our most recent research on quantum transport, organizing the review according to the intensity of the magnetic field and focus mostly on topological semimetals and topological insulators. We first describe the phenomenon of quantum transport when a magnetic field is not present. We introduce the nonlinear Hall effect and its theoretical descriptions. Then, we discuss Coulomb instabilities in 3D higher-order topological insulators. Next, we pay close attention to the surface states and find a function to identify the axion insulator in the antiferromagnetic topological insulator MnBi2Te4. Under weak magnetic fields, we focus on the decaying Majorana oscillations which has the correlation with spin−orbit coupling. In the section on strong magnetic fields, we study the helical edge states and the one-sided hinge states of the Fermi-arc mechanism, which are relevant to the quantum Hall effect. Under extremely large magnetic fields, we derive a theoretical explanation of the negative magnetoresistance without a chiral anomaly. Then, we show how magnetic responses can be used to detect relativistic quasiparticles. Additionally, we introduce the 3D quantum Hall effect’s charge-density wave mechanism and compare it with the theory of 3D transitions between metal and insulator driven by magnetic fields.
|
Keywords
topological semimetal
topological insulator
axion insulator
nonlinear Hall effect (NHE)
quantum oscillation
quantum Hall effect (QHE)
charge density wave (CDW)
|
Corresponding Author(s):
Hai-Zhou Lu
|
Issue Date: 10 April 2023
|
|
1 |
Z. Lu H., Q. Shen S.. Quantum transport in topological semimetals under magnetic fields. Front. Phys., 2017, 12(3): 127201
https://doi.org/10.1007/s11467-016-0609-y
|
2 |
P. Sun H., Z. Lu H.. Quantum transport in topological semimetals under magnetic fields (II). Front. Phys., 2019, 14(3): 33405
https://doi.org/10.1007/s11467-019-0890-7
|
3 |
B. Qiang X., Z. Lu H.. Quantum transport in topological matters under magnetic fields. Acta Phys. Sin., 2021, 70(2): 027201
https://doi.org/10.7498/aps.70.20200914
|
4 |
Z. Lu H., Q. Shen S.. Weak antilocalization and localization in disordered and interacting Weyl semimetals. Phys. Rev. B, 2015, 92(3): 035203
https://doi.org/10.1103/PhysRevB.92.035203
|
5 |
Dai X.Z. Lu H.Q. Shen S.Yao H., Detecting monopole charge in Weyl semimetals via quantum interference transport, Phys. Rev. B 93, 161110(R) (2016)
|
6 |
Li H., T. He H., Z. Lu H., C. Zhang H., C. Liu H., Ma R., Y. Fan Z., Q. Shen S., N. Wang J.. Negative magnetoresistance in Dirac semimetal Cd3As2. Nat. Commun., 2016, 7(1): 10301
https://doi.org/10.1038/ncomms10301
|
7 |
Dai X., Z. Du Z., Z. Lu H.. Negative magnetoresistance without chiral anomaly in topological insulators. Phys. Rev. Lett., 2017, 119(16): 166601
https://doi.org/10.1103/PhysRevLett.119.166601
|
8 |
Li C., M. Wang C., Wan B., Wan X., Z. Lu H., C. Xie X.. Rules for phase shifts of quantum oscillations in topological nodal-line semimetals. Phys. Rev. Lett., 2018, 120(14): 146602
https://doi.org/10.1103/PhysRevLett.120.146602
|
9 |
M. Wang C., Z. Lu H., Q. Shen S.. Anomalous phase shift of quantum oscillations in 3D topological semimetals. Phys. Rev. Lett., 2016, 117(7): 077201
https://doi.org/10.1103/PhysRevLett.117.077201
|
10 |
Z. Lu H., B. Zhang S., Q. Shen S.. High-field magnetoconductivity of topological semimetals with short range potential. Phys. Rev. B, 2015, 92(4): 045203
https://doi.org/10.1103/PhysRevB.92.045203
|
11 |
B. Zhang S., Z. Lu H., Q. Shen S.. Linear magnetoconductivity in an intrinsic topological Weyl semimetal. New J. Phys., 2016, 18(5): 053039
https://doi.org/10.1088/1367-2630/18/5/053039
|
12 |
M. Wang C.P. Sun H.Z. Lu H.C. Xie X., 3D quantum Hall effect of Fermi arcs in topological semimetals, Phys. Rev. Lett. 119(13), 136806 (2017)
|
13 |
Chen Y., Z. Lu H., C. Xie X.. Forbidden backscattering and resistance dip in the quantum limit as a sig nature for topological insulators. Phys. Rev. Lett., 2018, 121(3): 036602
https://doi.org/10.1103/PhysRevLett.121.036602
|
14 |
L. Zhang C., Y. Xu S., M. Wang C., Lin Z., Z. Du Z., Guo C., C. Lee C., Lu H., Feng Y., M. Huang S., Chang G., H. Hsu C., Liu H., Lin H., Li L., Zhang C., Zhang J., C. Xie X., Neupert T., Z. Hasan M., Z. Lu H., Wang J., Jia S.. Magnetic tunnelling induced Weyl node annihilation in TaP. Nat. Phys., 2017, 13(10): 979
https://doi.org/10.1038/nphys4183
|
15 |
Du Z., Wang C., P. Sun H., Z. Lu H., Xie X.. Quantum theory of the nonlinear Hall effect. Nat. Commun., 2021, 12(1): 5038
https://doi.org/10.1038/s41467-021-25273-4
|
16 |
Du Z., Z. Lu H., Xie X.. Nonlinear Hall effects. Nat. Rev. Phys., 2021, 3(11): 744
https://doi.org/10.1038/s42254-021-00359-6
|
17 |
Du Z., Wang C., Li S., Z. Lu H., Xie X.. Disorder induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun., 2019, 10(1): 3047
https://doi.org/10.1038/s41467-019-10941-3
|
18 |
Ma Q., Y. Xu S., Shen H., MacNeill D., Fatemi V., R. Chang T., M. Mier Valdivia A., Wu S., Du Z., H. Hsu C., Fang S., D. Gibson Q., Watanabe K., Taniguchi T., J. Cava R., Kaxiras E., Z. Lu H., Lin H., Fu L., Gedik N., Jarillo-Herrero P.. Observation of the nonlinear Hall effect under time-reversal symmetric conditions. Nature, 2019, 565(7739): 337
https://doi.org/10.1038/s41586-018-0807-6
|
19 |
Z. Du Z., M. Wang C., Z. Lu H., C. Xie X.. Band signatures for strong nonlinear Hall effect in Bi layer WTe2. Phys. Rev. Lett., 2018, 121(26): 266601
https://doi.org/10.1103/PhysRevLett.121.266601
|
20 |
L. Zhao P., B. Qiang X., Z. Lu H., C. Xie X.. Coulomb instabilities of a three-dimensional higher-order topological insulator. Phys. Rev. Lett., 2021, 127(17): 176601
https://doi.org/10.1103/PhysRevLett.127.176601
|
21 |
P. Sun H., M. Wang C., B. Zhang S., Chen R., Zhao Y., Liu C., Liu Q., Chen C., Z. Lu H., C. Xie X.. Analytical solution for the surface states of the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B, 2020, 102(24): 241406
https://doi.org/10.1103/PhysRevB.102.241406
|
22 |
Chen R., Li S., P. Sun H., Liu Q., Zhao Y., Z. Lu H., C. Xie X.. Using nonlocal surface trans port to identify the axion insulator. Phys. Rev. B, 2021, 103(24): L241409
https://doi.org/10.1103/PhysRevB.103.L241409
|
23 |
Cao Z., Zhang H., F. Lü H., X. He W., Z. Lu H., C. Xie X.. Decays of Majorana or Andreev oscillations induced by step-like spin−orbit coupling. Phys. Rev. Lett., 2019, 122(14): 147701
https://doi.org/10.1103/PhysRevLett.122.147701
|
24 |
Chen R., Liu T., M. Wang C., Z. Lu H., C. Xie X.. Field tunable one sided higher-order topological hinge states in Dirac semimetals. Phys. Rev. Lett., 2021, 127(6): 066801
https://doi.org/10.1103/PhysRevLett.127.066801
|
25 |
Chen R., M. Wang C., Liu T., Z. Lu H., C. Xie X.. Quantum Hall effect originated from helical edge states in Cd3As2. Phys. Rev. Res., 2021, 3(3): 033227
https://doi.org/10.1103/PhysRevResearch.3.033227
|
26 |
Wan B., Schindler F., Wang K., Wu K., Wan X., Neupert T., Z. Lu H.. Theory for the negative longitudinal magnetoresistance in the quantum limit of Kramers Weyl semimetals. J. Phys.: Condens. Matter, 2018, 30(50): 505501
https://doi.org/10.1088/1361-648X/aaebed
|
27 |
L. Zhang C.. et al.. Nonsaturating quantum magnetization in Weyl semimetal TaAs. Nat. Commun., 2019, 10: 1028
https://doi.org/10.1038/s41467-019-09012-4
|
28 |
Qin F., Li S., Z. Du Z., M. Wang C., Zhang W., Yu D., Z. Lu H., C. Xie X.. Theory for the charge density wave mechanism of 3D quantum Hall effect. Phys. Rev. Lett., 2020, 125(20): 206601
https://doi.org/10.1103/PhysRevLett.125.206601
|
29 |
L. Zhao P., Z. Lu H., C. Xie X.. Theory for magnetic field driven 3D metal−insulator transitions in the quantum limit. Phys. Rev. Lett., 2021, 127(4): 046602
https://doi.org/10.1103/PhysRevLett.127.046602
|
30 |
Q. Shen S., Topological Insulators, 2nd Ed., Springer Verlag, Berlin Heidelberg, 2017
|
31 |
Okugawa R., Murakami S.. Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones. Phys. Rev. B, 2014, 89(23): 235315
https://doi.org/10.1103/PhysRevB.89.235315
|
32 |
Z. Lu H., B. Zhang S., Q. Shen S.. High field mag netoconductivity of topological semimetals with short range potential. Phys. Rev. B, 2015, 92(4): 045203
https://doi.org/10.1103/PhysRevB.92.045203
|
33 |
Zheng H., Zahid Hasan M.. Quasiparticle interference on type I and type II Weyl semimetal surfaces: A review. Adv. Phys. X, 2018, 3(1): 1466661
https://doi.org/10.1080/23746149.2018.1466661
|
34 |
Z. Lu H., Y. Shan W., Yao W., Niu Q., Q. Shen S.. Massive Dirac fermions and spin physics in an ultrathin film of topological insulator. Phys. Rev. B, 2010, 81(11): 115407
https://doi.org/10.1103/PhysRevB.81.115407
|
35 |
M. Wang C., L. Lei X.. Linear magnetoresistance on the topological surface. Phys. Rev. B, 2012, 86(3): 035442
https://doi.org/10.1103/PhysRevB.86.035442
|
36 |
Wang Z., Weng H., Wu Q., Dai X., Fang Z.. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B, 2013, 88(12): 125427
https://doi.org/10.1103/PhysRevB.88.125427
|
37 |
Jeon S., B. Zhou B., Gyenis A., E. Feldman B., Kimchi I., C. Potter A., D. Gibson Q., J. Cava R., Vishwanath A., Yazdani A.. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nat. Mater., 2014, 13(9): 851
https://doi.org/10.1038/nmat4023
|
38 |
L. Zhang C., Schindler F., Liu H., R. Chang T., Y. Xu S., Chang G., Hua W., Jiang H., Yuan Z., Sun J., T. Jeng H., Z. Lu H., Lin H., Z. Hasan M., C. Xie X., Neupert T., Jia S.. Ultraquantum magnetoresistance in the Kramers−Weyl semimetal candidate β-Ag2Se. Phys. Rev. B, 2017, 96(16): 165148
https://doi.org/10.1103/PhysRevB.96.165148
|
39 |
H. Hall E.. et al.. On a new action of the magnet on electric currents. Am. J. Math., 1879, 2(3): 287
https://doi.org/10.2307/2369245
|
40 |
H. Hall E.. Xviii. on the “rotational coefficient” in nickel and cobalt. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1881, 12(74): 157
https://doi.org/10.1080/14786448108627086
|
41 |
Klitzing K., Dorda G., Pepper M.. New method for high accuracy determination of the fine structure constant based on quantized Hall resistance. Phys. Rev. Lett., 1980, 45(6): 494
https://doi.org/10.1103/PhysRevLett.45.494
|
42 |
C. Tsui D., L. Stormer H., C. Gossard A.. Two dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett., 1982, 48(22): 1559
https://doi.org/10.1103/PhysRevLett.48.1559
|
43 |
Nagaosa N., Sinova J., Onoda S., H. MacDonald A., P. Ong N.. Anomalous Hall effect. Rev. Mod. Phys., 2010, 82(2): 1539
https://doi.org/10.1103/RevModPhys.82.1539
|
44 |
E. Cage M.Klitzing K.Chang A.Duncan F.Haldane M. B. Laughlin R.Pruisken A.Thouless D., The Quantum Hall Effect, Springer Science & Business Media, 2012
|
45 |
Sodemann I., Fu L.. Quantum nonlinear Hall effect induced by Berry curvature dipole in time reversal in variant materials. Phys. Rev. Lett., 2015, 115(21): 216806
https://doi.org/10.1103/PhysRevLett.115.216806
|
46 |
Low T., Jiang Y., Guinea F.. Topological currents in black phosphorus with broken inversion symmetry. Phys. Rev. B, 2015, 92(23): 235447
https://doi.org/10.1103/PhysRevB.92.235447
|
47 |
I. Facio J., Efremov D., Koepernik K., S. You J., Sodemann I., van den Brink J.. Strongly enhanced berry dipole at topological phase transitions in BiTeI. Phys. Rev. Lett., 2018, 121(24): 246403
https://doi.org/10.1103/PhysRevLett.121.246403
|
48 |
S. You J., Fang S., Y. Xu S., Kaxiras E., Low T.. Berry curvature dipole current in the transition metal dichalcogenides family. Phys. Rev. B, 2018, 98(12): 121109
https://doi.org/10.1103/PhysRevB.98.121109
|
49 |
Zhang Y., van den Brink J., Felser C., Yan B.. Electrically tuneable nonlinear anomalous Hall effect in two-dimensional transition metal dichalcogenides WTe2 and MoTe2. 2D Mater., 2018, 5: 044001
https://doi.org/10.1088/2053-1583/aad1ae/meta
|
50 |
Zhang Y., Sun Y., Yan B.. Berry curvature dipole in Weyl semimetal materials: An ab initio study. Phys. Rev. B, 2018, 97(4): 041101
https://doi.org/10.1103/PhysRevB.97.041101
|
51 |
Papaj M., Fu L.. Magnus Hall effect. Phys. Rev. Lett., 2019, 123(21): 216802
https://doi.org/10.1103/PhysRevLett.123.216802
|
52 |
Mandal D., Das K., Agarwal A.. Magnus Nernst and thermal Hall effect. Phys. Rev. B, 2020, 102(20): 205414
https://doi.org/10.1103/PhysRevB.102.205414
|
53 |
Hamamoto K., Ezawa M., W. Kim K., Morimoto T., Nagaosa N.. Nonlinear spin current generation in noncentrosymmetric spin−orbit coupled systems. Phys. Rev. B, 2017, 95(22): 224430
https://doi.org/10.1103/PhysRevB.95.224430
|
54 |
Araki Y.. Strain-induced nonlinear spin Hall effect in topological Dirac semimetal. Sci. Rep., 2018, 8(1): 15236
https://doi.org/10.1038/s41598-018-33655-w
|
55 |
Q. Yu X., G. Zhu Z., S. You J., Low T., Su G.. Topological nonlinear anomalous nernst effect in strained transition metal dichalcogenides. Phys. Rev. B, 2019, 99(20): 201410
https://doi.org/10.1103/PhysRevB.99.201410
|
56 |
Zeng C., Nandy S., Taraphder A., Tewari S.. Nonlinear Nernst effect in bilayer WTe2. Phys. Rev. B, 2019, 100(24): 245102
https://doi.org/10.1103/PhysRevB.100.245102
|
57 |
Nakai R., Nagaosa N.. Nonreciprocal thermal and thermoelectric transport of electrons in noncentrosymmetric crystals. Phys. Rev. B, 2019, 99(11): 115201
https://doi.org/10.1103/PhysRevB.99.115201
|
58 |
Zeng C., Nandy S., Tewari S.. Fundamental relations for anomalous thermoelectric transport coefficients in the nonlinear regime. Phys. Rev. Res., 2020, 2(3): 032066
https://doi.org/10.1103/PhysRevResearch.2.032066
|
59 |
Kang K., Li T., Sohn E., Shan J., F. Mak K.. Nonlinear anomalous Hall effect in few layer WTe2. Nat. Mater., 2019, 18(4): 324
https://doi.org/10.1038/s41563-019-0294-7
|
60 |
V. Berry M.. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A, 1984, 392(1802): 45
https://doi.org/10.1098/rspa.1984.0023
|
61 |
Xiao D., C. Chang M., Niu Q.. Berry phase effects on electronic properties. Rev. Mod. Phys., 2010, 82(3): 1959
https://doi.org/10.1103/RevModPhys.82.1959
|
62 |
Karplus R., M. Luttinger J.. Hall effect in ferromagnetics. Phys. Rev., 1954, 95(5): 1154
https://doi.org/10.1103/PhysRev.95.1154
|
63 |
A. Benalcazar W., A. Bernevig B., L. Hughes T.. Quantized electric multipole insulators. Science, 2017, 357(6346): 61
https://doi.org/10.1126/science.aah6442
|
64 |
A. Benalcazar W., A. Bernevig B., L. Hughes T.. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B, 2017, 96(24): 245115
https://doi.org/10.1103/PhysRevB.96.245115
|
65 |
M. Wang C.P. Sun H.Z. Lu H.C. Xie X., 3D quantum Hall effect of Fermi arcs in topological semimetals, Phys. Rev. Lett. 119(13), 136806 (2017)
|
66 |
Song Z.Fang Z.Fang C., (d − 2) dimensional edge states of rotation symmetry protected topological states, Phys. Rev. Lett. 119(24), 246402 (2017)
|
67 |
Langbehn J., Peng Y., Trifunovic L., von Oppen F., W. Brouwer P.. Reflection symmetric second-order topological insulators and superconductors. Phys. Rev. Lett., 2017, 119(24): 246401
https://doi.org/10.1103/PhysRevLett.119.246401
|
68 |
Chen R., Z. Chen C., H. Gao J., Zhou B., H. Xu D.. Higher-order topological insulators in quasicrystals. Phys. Rev. Lett., 2020, 124(3): 036803
https://doi.org/10.1103/PhysRevLett.124.036803
|
69 |
Schindler F., M. Cook A., G. Vergniory M., Wang Z., S. P. Parkin S., A. Bernevig B., Neupert T.. Higher-order topological insulators. Sci. Adv., 2018, 4(6): eaat0346
https://doi.org/10.1126/sciadv.aat0346
|
70 |
Schindler F., Wang Z., G. Vergniory M., M. Cook A., Murani A., Sengupta S., Y. Kasumov A., Deblock R., Jeon S., Drozdov I., Bouchiat H., Guéron S., Yazdani A., A. Bernevig B., Neupert T.. Higher-order topology in bismuth. Nat. Phys., 2018, 14(9): 918
https://doi.org/10.1038/s41567-018-0224-7
|
71 |
Ezawa M.. Higher-order topological insulators and semimetals on the breathing Kagome and pyrochlore lattices. Phys. Rev. Lett., 2018, 120(2): 026801
https://doi.org/10.1103/PhysRevLett.120.026801
|
72 |
Li Z., Cao Y., Yan P., Wang X.. Higher-order topological solitonic insulators. npj Comput. Mater., 2019, 5: 107
https://doi.org/10.1038/s41524-019-0246-4
|
73 |
Fu L., L. Kane C., J. Mele E.. Topological insulators in three dimensions. Phys. Rev. Lett., 2007, 98(10): 106803
https://doi.org/10.1103/PhysRevLett.98.106803
|
74 |
E. Moore J., Balents L.. Topological invariants of time reversal invariant band structures. Phys. Rev. B, 2007, 75(12): 121306
https://doi.org/10.1103/PhysRevB.75.121306
|
75 |
Murakami S.. Phase transition between the quantum spin Hall and insulator phases in 3D: Emergence of a topological gapless phase. New J. Phys., 2007, 9(9): 356
https://doi.org/10.1088/1367-2630/9/9/356
|
76 |
Roy R.. Topological phases and the quantum spin Hall effect in three dimensions. Phys. Rev. B, 2009, 79(19): 195322
https://doi.org/10.1103/PhysRevB.79.195322
|
77 |
Fu L., L. Kane C.. Topological insulators within version symmetry. Phys. Rev. B, 2007, 76(4): 045302
https://doi.org/10.1103/PhysRevB.76.045302
|
78 |
Hsieh D.Qian D.Wray L.Xia Y.S. Hor Y. J. Cava R.Z. Hasan M., A topological Dirac insulator in a quantum spin Hall phase, Nature 452(7190), 970 (2008)
|
79 |
Zhang H., X. Liu C., L. Qi X., Dai X., Fang Z., C. Zhang S., Topological insulators in Bi2Se3. Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys., 2009, 5(6): 438
https://doi.org/10.1038/nphys1270
|
80 |
Xia Y., Qian D., Hsieh D., Wray L., Pal A., Lin H., Bansil A., Grauer D., S. Hor Y., J. Cava R., Z. Hasan M.. Observation of a large gap topological insulator class with a single Dirac cone on the surface. Nat. Phys., 2009, 5(6): 398
https://doi.org/10.1038/nphys1274
|
81 |
Z. Hasan M., L. Kane C.. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
|
82 |
L. Qi X., C. Zhang S.. Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
https://doi.org/10.1103/RevModPhys.83.1057
|
83 |
Z. Hasan M., E. Moore J.. Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys., 2011, 2(1): 55
https://doi.org/10.1146/annurev-conmatphys-062910-140432
|
84 |
Xue H., Yang Y., Gao F., Chong Y., Zhang B.. Acoustic higher-order topological insulator on a Kagome lattice. Nat. Mater., 2019, 18(2): 108
https://doi.org/10.1038/s41563-018-0251-x
|
85 |
Ni X., Weiner M., Alù A., B. Khanikaev A.. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater., 2019, 18(2): 113
https://doi.org/10.1038/s41563-018-0252-9
|
86 |
Xue H., Ge Y., X. Sun H., Wang Q., Jia D., J. Guan Y., Q. Yuan S., Chong Y., Zhang B.. Observation of an acoustic octupole topological insulator. Nat. Commun., 2020, 11(1): 2442
https://doi.org/10.1038/s41467-020-16350-1
|
87 |
Serra-Garcia M., Peri V., Süsstrunk R., R. Bilal O., Larsen T., G. Villanueva L., D. Huber S.. Observation of a phononic quadrupole topological insulator. Nature, 2018, 555(7696): 342
https://doi.org/10.1038/nature25156
|
88 |
W. Peterson C.A. Benalcazar W.L. Hughes T.Bahl G., A quantized microwave quadrupole insulator with topologically protected corner states, Nature 555(7696), 346 (2018)
|
89 |
Imhof S., Berger C., Bayer F., Brehm J., W. Molenkamp L., Kiessling T., Schindler F., H. Lee C., Greiter M., Neupert T., Thomale R.. Topoelectrical circuit realization of topological corner modes. Nat. Phys., 2018, 14(9): 925
https://doi.org/10.1038/s41567-018-0246-1
|
90 |
Serra-Garcia M.Süsstrunk R.D. Huber S., Observation of quadrupole transitions and edge mode topology in an LC circuit network, Phys. Rev. B 99, 020304(R) (2019)
|
91 |
Mittal S., V. Orre V., Zhu G., A. Gorlach M., Poddubny A., Hafezi M.. Photonic quadrupole topological phases. Nat. Photonics, 2019, 13(10): 692
https://doi.org/10.1038/s41566-019-0452-0
|
92 |
El Hassan A., K. Kunst F., Moritz A., Andler G., J. Bergholtz E., Bourennane M.. Corner states of light in photonic waveguides. Nat. Photonics, 2019, 13(10): 697
https://doi.org/10.1038/s41566-019-0519-y
|
93 |
Y. Xie B., X. Su G., F. Wang H., Su H., P. Shen X., Zhan P., H. Lu M., L. Wang Z., F. Chen Y.. Visualization of higher-order topological insulating phases in twodimensional dielectric photonic crystals. Phys. Rev. Lett., 2019, 122(23): 233903
https://doi.org/10.1103/PhysRevLett.122.233903
|
94 |
Li M., Zhirihin D., Gorlach M., Ni X., Filonov D., Slobozhanyuk A., Alù A., B. Khanikaev A.. Higher-order topological states in photonic Kagome crystals with long range interactions. Nat. Photonics, 2020, 14(2): 89
https://doi.org/10.1038/s41566-019-0561-9
|
95 |
Xu Y., Song Z., Wang Z., Weng H., Dai X.. Higher-order topology of the axion insula tor EuIn2As2. Phys. Rev. Lett., 2019, 122(25): 256402
https://doi.org/10.1103/PhysRevLett.122.256402
|
96 |
X. Zhang R.Wu F.Das Sarma S., Möbius insulator and higher-order topology in MnBi2nTe3n+1, Phys. Rev. Lett. 124(13), 136407 (2020)
|
97 |
E. Moore J.. The birth of topological insulators. Nature, 2010, 464(7286): 194
https://doi.org/10.1038/nature08916
|
98 |
Zhu Z., Papaj M., A. Nie X., K. Xu H., S. Gu Y., Yang X., Guan D., Wang S., Li Y., Liu C., Luo J., A. Xu Z., Zheng H., Fu L., F. Jia J.. Discovery of segmented Fermi surface induced by cooper pair momentum. Science, 2021, 374(6573): 1381
https://doi.org/10.1126/science.abf1077
|
99 |
X. Liu C., L. Qi X., Dai X., Fang Z., C. Zhang S.. Quantum anomalous Hall effect in Hg1−yMnyTe quantum wells. Phys. Rev. Lett., 2008, 101(14): 146802
https://doi.org/10.1103/PhysRevLett.101.146802
|
100 |
Yu R., Zhang W., J. Zhang H., C. Zhang S., Dai X., Fang Z.. Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329(5987): 61
https://doi.org/10.1126/science.1187485
|
101 |
A. Nie X., Li S., Yang M., Zhu Z., K. Xu H., Yang X., Zheng F., Guan D., Wang S., Y. Li Y., Liu C., Li J., Zhang P., Shi Y., Zheng H., Jia J.. Robust hot electron and multiple topological insulator states in PtBi2. ACS Nano, 2020, 14(2): 2366
https://doi.org/10.1021/acsnano.9b09564
|
102 |
Zhu Z., R. Chang T., Y. Huang C., Pan H., A. Nie X., Z. Wang X., T. Jin Z., Y. Xu S., M. Huang S., D. Guan D., Wang S., Y. Li Y., Liu C., Qian D., Ku W., Song F., Lin H., Zheng H., F. Jia J.. Quasiparticle interference and nonsymmorphic effect on a floating band surface state of zrsise. Nat. Commun., 2018, 9(1): 4153
https://doi.org/10.1038/s41467-018-06661-9
|
103 |
Mogi M., Yoshimi R., Tsukazaki A., Yasuda K., Kozuka Y., Takahashi K., Kawasaki M., Tokura Y.. Magnetic modulation doping in topological insulators toward higher temperature quantum anomalous Hall effect. Appl. Phys. Lett., 2015, 107(18): 182401
https://doi.org/10.1063/1.4935075
|
104 |
Tokura Y., Yasuda K., Tsukazaki A.. Magnetic topological insulators. Nat. Rev. Phys., 2019, 1(2): 126
https://doi.org/10.1038/s42254-018-0011-5
|
105 |
M. Otrokov M., I. Klimovskikh I., Bentmann H., Estyunin D., Zeugner A., S. Aliev Z., Gaß S., U. B. Wolter A., V. Koroleva A., M. Shikin A., Blanco-Rey M., Hoffmann M., P. Rusinov I., Y. Vyazovskaya A., V. Eremeev S., M. Koroteev Y., M. Kuznetsov V., Freyse F., Sánchez-Barriga J., R. Amiraslanov I., B. Babanly M., T. Mamedov N., A. Abdullayev N., N. Zverev V., Alfonsov A., Kataev V., Büchner B., F. Schwier E., Kumar S., Kimura A., Petaccia L., Di Santo G., C. Vidal R., Schatz S., Kißner K., Ünzelmann M., H. Min C., Moser S., R. F. Peixoto T., Reinert F., Ernst A., M. Echenique P., Isaeva A., V. Chulkov E.. Prediction and observation of an antiferromagnetic topological insulator. Nature, 2019, 576(7787): 416
https://doi.org/10.1038/s41586-019-1840-9
|
106 |
Zhang D., Shi M., Zhu T., Xing D., Zhang H., Wang J.. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett., 2019, 122(20): 206401
https://doi.org/10.1103/PhysRevLett.122.206401
|
107 |
Li J., Li Y., Du S., Wang Z., L. Gu B., C. Zhang S., He K., Duan W., Xu Y.. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4 family materials. Sci. Adv., 2019, 5(6): eaaw5685
https://doi.org/10.1126/sciadv.aaw5685
|
108 |
K. Xu H., Gu M., Fei F., S. Gu Y., Liu D., Y. Yu Q., S. Xue S., H. Ning X., Chen B., Xie H., Zhu Z., Guan D., Wang S., Li Y., Liu C., Liu Q., Song F., Zheng H., Jia J.. Observation of magnetism-induced topological edge state in antiferromagnetic topological insulator MnBi4Te7. ACS Nano, 2022, 16(6): 9810
https://doi.org/10.1021/acsnano.2c03622
|
109 |
J. Hao Y., Liu P., Feng Y., M. Ma X., F. Schwier E., Arita M., Kumar S., Hu C., Lu R., Zeng M., Wang Y., Hao Z., Y. Sun H., Zhang K., Mei J., Ni N., Wu L., Shimada K., Chen C., Liu Q., Liu C.. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X, 2019, 9(4): 041038
https://doi.org/10.1103/PhysRevX.9.041038
|
110 |
J. Chen Y., X. Xu L., H. Li J., W. Li Y., Y. Wang H., F. Zhang C., Li H., Wu Y., J. Liang A., Chen C., W. Jung S., Cacho C., H. Mao Y., Liu S., X. Wang M., F. Guo Y., Xu Y., K. Liu Z., X. Yang L., L. Chen Y.. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X, 2019, 9(4): 041040
https://doi.org/10.1103/PhysRevX.9.041040
|
111 |
Swatek P., Wu Y., L. Wang L., Lee K., Schrunk B., Yan J., Kaminski A.. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B, 2020, 101(16): 161109
https://doi.org/10.1103/PhysRevB.101.161109
|
112 |
D. Peccei R.R. Quinn H., CP conservation in the presence of pseudoparticles, Phys. Rev. Lett. 38(25), 1440 (1977)
|
113 |
Wang J., Lian B., L. Qi X., C. Zhang S.. Quantized topological magnetoelectric effect of the zero plateau quantum anomalous Hall state. Phys. Rev. B, 2015, 92(8): 081107
https://doi.org/10.1103/PhysRevB.92.081107
|
114 |
Morimoto T., Furusaki A., Nagaosa N.. Topological magnetoelectric effects in thin films of topological insulators. Phys. Rev. B, 2015, 92(8): 085113
https://doi.org/10.1103/PhysRevB.92.085113
|
115 |
L. Qi X., Li R., Zang J., C. Zhang S.. Inducing a magnetic monopole with topological surface states. Science, 2009, 323(5918): 1184
https://doi.org/10.1126/science.1167747
|
116 |
Maciejko J., L. Qi X., D. Drew H., C. Zhang S.. Topological quantization in units of the fine structure constant. Phys. Rev. Lett., 2010, 105(16): 166803
https://doi.org/10.1103/PhysRevLett.105.166803
|
117 |
K. Tse W., H. MacDonald A.. Giant magneto optical Kerr effect and universal faraday effect in thin film topological insulators. Phys. Rev. Lett., 2010, 105(5): 057401
https://doi.org/10.1103/PhysRevLett.105.057401
|
118 |
Yu J., Zang J., X. Liu C.. Magnetic resonance induced pseudoelectric field and giant current response in axion insulators. Phys. Rev. B, 2019, 100(7): 075303
https://doi.org/10.1103/PhysRevB.100.075303
|
119 |
Chen R., P. Sun H., Zhou B.. Side surface mediated hybridization in axion insulators. Phys. Rev. B, 2023, 107(12): 125304
https://doi.org/10.1103/PhysRevB.107.125304
|
120 |
M. Essin A., E. Moore J., Vanderbilt D.. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett., 2009, 102(14): 146805
https://doi.org/10.1103/PhysRevLett.102.146805
|
121 |
S. K. Mong R., M. Essin A., E. Moore J.. Anti ferromagnetic topological insulators. Phys. Rev. B, 2010, 81(24): 245209
https://doi.org/10.1103/PhysRevB.81.245209
|
122 |
Niu C., Wang H., Mao N., Huang B., Mokrousov Y., Dai Y.. Antiferromagnetic topological insulator with nonsymmorphic protection in two dimensions. Phys. Rev. Lett., 2020, 124(6): 066401
https://doi.org/10.1103/PhysRevLett.124.066401
|
123 |
Xu Y., Miotkowski I., Liu C., Tian J., Nam H., Alidoust N., Hu J., K. Shih C., Z. Hasan M., P. Chen Y.. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys., 2014, 10(12): 956
https://doi.org/10.1038/nphys3140
|
124 |
MacKinnon A.. The calculation of transport properties and density of states of disordered solids. Z. Phys. B, 1985, 59(4): 385
https://doi.org/10.1007/BF01328846
|
125 |
Metalidis G., Bruno P.. Green’s function technique for studying electron flow in two-dimensional mesoscopic samples. Phys. Rev. B, 2005, 72(23): 235304
https://doi.org/10.1103/PhysRevB.72.235304
|
126 |
Landauer R.. Electrical resistance of disordered one dimensional lattices. Philosophical Magazine, 1970, 21: 863
https://doi.org/10.1080/14786437008238472
|
127 |
Büttiker M.. Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B, 1988, 38(14): 9375
https://doi.org/10.1103/PhysRevB.38.9375
|
128 |
S. Fisher D., A. Lee P.. Relation between conductivity and transmission matrix. Phys. Rev. B, 1981, 23(12): 6851
https://doi.org/10.1103/PhysRevB.23.6851
|
129 |
L. Chu R., Shi J., Q. Shen S.. Surface edge state and half quantized Hall conductance in topological insulators. Phys. Rev. B, 2011, 84(8): 085312
https://doi.org/10.1103/PhysRevB.84.085312
|
130 |
Alicea J.. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys., 2012, 75(7): 076501
https://doi.org/10.1088/0034-4885/75/7/076501
|
131 |
Leijnse M., Flensberg K.. Introduction to topological superconductivity and Majorana fermions. Semicond. Sci. Technol., 2012, 27(12): 124003
https://doi.org/10.1088/0268-1242/27/12/124003
|
132 |
Beenakker C.. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys., 2013, 4(1): 113
https://doi.org/10.1146/annurev-conmatphys-030212-184337
|
133 |
D. Stanescu T., Tewari S.. Majorana fermions in semiconductor nanowires: Fundamentals, modeling, and experiment. J. Phys.: Condens. Matter, 2013, 25(23): 233201
https://doi.org/10.1088/0953-8984/25/23/233201
|
134 |
Aguado R.. Majorana quasiparticles in condensed matter. Riv. Nuovo Cim., 2017, 40: 523
https://doi.org/10.1393/ncr/i2017-10141-9
|
135 |
Kitaev A.. Fault-tolerant quantum computation by anyons. Ann. Phys., 2003, 303(1): 2
https://doi.org/10.1016/S0003-4916(02)00018-0
|
136 |
Nayak C., H. Simon S., Stern A., Freedman M., Das Sarma S.. Nonabelian anyons and topological quantum computation. Rev. Mod. Phys., 2008, 80(3): 1083
https://doi.org/10.1103/RevModPhys.80.1083
|
137 |
D. Sarma S., Freedman M., Nayak C.. Majorana zero modes and topological quantum computation. npj Quantum Inf., 2015, 1: 15001
https://doi.org/10.1038/npjqi.2015.1
|
138 |
Mourik V., Zuo K., M. Frolov S., R. Plissard S., P. A. M. Bakkers E., P. Kouwenhoven L.. Signatures of Majorana fermions in hybrid superconductor semiconductor nanowire devices. Science, 2012, 336(6084): 1003
https://doi.org/10.1126/science.1222360
|
139 |
Deng M., Yu C., Huang G., Larsson M., Caroff P., Xu H.. Anomalous zerobias conductance peak in a NbInSb nanowire–Nb hybrid device. Nano Lett., 2012, 12(12): 6414
https://doi.org/10.1021/nl303758w
|
140 |
Das A., Ronen Y., Most Y., Oreg Y., Heiblum M., Shtrikman H.. Zero bias peaks and splitting in an AlInAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys., 2012, 8(12): 887
https://doi.org/10.1038/nphys2479
|
141 |
D. K. Finck A., J. Van Harlingen D., K. Mohseni P., Jung K., Li X.. Anomalous modulation of a zero bias peak in a hybrid nanowire superconductor device. Phys. Rev. Lett., 2013, 110(12): 126406
https://doi.org/10.1103/PhysRevLett.110.126406
|
142 |
O. H. Churchill H., Fatemi V., Grove-Rasmussen K., T. Deng M., Caroff P., Q. Xu H., M. Marcus C.. Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover. Phys. Rev. B, 2013, 87(24): 241401
https://doi.org/10.1103/PhysRevB.87.241401
|
143 |
T. Deng M., Vaitieke˙nas S., B. Hansen E., Danon J., Leijnse M., Flensberg K., Nygård J., Krogstrup P., M. Marcus C.. Majorana bound state in a coupled quantum dot hybrid nanowire system. Science, 2016, 354(6319): 1557
https://doi.org/10.1126/science.aaf3961
|
144 |
Chen J., Yu P., Stenger J., Hocevar M., Car D., R. Plissard S., P. A. M. Bakkers E., D. Stanescu T., M. Frolov S.. Experimental phase diagram of zero bias conductance peaks in superconductor/semiconductor nanowire devices. Sci. Adv., 2017, 3(9): e1701476
https://doi.org/10.1126/sciadv.1701476
|
145 |
J. Suominen H., Kjaergaard M., R. Hamilton A., Shabani J., J. Palmstrøm C., M. Marcus C., Nichele F.. Zero energy modes from coalescing Andreev states in a two-dimensional semiconductor−superconductor hybrid platform. Phys. Rev. Lett., 2017, 119(17): 176805
https://doi.org/10.1103/PhysRevLett.119.176805
|
146 |
Nichele F., C. C. Drachmann A., M. Whiticar A., C. T. O’Farrell E., J. Suominen H., Fornieri A., Wang T., C. Gardner G., Thomas C., T. Hatke A., Krogstrup P., J. Manfra M., Flensberg K., M. Marcus C.. Scaling of Majorana zero bias conductance peaks. Phys. Rev. Lett., 2017, 119(13): 136803
https://doi.org/10.1103/PhysRevLett.119.136803
|
147 |
Zhang H., X. Liu C., Gazibegovic S., Xu D., A. Logan J., Wang G., van Loo N., D. S. Bommer J., W. A. de Moor M., Car D., L. M. Op het Veld R., J. van Veldhoven P., Koelling S., A. Verheijen M., Pendharkar M., J. Pennachio D., Shojaei B., S. Lee J., J. Palmstrøm C., P. A. M. Bakkers E., D. Sarma S., P. Kouwenhoven L.. Retracted article: Quantized Majorana conductance. Nature, 2018, 556(7699): 74
https://doi.org/10.1038/nature26142
|
148 |
E. Sestoft J., Kanne T., N. Gejl A., von Soosten M., S. Yodh J., Sherman D., Tarasinski B., Wimmer M., Johnson E., Deng M., Nygård J., S. Jespersen T., M. Marcus C., Krogstrup P.. Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection. Phys. Rev. Mater., 2018, 2(4): 044202
https://doi.org/10.1103/PhysRevMaterials.2.044202
|
149 |
Vaitiekėnas S., T. Deng M., Nygård J., Krogstrup P., M. Marcus C.. Effective g factor of subgap states in hybrid nanowires. Phys. Rev. Lett., 2018, 121(3): 037703
https://doi.org/10.1103/PhysRevLett.121.037703
|
150 |
T. Deng M., Vaitieke˙nas S., Prada E., SanJose P., Nygård J., Krogstrup P., Aguado R., M. Marcus C.. Nonlocality of Majorana modes in hybrid nanowires. Phys. Rev. B, 2018, 98(8): 085125
https://doi.org/10.1103/PhysRevB.98.085125
|
151 |
W. A. de Moor M., D. S. Bommer J., Xu D., W. Winkler G., E. Antipov A., Bargerbos A., Wang G., Loo N., L. M. Op het Veld R., Gazibegovic S., Car D., A. Logan J., Pendharkar M., S. Lee J., P. A. M Bakkers E., J. Palmstrøm C., M. Lutchyn R., P. Kouwenhoven L., Zhang H.. Electric field tunable superconductor semiconductor coupling in Majorana nanowires. New J. Phys., 2018, 20(10): 103049
https://doi.org/10.1088/1367-2630/aae61d
|
152 |
Zhu Z., Zheng H., F. Jia J.. Majorana zero mode in the vortex of artificial topological superconductor. J. Appl. Phys., 2021, 129(15): 151104
https://doi.org/10.1063/5.0043694
|
153 |
M. Lutchyn R., D. Sau J., Das Sarma S.. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett., 2010, 105(7): 077001
https://doi.org/10.1103/PhysRevLett.105.077001
|
154 |
Oreg Y., Refael G., von Oppen F.. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett., 2010, 105(17): 177002
https://doi.org/10.1103/PhysRevLett.105.177002
|
155 |
M. Lutchyn R., P. Bakkers E., P. Kouwenhoven L., Krogstrup P., M. Marcus C., Oreg Y.. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater., 2018, 3(5): 52
https://doi.org/10.1038/s41578-018-0003-1
|
156 |
Prada E., San-Jose P., Aguado R.. Transport spectroscopy of NS nanowire junctions with Majorana fermions. Phys. Rev. B, 2012, 86(18): 180503
https://doi.org/10.1103/PhysRevB.86.180503
|
157 |
Das Sarma S., D. Sau J., D. Stanescu T.. Splitting of the zero bias conductance peak as smoking gun evidence for the existence of the Majorana mode in a superconductor−semiconductor nanowire. Phys. Rev. B, 2012, 86(22): 220506
https://doi.org/10.1103/PhysRevB.86.220506
|
158 |
Rainis D., Trifunovic L., Klinovaja J., Loss D.. Towards a realistic transport modeling in a superconducting nanowire with majorana fermions. Phys. Rev. B, 2013, 87(2): 024515
https://doi.org/10.1103/PhysRevB.87.024515
|
159 |
M. Albrecht S., P. Higginbotham A., Madsen M., Kuemmeth F., S. Jespersen T., Nygård J., Krogstrup P., Marcus C.. Exponential protection of zero modes in Majorana islands. Nature, 2016, 531(7593): 206
https://doi.org/10.1038/nature17162
|
160 |
Sherman D., Yodh J., Albrecht S., Nygård J., Krogstrup P., Marcus C.. Normal, superconducting and topological regimes of hybrid double quantum dots. Nat. Nanotechnol., 2017, 12(3): 212
https://doi.org/10.1038/nnano.2016.227
|
161 |
M. Albrecht S., B. Hansen E., P. Higginbotham A., Kuemmeth F., S. Jespersen T., Nygård J., Krogstrup P., Danon J., Flensberg K., M. Marcus C.. Transport signatures of quasiparticle poisoning in a Majorana island. Phys. Rev. Lett., 2017, 118(13): 137701
https://doi.org/10.1103/PhysRevLett.118.137701
|
162 |
C. T. O’Farrell E., C. C. Drachmann A., Hell M., Fornieri A., M. Whiticar A., B. Hansen E., Gronin S., C. Gardner G., Thomas C., J. Manfra M., Flensberg K., M. Marcus C., Nichele F.. Hybridization of subgap states in one-dimensional superconductor semiconductor Coulomb islands. Phys. Rev. Lett., 2018, 121(25): 256803
https://doi.org/10.1103/PhysRevLett.121.256803
|
163 |
Kells G., Meidan D., W. Brouwer P.. Nearzero energy end states in topologically trivial spin−orbit coupled superconducting nanowires with a smooth confinement. Phys. Rev. B, 2012, 86(10): 100503
https://doi.org/10.1103/PhysRevB.86.100503
|
164 |
D. Stanescu T., Tewari S.. Disentangling Majorana fermions from topologically trivial low energy states in semiconductor Majorana wires. Phys. Rev. B, 2013, 87(14): 140504
https://doi.org/10.1103/PhysRevB.87.140504
|
165 |
X. Liu C., D. Sau J., D. Stanescu T., Das Sarma S.. Andreev bound states versus Majorana bound states in quantum dot nanowire superconductor hybrid structures: Trivial versus topological zero bias conductance peaks. Phys. Rev. B, 2017, 96(7): 075161
https://doi.org/10.1103/PhysRevB.96.075161
|
166 |
Moore C., D. Stanescu T., Tewari S.. Two terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor−superconductor heterostructures. Phys. Rev. B, 2018, 97(16): 165302
https://doi.org/10.1103/PhysRevB.97.165302
|
167 |
I. Halperin B.. Possible states for a three-dimensional electron gas in a strong magnetic field. Jpn. J. Appl. Phys., 1987, 26(S3-3): 1913
https://doi.org/10.7567/JJAPS.26S3.1913
|
168 |
Zilberberg O., Huang S., Guglielmon J., Wang M., P. Chen K., E. Kraus Y., C. Rechtsman M.. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature, 2018, 553(7686): 59
https://doi.org/10.1038/nature25011
|
169 |
Montambaux G., Kohmoto M.. Quantized Hall effect in three dimensions. Phys. Rev. B, 1990, 41(16): 11417
https://doi.org/10.1103/PhysRevB.41.11417
|
170 |
Kohmoto M., I. Halperin B., S. Wu Y.. Diophan tine equation for the three-dimensional quantum Hall effect. Phys. Rev. B, 1992, 45(23): 13488
https://doi.org/10.1103/PhysRevB.45.13488
|
171 |
Koshino M., Aoki H., Kuroki K., Kagoshima S., Osada T.. Hofstadter butterfly and integer quantum Hall effect in three dimensions. Phys. Rev. Lett., 2001, 86(6): 1062
https://doi.org/10.1103/PhysRevLett.86.1062
|
172 |
A. Bernevig B., L. Hughes T., Raghu S., P. Arovas D.. Theory of the three-dimensional quantum Hall effect in graphite. Phys. Rev. Lett., 2007, 99(14): 146804
https://doi.org/10.1103/PhysRevLett.99.146804
|
173 |
L. Störmer H., P. Eisenstein J., C. Gossard A., Wiegmann W., Baldwin K.. Quantization of the Hall effect in an anisotropic three-dimensional electronic system. Phys. Rev. Lett., 1986, 56(1): 85
https://doi.org/10.1103/PhysRevLett.56.85
|
174 |
R. Cooper J., Kang W., Auban P., Montambaux G., Jérome D., Bechgaard K.. Quantized Hall effect and a new field-induced phase transition in the organic superconductor (TMTSF)2PF6. Phys. Rev. Lett., 1989, 63(18): 1984
https://doi.org/10.1103/PhysRevLett.63.1984
|
175 |
T. Hannahs S., S. Brooks J., Kang W., Y. Chiang L., M. Chaikin P.. Quantum Hall effect in a bulk crystal. Phys. Rev. Lett., 1989, 63(18): 1988
https://doi.org/10.1103/PhysRevLett.63.1988
|
176 |
Hill S., Uji S., Takashita M., Terakura C., Terashima T., Aoki H., S. Brooks J., Fisk Z., Sarrao J.. Bulk quantum Hall effect in η-Mo4O11. Phys. Rev. B, 1998, 58(16): 10778
https://doi.org/10.1103/PhysRevB.58.10778
|
177 |
Cao H., Tian J., Miotkowski I., Shen T., Hu J., Qiao S., P. Chen Y.. Quantized Hall effect and Shubnikov–de Haas oscillations in highly doped Bi2Se3: Evidence for layered transport of bulk carriers. Phys. Rev. Lett., 2012, 108(21): 216803
https://doi.org/10.1103/PhysRevLett.108.216803
|
178 |
Masuda H., Sakai H., Tokunaga M., Yamasaki Y., Miyake A., Shiogai J., Nakamura S., Awaji S., Tsukazaki A., Nakao H., Murakami Y., Arima T., Tokura Y., Ishiwata S.. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions. Sci. Adv., 2016, 2(1): e1501117
https://doi.org/10.1126/sciadv.1501117
|
179 |
Liu Y., Yuan X., Zhang C., Jin Z., Narayan A., Luo C., Chen Z., Yang L., Zou J., Wu X., Sanvito S., Xia Z., Li L., Wang Z., Xiu F.. Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5. Nat. Commun., 2016, 7(1): 12516
https://doi.org/10.1038/ncomms12516
|
180 |
Liu J., Yu J., L. Ning J., M. Yi H., Miao L., J. Min L., F. Zhao Y., Ning W., A. Lopez K., L. Zhu Y., Pillsbury T., B. Zhang Y., Wang Y., Hu J., B. Cao H., C. Chakoumakos B., Balakirev F., Weickert F., Jaime M., Lai Y., Yang K., W. Sun J., Alem N., Gopalan V., Z. Chang C., Samarth N., X. Liu C., D. McDonald R., Q. Mao Z.. Spin-valley locking and bulk quantum Hall effect in a noncentrosymmetric Dirac semimetal BaMnSb2. Nat. Commun., 2021, 12(1): 4062
https://doi.org/10.1038/s41467-021-24369-1
|
181 |
Tang F., Ren Y., Wang P., Zhong R., Schneeloch J., A. Yang S., Yang K., A. Lee P., Gu G., Qiao Z., Zhang L.. Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5. Nature, 2019, 569(7757): 537
https://doi.org/10.1038/s41586-019-1180-9
|
182 |
Li H.Liu H. Jiang H.C. Xie X., 3D quantum Hall effect and a global picture of edge states in Weyl semimetals, Phys. Rev. Lett. 125(3), 036602 (2020)
|
183 |
G. Cheng S., Jiang H., F. Sun Q., C. Xie X.. Quantum Hall effect in wedge-shaped samples. Phys. Rev. B, 2020, 102(7): 075304
https://doi.org/10.1103/PhysRevB.102.075304
|
184 |
Wang P., Ren Y., Tang F., Wang P., Hou T., Zeng H., Zhang L., Qiao Z.. Approaching three-dimensional quantum Hall effect in bulk HfTe5. Phys. Rev. B, 2020, 101(16): 161201
https://doi.org/10.1103/PhysRevB.101.161201
|
185 |
Ma R., N. Sheng D., Sheng L.. Three-dimensional quantum Hall effect and magnetothermoelectric properties in Weyl semimetals. Phys. Rev. B, 2021, 104(7): 075425
https://doi.org/10.1103/PhysRevB.104.075425
|
186 |
C. Zhang S.Hu J., A four-dimensional generalization of the quantum Hall effect, Science 294(5543), 823 (2001)
|
187 |
Lohse M., Schweizer C., M. Price H., Zilberberg O., Bloch I.. Exploring 4D quantum Hall physics with a 2D topological charge pump. Nature, 2018, 553(7686): 55
https://doi.org/10.1038/nature25000
|
188 |
M. Price H., Zilberberg O., Ozawa T., Carusotto I., Goldman N.. Four-dimensional quantum Hall effect with ultracold atoms. Phys. Rev. Lett., 2015, 115(19): 195303
https://doi.org/10.1103/PhysRevLett.115.195303
|
189 |
J. Jin Y., Wang R., W. Xia B., B. Zheng B., Xu H.. Three-dimensional quantum anomalous Hall effect in ferromagnetic insulators. Phys. Rev. B, 2018, 98(8): 081101
https://doi.org/10.1103/PhysRevB.98.081101
|
190 |
A. Molina R., González J.. Surface and 3D quantum Hall effects from engineering of exceptional points in nodal line semimetals. Phys. Rev. Lett., 2018, 120(14): 146601
https://doi.org/10.1103/PhysRevLett.120.146601
|
191 |
Benito-Matías E., A. Molina R., González J.. Surface and bulk Landau levels in thin films of Weyl semimetals. Phys. Rev. B, 2020, 101(8): 085420
https://doi.org/10.1103/PhysRevB.101.085420
|
192 |
Chang M., Sheng L.. Three-dimensional quantum Hall effect in the excitonic phase of a Weyl semimetal. Phys. Rev. B, 2021, 103(24): 245409
https://doi.org/10.1103/PhysRevB.103.245409
|
193 |
Chang M., Geng H., Sheng L., Y. Xing D.. Three-dimensional quantum Hall effect in Weyl semimetals. Phys. Rev. B, 2021, 103(24): 245434
https://doi.org/10.1103/PhysRevB.103.245434
|
194 |
Klitzing K., Dorda G., Pepper M.. New method for high accuracy determination of the fine structure constant based on quantized Hall resistance. Phys. Rev. Lett., 1980, 45(6): 494
https://doi.org/10.1103/PhysRevLett.45.494
|
195 |
J. Thouless D., Kohmoto M., P. Nightingale M., den Nijs M.. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 1982, 49(6): 405
https://doi.org/10.1103/PhysRevLett.49.405
|
196 |
Z. Lu H., 3D quantum Hall effect, Natl. Sci. Rev. 6(2), 208 (2019)
|
197 |
Liu F., Y. Deng H., Wakabayashi K.. Helical topological edge states in a quadrupole phase. Phys. Rev. Lett., 2019, 122(8): 086804
https://doi.org/10.1103/PhysRevLett.122.086804
|
198 |
Roy B.. Antiunitary symmetry protected higher-order topological phases. Phys. Rev. Res., 2019, 1(3): 032048
https://doi.org/10.1103/PhysRevResearch.1.032048
|
199 |
B. Hua C., Chen R., Zhou B., H. Xu D.. Higher-order topological insulator in a dodecagonal quasicrystal. Phys. Rev. B, 2020, 102(24): 241102
https://doi.org/10.1103/PhysRevB.102.241102
|
200 |
R. Liu Z., H. Hu L., Z. Chen C., Zhou B., H. Xu D.. Topological excitonic corner states and nodal phase in bilayer quantum spin Hall insulators. Phys. Rev. B, 2021, 103(20): L201115
https://doi.org/10.1103/PhysRevB.103.L201115
|
201 |
Queiroz R., Stern A.. Splitting the hinge mode of higher-order topological insulators. Phys. Rev. Lett., 2019, 123(3): 036802
https://doi.org/10.1103/PhysRevLett.123.036802
|
202 |
Sitte M., Rosch A., Altman E., Fritz L.. Topological insulators in magnetic fields: Quantum Hall effect and edge channels with a nonquantized θ term. Phys. Rev. Lett., 2012, 108(12): 126807
https://doi.org/10.1103/PhysRevLett.108.126807
|
203 |
Zhang F., L. Kane C., J. Mele E.. Surface state magnetization and chiral edge states on topological insulators. Phys. Rev. Lett., 2013, 110(4): 046404
https://doi.org/10.1103/PhysRevLett.110.046404
|
204 |
Otaki Y., Fukui T.. Higher-order topological insulators in a magnetic field. Phys. Rev. B, 2019, 100: 245108
https://doi.org/10.1103/PhysRevB.100.245108
|
205 |
Yan Z., Song F., Wang Z.. Majorana corner modes in a high temperature platform. Phys. Rev. Lett., 2018, 121(9): 096803
https://doi.org/10.1103/PhysRevLett.121.096803
|
206 |
Yan Z.. Higher-order topological odd parity superconductors. Phys. Rev. Lett., 2019, 123(17): 177001
https://doi.org/10.1103/PhysRevLett.123.177001
|
207 |
Varjas D., Lau A., Pöyhönen K., R. Akhmerov A., I. Pikulin D., C. Fulga I.. Topological phases without crystalline counterparts. Phys. Rev. Lett., 2019, 123(19): 196401
https://doi.org/10.1103/PhysRevLett.123.196401
|
208 |
A. A. Ghorashi S., Li T., L. Hughes T.. Higher-order Weyl semimetals. Phys. Rev. Lett., 2020, 125(26): 266804
https://doi.org/10.1103/PhysRevLett.125.266804
|
209 |
X. Wang H., K. Lin Z., Jiang B., Y. Guo G., H. Jiang J.. Higher-order weyl semimetals. Phys. Rev. Lett., 2020, 125(14): 146401
https://doi.org/10.1103/PhysRevLett.125.146401
|
210 |
Wang K., X. Dai J., B. Shao L., A. Yang S., X. Zhao Y.. Boundary criticality of PT invariant topology and secondorder nodalline semimetals. Phys. Rev. Lett., 2020, 125(12): 126403
https://doi.org/10.1103/PhysRevLett.125.126403
|
211 |
A. Hassani Gangaraj S., Valagiannopoulos C., Monticone F.. Topological scattering resonances at ultralow frequencies. Phys. Rev. Res., 2020, 2(2): 023180
https://doi.org/10.1103/PhysRevResearch.2.023180
|
212 |
Z. Li C., Q. Wang A., Li C., Z. Zheng W., Brinkman A., P. Yu D., M. Liao Z.. Reducing electronic trans port dimension to topological hinge states by increasing geometry size of Dirac semimetal Josephson junctions. Phys. Rev. Lett., 2020, 124(15): 156601
https://doi.org/10.1103/PhysRevLett.124.156601
|
213 |
Călugăru D., Juričič V., Roy B.. Higher-order topological phases: A general principle of construction. Phys. Rev. B, 2019, 99(4): 041301
https://doi.org/10.1103/PhysRevB.99.041301
|
214 |
Hu H., Huang B., Zhao E., V. Liu W.. Dynamical singularities of floquet higher-order topological insulators. Phys. Rev. Lett., 2020, 124(5): 057001
https://doi.org/10.1103/PhysRevLett.124.057001
|
215 |
Huang B., V. Liu W.. Floquet higher-order topological insulators with anomalous dynamical polarization. Phys. Rev. Lett., 2020, 124(21): 216601
https://doi.org/10.1103/PhysRevLett.124.216601
|
216 |
Kheirkhah M., Yan Z., Nagai Y., Marsiglio F.. First and second order topological superconductivity and temperature driven topological phase transitions in the extended Hubbard model with spin−orbit coupling. Phys. Rev. Lett., 2020, 125(1): 017001
https://doi.org/10.1103/PhysRevLett.125.017001
|
217 |
Kheirkhah M., Nagai Y., Chen C., Marsiglio F.. Majorana corner flatbands in two-dimensional second order topological superconductors. Phys. Rev. B, 2020, 101(10): 104502
https://doi.org/10.1103/PhysRevB.101.104502
|
218 |
Sarsen A., Valagiannopoulos C.. Robust polarization twist by pairs of multilayers with tilted optical axes. Phys. Rev. B, 2019, 99(11): 115304
https://doi.org/10.1103/PhysRevB.99.115304
|
219 |
Noh J., A. Benalcazar W., Huang S., J. Collins M., P. Chen K., L. Hughes T., C. Rechtsman M.. Topological protection of photonic midgap defect modes. Nat. Photonics, 2018, 12(7): 408
https://doi.org/10.1038/s41566-018-0179-3
|
220 |
B. Choi Y., Xie Y., Z. Chen C., Park J., B. Song S., Yoon J., J. Kim B., Taniguchi T., Watanabe K., Kim J., C. Fong K., N. Ali M., T. Law K., H. Lee G.. Evidence of higher-order topology in multilayer WTe2 from Josephson coupling through anisotropic hinge states. Nat. Mater., 2020, 19(9): 974
https://doi.org/10.1038/s41563-020-0721-9
|
221 |
J. Wieder B., Wang Z., Cano J., Dai X., M. Schoop L., Bradlyn B., A. Bernevig B.. Strong and fragile topological Dirac semimetals with higher-order Fermi arcs. Nat. Commun., 2020, 11(1): 627
https://doi.org/10.1038/s41467-020-14443-5
|
222 |
Xie B., X. Wang H., Zhang X., Zhan P., H. Jiang J., Lu M., Chen Y.. Higher-order band topology. Nat. Rev. Phys., 2021, 3(7): 520
https://doi.org/10.1038/s42254-021-00323-4
|
223 |
A. Kealhofer D., Galletti L., Schumann T., Suslov A., Stemmer S.. Topological insulator state and collapse of the quantum Hall effect in a three-dimensional Dirac semimetal heterojunction. Phys. Rev. X, 2020, 10(1): 011050
https://doi.org/10.1103/PhysRevX.10.011050
|
224 |
C. Lin B., Wang S., Wiedmann S., M. Lu J., Z. Zheng W., Yu D., M. Liao Z.. Observation of an odd integer quantum Hall effect from topological surface states in Cd3As2. Phys. Rev. Lett., 2019, 122(3): 036602
https://doi.org/10.1103/PhysRevLett.122.036602
|
225 |
Wang S., C. Lin B., Z. Zheng W., Yu D., M. Liao Z.. Fano interference between bulk and surface states of a Dirac semimetal Cd3As2 nanowire. Phys. Rev. Lett., 2018, 120(25): 257701
https://doi.org/10.1103/PhysRevLett.120.257701
|
226 |
Nishihaya S., Uchida M., Nakazawa Y., Kriener M., Kozuka Y., Taguchi Y., Kawasaki M.. Gate-tuned quantum Hall states in Dirac semimetal. Sci. Adv., 2018, 4(5): eaar5668
https://doi.org/10.1126/sciadv.aar5668
|
227 |
Galletti L., Schumann T., F. Shoron O., Goyal M., A. Kealhofer D., Kim H., Stemmer S.. Two-dimensional Dirac fermions in thin films of Cd3As2. Phys. Rev. B, 2018, 97(11): 115132
https://doi.org/10.1103/PhysRevB.97.115132
|
228 |
Schumann T., Galletti L., A. Kealhofer D., Kim H., Goyal M., Stemmer S.. Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys. Rev. Lett., 2018, 120(1): 016801
https://doi.org/10.1103/PhysRevLett.120.016801
|
229 |
Z. Chang C., Zhang J., Feng X., Shen J., Zhang Z., Guo M., Li K., Ou Y., Wei P., L. Wang L., Q. Ji Z., Feng Y., Ji S., Chen X., Jia J., Dai X., Fang Z., C. Zhang S., He K., Wang Y., Lu L., C. Ma X., K. Xue Q.. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340(6129): 167
https://doi.org/10.1126/science.1234414
|
230 |
Zhang C., Narayan A., Lu S., Zhang J., Zhang H., Ni Z., Yuan X., Liu Y., H. Park J., Zhang E., Wang W., Liu S., Cheng L., Pi L., Sheng Z., Sanvito S., Xiu F.. Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2. Nat. Commun., 2017, 8(1): 1272
https://doi.org/10.1038/s41467-017-01438-y
|
231 |
Uchida M., Nakazawa Y., Nishihaya S., Akiba K., Kriener M., Kozuka Y., Miyake A., Taguchi Y., Tokunaga M., Nagaosa N., Tokura Y., Kawasaki M.. Quantum Hall states observed in thin films of Dirac semimetal Cd3As2. Nat. Commun., 2017, 8(1): 2274
https://doi.org/10.1038/s41467-017-02423-1
|
232 |
Zhang C., Zhang Y., Yuan X., Lu S., Zhang J., Narayan A., Liu Y., Zhang H., Ni Z., Liu R., S. Choi E., Suslov A., Sanvito S., Pi L., Z. Lu H., C. Potter A., Xiu F.. Quantum Hall effect based on Weyl orbits in Cd3As2. Nature, 2019, 565(7739): 331
https://doi.org/10.1038/s41586-018-0798-3
|
233 |
Nishihaya S., Uchida M., Nakazawa Y., Kurihara R., Akiba K., Kriener M., Miyake A., Taguchi Y., Tokunaga M., Kawasaki M.. Quantized surface transport in topological Dirac semimetal films. Nat. Commun., 2019, 10(1): 2564
https://doi.org/10.1038/s41467-019-10499-0
|
234 |
Schumann T., Galletti L., A. Kealhofer D., Kim H., Goyal S., Stemmer S.. Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys. Rev. Lett., 2018, 120(1): 016801
https://doi.org/10.1103/PhysRevLett.120.016801
|
235 |
J. W. Moll P., L. Nair N., Helm T., C. Potter A., Kimchi I., Vishwanath A., G. Analytis J.. Transport evidence for Fermi arc mediated chirality transfer in the Dirac semimetal Cd3As2. Nature, 2016, 535(7611): 266
https://doi.org/10.1038/nature18276
|
236 |
N. Argyres P., N. Adams E.. Longitudinal magnetoresistance in the quantum limit. Phys. Rev., 1956, 104(4): 900
https://doi.org/10.1103/PhysRev.104.900
|
237 |
A. Lee P., V. Ramakrishnan T.. Disordered electronic systems. Rev. Mod. Phys., 1985, 57(2): 287
https://doi.org/10.1103/RevModPhys.57.287
|
238 |
Wang J., Li H., Chang C., He K., S. Lee J., Lu H., Sun Y., Ma X., Samarth N., Shen S., Xue Q., Xie M., H. W. Chan M.. Anomalous anisotropic magnetoresistance in topological insulator films. Nano Res., 2012, 5(10): 739
https://doi.org/10.1007/s12274-012-0260-z
|
239 |
T. He H., C. Liu H., K. Li B., Guo X., J. Xu Z., H. Xie M., N. Wang J.. Disorderinduced linear magnetoresistance in (221) topological insulator Bi2Se3 films. Appl. Phys. Lett., 2013, 103(3): 031606
https://doi.org/10.1063/1.4816078
|
240 |
Wiedmann S., Jost A., Fauqué B., van Dijk J., J. Meijer M., Khouri T., Pezzini S., Grauer S., Schreyeck S., Brüne C., Buhmann H., W. Molenkamp L., E. Hussey N.. Anisotropic and strong negative magnetoresistance in the three-dimensional topological insulator Bi2Se3. Phys. Rev. B, 2016, 94(8): 081302
https://doi.org/10.1103/PhysRevB.94.081302
|
241 |
X. Wang L., Yan Y., Zhang L., M. Liao Z., C. Wu H., P. Yu D.. Zeeman effect on surface electron transport in topological insulator Bi2Se3 nanoribbons. Nanoscale, 2015, 7(40): 16687
https://doi.org/10.1039/C5NR05250E
|
242 |
Breunig O., Wang Z., A. Taskin A., Lux J., Rosch A., Ando Y.. Gigantic negative magnetoresistance in the bulk of a disordered topological insulator. Nat. Commun., 2017, 8(1): 15545
https://doi.org/10.1038/ncomms15545
|
243 |
A. Assaf B., Phuphachong T., Kampert E., V. Volobuev V., S. Mandal P., Sánchez-Barriga J., Rader O., Bauer G., Springholz G., A. de Vaulchier L., Guldner Y.. Negative longitudinal magnetoresistance from the anomalous N = 0 Landau level in topo logical materials. Phys. Rev. Lett., 2017, 119(10): 106602
https://doi.org/10.1103/PhysRevLett.119.106602
|
244 |
J. Kim H., S. Kim K., F. Wang J., Sasaki M., Satoh T., Ohnishi A., Kitaura M., Yang M., Li L.. Dirac versus Weyl fermions in topological insulators: Adler−Bell−Jackiw anomaly in transport phenomena. Phys. Rev. Lett., 2013, 111(24): 246603
https://doi.org/10.1103/PhysRevLett.111.246603
|
245 |
S. Kim K., J. Kim H., Sasaki M.. Boltzmann equation approach to anomalous transport in a Weyl metal. Phys. Rev. B, 2014, 89(19): 195137
https://doi.org/10.1103/PhysRevB.89.195137
|
246 |
Li Q., E. Kharzeev D., Zhang C., Huang Y., Pletikosic I., V. Fedorov A., D. Zhong R., A. Schneeloch J., D. Gu G., Valla T.. Chiral magnetic effect in ZrTe5. Nat. Phys., 2016, 12(6): 550
https://doi.org/10.1038/nphys3648
|
247 |
L. Zhang C., Y. Xu S., Belopolski I., Yuan Z., Lin Z., Tong B., Bian G., Alidoust N., C. Lee C., M. Huang S., R. Chang T., Chang G., H. Hsu C., T. Jeng H., Neupane M., S. Sanchez D., Zheng H., Wang J., Lin H., Zhang C., Z. Lu H., Q. Shen S., Neupert T., Zahid Hasan M., Jia S.. Signatures of the Adler−Bell−Jackiw chiral anomaly in a Weyl Fermion semimetal. Nat. Commun., 2016, 7(1): 10735
https://doi.org/10.1038/ncomms10735
|
248 |
C. Huang X., Zhao L., Long Y., Wang P., Chen D., Yang Z., Liang H., Xue M., Weng H., Fang Z., Dai X., Chen G.. Observation of the chiral anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X, 2015, 5(3): 031023
https://doi.org/10.1103/PhysRevX.5.031023
|
249 |
Xiong J., K. Kushwaha S., Liang T., W. Krizan J., Hirschberger M., Wang W., J. Cava R., P. Ong N.. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science, 2015, 350(6259): 413
https://doi.org/10.1126/science.aac6089
|
250 |
Z. Li C., X. Wang L., W. Liu H., Wang J., M. Liao Z., P. Yu D.. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nat. Commun., 2015, 6(1): 10137
https://doi.org/10.1038/ncomms10137
|
251 |
Zhang C., Zhang E., Wang W., Liu Y., G. Chen Z., Lu S., Liang S., Cao J., Yuan X., Tang L., Li Q., Zhou C., Gu T., Wu Y., Zou J., Xiu F.. Room temperature chiral charge pumping in Dirac semimetals. Nat. Commun., 2017, 8(1): 13741
https://doi.org/10.1038/ncomms13741
|
252 |
Arnold F., Shekhar C., Wu S.-C., Sun Yan, D. Reis R., Kumar N., Naumann M., O. Ajeesh M., Schmidt M., G. Grushin A., H. Bardarson J., Baenitz M., Sokolov D., Borrmann H., Nicklas M., Felser C., Hassinger E., Yan B.. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun., 2016, 7: 11615
https://doi.org/10.1038/ncomms11615
|
253 |
J. Yang X.P. Liu Y.Wang Z.Zheng Y.A. Xu Z., Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs, arXiv: 1506.03190 (2015)
|
254 |
Yang X.Li Y.Wang Z.Zhen Y.A. Xu Z., Observation of negative magnetoresistance and nontrivial π Berry’s phase in 3D Weyl semimetal NbAs, arXiv: 1506.02283 (2015)
|
255 |
Wang H., K. Li C., Liu H., Yan J., Wang J., Liu J., Lin Z., Li Y., Wang Y., Li L., Mandrus D., C. Xie X., Feng J., Wang J.. Chiral anomaly and ultrahigh mobility in crystalline HfTe5. Phys. Rev. B, 2016, 93(16): 165127
https://doi.org/10.1103/PhysRevB.93.165127
|
256 |
L. Adler S.. Axial vector vertex in spinor electrodynamics. Phys. Rev., 1969, 177(5): 2426
https://doi.org/10.1103/PhysRev.177.2426
|
257 |
S. Bell J.Jackiw R., A PCAC puzzle: π0 → γγ in the σmodel, Nuovo Cim., A 60(1), 47 (1969)
|
258 |
B. Nielsen H., Ninomiya M.. Absence of neutrinos on a lattice (i): Proof by homotopy theory. Nucl. Phys. B, 1981, 185(1): 20
https://doi.org/10.1016/0550-3213(81)90361-8
|
259 |
Bradlyn B., Cano J., Wang Z., G. Vergniory M., Felser C., J. Cava R., A. Bernevig B.. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals. Science, 2016, 353(6299): aaf5037
https://doi.org/10.1126/science.aaf5037
|
260 |
Chang G., J. Wieder B., Schindler F., S. Sanchez D., Belopolski I., M. Huang S., Singh B., Wu D., R. Chang T., Neupert T., Y. Xu S., Lin H., Z. Hasan M.. Topological quantum properties of chiral crystals. Nat. Mater., 2018, 17(11): 978
https://doi.org/10.1038/s41563-018-0169-3
|
261 |
Goswami P., H. Pixley J., Das Sarma S.. Axial anomaly and longitudinal magnetoresistance of a generic three-dimensional metal. Phys. Rev. B, 2015, 92(7): 075205
https://doi.org/10.1103/PhysRevB.92.075205
|
262 |
N. Basov D., M. Fogler M., Lanzara A., Wang F., Zhang Y.. Colloquium: Graphene spectroscopy. Rev. Mod. Phys., 2014, 86(3): 959
https://doi.org/10.1103/RevModPhys.86.959
|
263 |
Z. Hasan M., L. Kane C.. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
|
264 |
C. Charlier J., Blase X., Roche S.. Electronic and transport properties of nanotubes. Rev. Mod. Phys., 2007, 79(2): 677
https://doi.org/10.1103/RevModPhys.79.677
|
265 |
S. Novoselov K.I. Fal′ko V.Colombo L.R. Gellert P.G. Schwab M.Kim K., A roadmap for graphene, Nature 490(7419), 192 (2012)
|
266 |
Liang T., Gibson Q., N. Ali M., H. Liu M., J. Cava R., P. Ong N.. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater., 2015, 14(3): 280
https://doi.org/10.1038/nmat4143
|
267 |
Wang Z., Sun Y., Q. Chen X., Franchini C., Xu G., Weng S., Dai X., Fang Z., Dirac semimetal, topological phase transitions in A3Bi (A = Na. Rb). Phys. Rev. B, 2012, 85(19): 195320
https://doi.org/10.1103/PhysRevB.85.195320
|
268 |
K. Liu Z., Zhou B., Zhang Y., J. Wang Z., M. Weng H., Prabhakaran D., K. Mo S., X. Shen Z., Fang Z., Dai X., Hussain Z., L. Chen Y., of a three-dimensional topological Dirac semimetal Discovery. Na3Bi. Science, 2014, 343(6173): 864
https://doi.org/10.1126/science.1245085
|
269 |
K. Liu Z.Jiang J.Zhou B.J. Wang Z.Zhang Y. M. Weng H.Prabhakaran D.K. Mo S.Peng H.Dudin P. Kim T.Hoesch M.Fang Z.Dai X.X. Shen Z. L. Feng D.Hussain Z.L. Chen Y., A stable three-dimensional topological Dirac semimetal Cd3As2, Nat. Mater. 13(7), 677 (2014)
|
270 |
M. Huang S.Y. Xu S.Belopolski I.C. Lee C.Chang G. K. Wang B.Alidoust N.Bian G.Neupane M.Zhang C. Jia S.Bansil A.Lin H.Z. Hasan M., A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nat. Commun. 6(1), 7373 (2015)
|
271 |
M. Weng H., Fang C., Fang Z., A. Bernevig B., Dai T.. Weyl semimetal phase in noncentrosymmetric transition metal monophosphides. Phys. Rev. X, 2015, 5(1): 011029
https://doi.org/10.1103/PhysRevX.5.011029
|
272 |
Y. Xu S., Belopolski I., Alidoust N., Neupane M., Bian G., Zhang C., Sankar R., Chang G., Yuan Z., C. Lee C., M. Huang S., Zheng H., Ma J., S. Sanchez D., K. Wang B., Bansil A., Chou F., P. Shibayev P., Lin H., Jia S., Z. Hasan M.. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science, 2015, 349(6248): 613
https://doi.org/10.1126/science.aaa9297
|
273 |
Q. Lv B., M. Weng H., B. Fu B., P. Wang X., Miao H., Ma J., Richard P., C. Huang X., X. Zhao L., F. Chen G., Fang Z., Dai X., Qian T., Ding H.. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X, 2015, 5(3): 031013
https://doi.org/10.1103/PhysRevX.5.031013
|
274 |
Wan X., M. Turner A., Vishwanath A., Y. Savrasov S.. Topological semimetal and Fermi arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B, 2011, 83(20): 205101
https://doi.org/10.1103/PhysRevB.83.205101
|
275 |
Y. Yang K., M. Lu Y., Ran Y.. Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates. Phys. Rev. B, 2011, 84(7): 075129
https://doi.org/10.1103/PhysRevB.84.075129
|
276 |
A. Burkov A., Balents L.. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett., 2011, 107(12): 127205
https://doi.org/10.1103/PhysRevLett.107.127205
|
277 |
B. Nielsen H., Ninomiya M.. The Adler−Bell− Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B, 1983, 130: 389
https://doi.org/10.1016/0370-2693(83)91529-0
|
278 |
T. Son D., Z. Spivak B.. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B, 2013, 88(10): 104412
https://doi.org/10.1103/PhysRevB.88.104412
|
279 |
Shoenberg D., Magnetic Oscillations in Metals, Cambridge University Press, 1984
|
280 |
E. Sebastian S.Harrison N.Palm E. P. Murphy T.H. Mielke C.Liang R.A. Bonn D.N. Hardy W. G. Lonzarich G., A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor, Nature 454(7201), 200 (2008)
|
281 |
Li L., G. Checkelsky J., S. Hor Y., Uher C., F. Hebard A., J. Cava R., P. Ong N.. Phase transitions of Dirac electrons in bismuth. Science, 2008, 321(5888): 547
https://doi.org/10.1126/science.1158908
|
282 |
Zhang Z., Wei W., Yang F., Zhu Z., Guo M., Feng Y., Yu D., Yao M., Harrison N., McDonald R., Zhang Y., Guan D., Qian D., Jia J., Wang Y.. Zeeman effect of the topological surface states revealed by quantum oscillations up to 91 Tesla. Phys. Rev. B, 2015, 92(23): 235402
https://doi.org/10.1103/PhysRevB.92.235402
|
283 |
L. Brignall N.. The de Haasvan−Alphen effect in n-InSb and n-InAs. J. Phys. C, 1974, 7(23): 4266
https://doi.org/10.1088/0022-3719/7/23/013
|
284 |
Zhang Y., W. Tan Y., L. Stormer H., Kim P.. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201
https://doi.org/10.1038/nature04235
|
285 |
Imada M., Fujimori A., Tokura Y.. Metal−insulator transitions. Rev. Mod. Phys., 1998, 70(4): 1039
https://doi.org/10.1103/RevModPhys.70.1039
|
286 |
L. Sondhi S., M. Girvin S., P. Carini J., Shahar D.. Continuous quantum phase transitions. Rev. Mod. Phys., 1997, 69(1): 315
https://doi.org/10.1103/RevModPhys.69.315
|
287 |
V. Kravchenko S., P. Sarachik M.. Metal–insulator transition in two-dimensional electron systems. Rep. Prog. Phys., 2004, 67(1): 1
https://doi.org/10.1088/0034-4885/67/1/R01
|
288 |
J. Newson D., Pepper M.. Critical conductivity at the magnetic field-induced metal−insulator transition in n-GaAs and n-InSb. J. Phys. C, 1986, 19(21): 3983
https://doi.org/10.1088/0022-3719/19/21/005
|
289 |
J. Goldman V., Shayegan M., D. Drew H.. Anomalous Hall effect below the magnetic field induced metal−insulator transition in narrow gap semiconductors. Phys. Rev. Lett., 1986, 57(8): 1056
https://doi.org/10.1103/PhysRevLett.57.1056
|
290 |
C. Maliepaard M., Pepper M., Newbury R., E. F. Frost J., C. Peacock D., A. Ritchie D., A. C. Jones G., Hill G.. Evidence of a magneticfield-induced insulator metal−insulator transition. Phys. Rev. B, 1989, 39(2): 1430
https://doi.org/10.1103/PhysRevB.39.1430
|
291 |
Dai P., Zhang Y., P. Sarachik M.. Effect of a magnetic field on the critical conductivity exponent at the metal−insulator transition. Phys. Rev. Lett., 1991, 67(1): 136
https://doi.org/10.1103/PhysRevLett.67.136
|
292 |
Kivelson S., H. Lee D., C. Zhang S.. Global phase diagram in the quantum Hall effect. Phys. Rev. B, 1992, 46(4): 2223
https://doi.org/10.1103/PhysRevB.46.2223
|
293 |
Wang T., P. Clark K., F. Spencer G., M. Mack A., P. Kirk W.. Magnetic field-induced metal−insulator transition in two dimensions. Phys. Rev. Lett., 1994, 72(5): 709
https://doi.org/10.1103/PhysRevLett.72.709
|
294 |
Tomioka Y., Asamitsu A., Kuwahara H., Moritomo Y., Tokura Y.. Magnetic field-induced metal-insulator phenomena in Pr1−xCaxMno3 with controlled charge ordering instability. Phys. Rev. B, 1996, 53(4): R1689
https://doi.org/10.1103/PhysRevB.53.R1689
|
295 |
Popović D., B. Fowler A., Washburn S.. Metal−insulator transition in two dimensions: Effects of dis order and magnetic field. Phys. Rev. Lett., 1997, 79(8): 1543
https://doi.org/10.1103/PhysRevLett.79.1543
|
296 |
C. Xie X., R. Wang X., Z. Liu D.. Kosterlitz−Thouless type metal−insulator transition of a 2D electron gas in a random magnetic field. Phys. Rev. Lett., 1998, 80(16): 3563
https://doi.org/10.1103/PhysRevLett.80.3563
|
297 |
An J., D. Gong C., Q. Lin H.. Theory of the magnetic field-induced metal−insulator transition. Phys. Rev. B, 2001, 63(17): 174434
https://doi.org/10.1103/PhysRevB.63.174434
|
298 |
Kempa H., Esquinazi P., Kopelevich Y.. Field induced metal−insulator transition in the c axis resistivity of graphite. Phys. Rev. B, 2002, 65(24): 241101
https://doi.org/10.1103/PhysRevB.65.241101
|
299 |
V. Gorbar E., P. Gusynin V., A. Miransky V., A. Shovkovy I.. Magnetic field driven metal−insulator phase transition in planar systems. Phys. Rev. B, 2002, 66(4): 045108
https://doi.org/10.1103/PhysRevB.66.045108
|
300 |
Kopelevich Y., C. M. Pantoja J., R. da Silva R., Moehlecke S.. Universal magnetic field driven metal insulator−metal transformations in graphite and bismuth. Phys. Rev. B, 2006, 73(16): 165128
https://doi.org/10.1103/PhysRevB.73.165128
|
301 |
J. W. Geldart D., Neilson D.. Quantum critical behavior in the insulating region of the two-dimensional metalinsulator transition. Phys. Rev. B, 2007, 76(19): 193304
https://doi.org/10.1103/PhysRevB.76.193304
|
302 |
Calder S., O. Garlea V., F. McMorrow D., D. Lumsden M., B. Stone M., C. Lang J., W. Kim J., A. Schlueter J., G. Shi Y., Yamaura K., S. Sun Y., Tsujimoto Y., D. Christianson A.. Magnetically driven metal−insulator transition in NaOsO3. Phys. Rev. Lett., 2012, 108(25): 257209
https://doi.org/10.1103/PhysRevLett.108.257209
|
303 |
Ueda K., Fujioka J., J. Yang B., Shiogai J., Tsukazaki A., Nakamura S., Awaji S., Nagaosa N., Tokura Y.. Magnetic field-induced insulator−semimetal transition in a pyrochlore Nd2Ir2O7. Phys. Rev. Lett., 2015, 115(5): 056402
https://doi.org/10.1103/PhysRevLett.115.056402
|
304 |
Tian Z., Kohama Y., Tomita T., Ishizuka H., H. Hsieh T., J. Ishikawa J., Kindo K., Balents L., Nakatsuji S.. Field-induced quantum metal–insulator transition in the pyrochlore iridate Nd2Ir2O7. Nat. Phys., 2016, 12(2): 134
https://doi.org/10.1038/nphys3567
|
305 |
Wang P., Ren Y., Tang F., Wang P., Hou T., Zeng H., Zhang L., Qiao Z.. Approaching three-dimensional quantum Hall effect in bulk HfTe5. Phys. Rev. B, 2020, 101(16): 161201
https://doi.org/10.1103/PhysRevB.101.161201
|
306 |
Vojta M.. Quantum phase transitions. Rep. Prog. Phys., 2003, 66(12): 2069
https://doi.org/10.1088/0034-4885/66/12/R01
|
307 |
Löhneysen H., Rosch A., Vojta M., Wölfle P.. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys., 2007, 79(3): 1015
https://doi.org/10.1103/RevModPhys.79.1015
|
308 |
Abrahams E., W. Anderson P., C. Licciardello D., V. Ramakrishnan T.. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 1979, 42(10): 673
https://doi.org/10.1103/PhysRevLett.42.673
|
309 |
J. Wegner F.. Electrons in disordered systems: scaling near the mobility edge. Z. Phys. B, 1976, 25: 327
|
310 |
L. McMillan W.. Scaling theory of the metal-insulator transition in amorphous materials. Phys. Rev. B, 1981, 24(5): 2739
https://doi.org/10.1103/PhysRevB.24.2739
|
311 |
A. Stafford C., J. Millis A.. Scaling theory of the Mott−Hubbard metal−insulator transition in one dimension. Phys. Rev. B, 1993, 48(3): 1409
https://doi.org/10.1103/PhysRevB.48.1409
|
312 |
Huckestein B.. Scaling theory of the integer quantum Hall effect. Rev. Mod. Phys., 1995, 67(2): 357
https://doi.org/10.1103/RevModPhys.67.357
|
313 |
Dobrosavljević V., Abrahams E., Miranda E., Chakravarty S.. Scaling theory of two-dimensional metal−insulator transitions. Phys. Rev. Lett., 1997, 79(3): 455
https://doi.org/10.1103/PhysRevLett.79.455
|
314 |
Pelissetto A., Vicari E.. Critical phenomena and renormalization group theory. Phys. Rep., 2002, 368(6): 549
https://doi.org/10.1016/S0370-1573(02)00219-3
|
315 |
Grüner G., Density Waves in Solids, CRC Press, 2018
|
316 |
Giamarchi T., Quantum Physics in One Dimension, Vol. 121, Clarendon Press, 2003
|
317 |
Watanabe H., Yanase Y.. Nonlinear electric transport in odd parity magnetic multipole systems: Application to Mn-based compounds. Phys. Rev. Res., 2020, 2(4): 043081
https://doi.org/10.1103/PhysRevResearch.2.043081
|
318 |
Y. Xu S., Xia Y., A. Wray L., Jia S., Meier F., H. Dil J., Osterwalder J., Slomski B., Bansil A., Lin H., J. Cava R., Z. Hasan M.. Topological phase transition and texture inversion in a tunable topological insulator. Science, 2011, 332(6029): 560
https://doi.org/10.1126/science.1201607
|
319 |
Gong Y., Guo J., Li J., Zhu K., Liao M., Liu X., Zhang Q., Gu L., Tang L., Feng X., Zhang D., Li W., Song C., Wang L., Yu P., Chen X., Wang Y., Yao H., Duan W., Xu Y., C. Zhang S., Ma X., K. Xue Q., He K.. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett., 2019, 36(7): 076801
https://doi.org/10.1088/0256-307X/36/7/076801
|
320 |
M. Otrokov M., P. Rusinov I., Blanco-Rey M., Hoffmann M., Y. Vyazovskaya A., V. Eremeev S., Ernst A., M. Echenique P., Arnau A., V. Chulkov E.. Unique thickness dependent properties of the van Der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett., 2019, 122(10): 107202
https://doi.org/10.1103/PhysRevLett.122.107202
|
321 |
Reeg C., Dmytruk O., Chevallier D., Loss D., Klinovaja J.. Zero energy Andreev bound states from quantum dots in proximitized Rashba nanowires. Phys. Rev. B, 2018, 98(24): 245407
https://doi.org/10.1103/PhysRevB.98.245407
|
322 |
A. Li C., B. Zhang S., Li J., Trauzettel B.. Higher-order Fabry−Pérot interferometer from topological hinge states. Phys. Rev. Lett., 2021, 127(2): 026803
https://doi.org/10.1103/PhysRevLett.127.026803
|
323 |
D. Landau L.. Paramagnetism of metals. Eur. Phys. J. A, 1930, 64(9−10): 629
https://doi.org/10.1007/BF01397213
|
324 |
Zhu Z., McDonald R., Shekhter A., Ramshaw B., A. Modic K., Balakirev F., Harrison N.. Magnetic field tuning of an excitonic insulator between the weak and strong coupling regimes in quantum limit graphite. Sci. Rep., 2017, 7(1): 1733
https://doi.org/10.1038/s41598-017-01693-5
|
325 |
Galeski S., Zhao X., Wawrzyńczak R., Meng T., Förster T., M. Lozano P., Honnali S., Lamba N., Ehmcke T., Markou A., Li Q., Gu G., Zhu W., Wosnitza J., Felser C., F. Chen G., Gooth J.. Unconventional Hall response in the quantum limit of HfTe5. Nat. Commun., 2020, 11(1): 5926
https://doi.org/10.1038/s41467-020-19773-y
|
326 |
Wang S.E. Kovalev A.V. Suslov A.Siegrist T., A facility for X-ray diffraction in magnetic fields up to 25 t and temperatures between 15 and 295 K, Rev. Sci. Instrum. 86(12), 123902 (2015)
|
327 |
Narumi Y.Kindo K.Katsumata K.Kawauchi M.Broennimann C.Staub U.Toyokawa H.Tanaka Y. Kikkawa K.Yamamoto T.Hagiwara M.Ishikawa T.Kitamura H., X-ray diffraction studies in pulsed high magnetic fields, J. Phys. Conf. Ser. 51, 494 (2006)
|
328 |
Pototsching P.Gratz E.Kirchmayr H.Lindbaum A., X-ray diffraction in magnetic fields, J. Alloys Compd. 247(1–2), 234 (1997)
|
329 |
Wang P., Tang F., Wang P., Zhu H., W. Cho C., Wang J., Du X., Shao Y., Zhang L.. Quantum transport properties of β-Bi4I4 near and well beyond the extreme quantum limit. Phys. Rev. B, 2021, 103(15): 155201
https://doi.org/10.1103/PhysRevB.103.155201
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|