Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (4) : 41301    https://doi.org/10.1007/s11467-022-1253-3
RESEARCH ARTICLE
Quantum entanglement generation on magnons assisted with microwave cavities coupled to a superconducting qubit
Jiu-Ming Li, Shao-Ming Fei()
School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
 Download: PDF(4130 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present protocols to generate quantum entanglement on nonlocal magnons in hybrid systems composed of yttrium iron garnet (YIG) spheres, microwave cavities and a superconducting (SC) qubit. In the schemes, the YIGs are coupled to respective microwave cavities in resonant way, and the SC qubit is placed at the center of the cavities, which interacts with the cavities simultaneously. By exchanging the virtual photon, the cavities can indirectly interact in the far-detuning regime. Detailed protocols are presented to establish entanglement for two, three and arbitrary N magnons with reasonable fidelities.

Keywords magnon      superconducting qubit      quantum electrodynamics      quantum entanglement      indirect interaction     
Corresponding Author(s): Shao-Ming Fei   
Issue Date: 15 February 2023
 Cite this article:   
Jiu-Ming Li,Shao-Ming Fei. Quantum entanglement generation on magnons assisted with microwave cavities coupled to a superconducting qubit[J]. Front. Phys. , 2023, 18(4): 41301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1253-3
https://academic.hep.com.cn/fop/EN/Y2023/V18/I4/41301
Fig.1  Schematic of the hybrid system composed of three yttrium iron garnet spheres coupled to respective microwave cavities. A superconducting qubit (black spot) is placed at the center of the three cavities.
Fig.2  Schematic of the hybrid system composed of two yttrium iron garnet spheres coupled to respective microwave cavities. Two cavities cross each other, and a superconducting qubit (black spot) is placed at the center of the crossing.
Fig.3  (a) The fidelity of the Bell state of two nonlocal magnons with respect to the coupling strength λq. Since λ~q=λq2/Δ0 in Eq. (3), the fidelity is similar to parabola. (b?d) The fidelity of the Bell state versus the dissipations of cavities, magnons, and SC qubit, respectively.
Fig.4  Evolution probabilities of the states: P1=|C1,t(3)|2 for |100?a|000?m|g?q (red), P2=|C2,t(3)|2 for |010?a|000?m|g?q, P3=|C3,t(3)|2 for |001?a|000?m|g?q, and P2=P3 (blue).
Fig.5  (a?c) The fidelity of the entanglement on three nonlocal magnons versus the dissipations of cavities, magnons and SC qubit.
Fig.6  Schematic of the hybrid system composed of N yttrium iron garnet spheres coupled to respective microwave cavities. A superconducting qubit is placed at the center of the N identical microwave cavities.
Fig.7  Evolution probabilities for N=4 (a), N=5 (b), and N=6 (c). If N?5, p1(N)p2(N) implies that the isoprobability entanglement does not exist.
1 Einstein A. , Podolsky B. , Rosen N. . Can quantum−mechanical description of physical reality be considered complete. Phys. Rev., 1935, 47(10): 777
https://doi.org/10.1103/PhysRev.47.777
2 Bouwmeester D. , W. Pan J. , Daniell M. , Weinfurter H. , Zeilinger A. . Observation of three-photon Greenberger−Horne−Zeilinger entanglement. Phys. Rev. Lett., 1999, 82(7): 1345
https://doi.org/10.1103/PhysRevLett.82.1345
3 Dür W. , Vidal G. , I. Cirac J. . Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 2000, 62(6): 062314
https://doi.org/10.1103/PhysRevA.62.062314
4 Horodecki R. , Horodecki P. , Horodecki M. , Horodecki K. . Quantum entanglement. Rev. Mod. Phys., 2009, 81(2): 865
https://doi.org/10.1103/RevModPhys.81.865
5 M. Raimond J. , Brune M. , Haroche S. . Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys., 2001, 73(3): 565
https://doi.org/10.1103/RevModPhys.73.565
6 G. H. Vollbrecht K. , I. Cirac J. . Delocalized entanglement of atoms in optical lattices. Phys. Rev. Lett., 2007, 98(19): 190502
https://doi.org/10.1103/PhysRevLett.98.190502
7 Bina M. , Casagrande F. , Lulli A. , Solano E. . Monitoring atom−atom entanglement and decoherence in a solvable tripartite open system in cavity QED. Phys. Rev. A, 2008, 77(3): 033839
https://doi.org/10.1103/PhysRevA.77.033839
8 León J. , Sabín C. . Photon exchange and correlation transfer in atom-atom entanglement dynamics. Phys. Rev. A, 2009, 79(1): 012301
https://doi.org/10.1103/PhysRevA.79.012301
9 A. Li W. , Y. Huang G. . Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics. Phys. Rev. A, 2011, 83(2): 022322
https://doi.org/10.1103/PhysRevA.83.022322
10 Roghani M. , Helm H. , P. Breuer H. . Entanglement dynamics of a strongly driven trapped atom. Phys. Rev. Lett., 2011, 106(4): 040502
https://doi.org/10.1103/PhysRevLett.106.040502
11 Rogers R. , Cummings N. , M. Pedrotti L. , Rice P. . Atom-field entanglement in cavity QED: Nonlinearity and saturation. Phys. Rev. A, 2017, 96(5): 052311
https://doi.org/10.1103/PhysRevA.96.052311
12 Jo H. , Song Y. , Kim M. , Ahn J. . Rydberg atom entanglements in the weak coupling regime. Phys. Rev. Lett., 2020, 124(3): 033603
https://doi.org/10.1103/PhysRevLett.124.033603
13 Y. Luo X. , Yu Y. , L. Liu J. , Y. Zheng M. , Y. Wang C. , Wang B. , Li J. , Jiang X. , P. Xie X. , Zhang Q. , H. Bao X. , W. Pan J. . Postselected entanglement between two atomic ensembles separated by 12.5 km. Phys. Rev. Lett., 2022, 129(5): 050503
https://doi.org/10.1103/PhysRevLett.129.050503
14 Jin Z. , L. Su S. , D. Zhu A. , F. Wang H. , Zhang S. . Engineering multipartite steady entanglement of distant atoms via dissipation. Front. Phys., 2018, 13(5): 134209
https://doi.org/10.1007/s11467-018-0826-7
15 Michalakis S. , Nachtergaele B. . Entanglement in finitely correlated spin states. Phys. Rev. Lett., 2006, 97(14): 140601
https://doi.org/10.1103/PhysRevLett.97.140601
16 Tóth G. , Knapp C. , Gühne O. , J. Briegel H. . Spin squeezing and entanglement. Phys. Rev. A, 2009, 79(4): 042334
https://doi.org/10.1103/PhysRevA.79.042334
17 Zheng H. , T. Dung H. , Hillery M. . Application of entanglement conditions to spin systems. Phys. Rev. A, 2010, 81(6): 062311
https://doi.org/10.1103/PhysRevA.81.062311
18 Troiani F. , Carretta S. , Santini P. . Detection of entanglement between collective spins. Phys. Rev. B, 2013, 88(19): 195421
https://doi.org/10.1103/PhysRevB.88.195421
19 Ström A. , Johannesson H. , Recher P. . Controllable spin entanglement production in a quantum spin Hall ring. Phys. Rev. B, 2015, 91(24): 245406
https://doi.org/10.1103/PhysRevB.91.245406
20 C. Szabo J. , Trivedi N. . Entanglement dynamics between Ising spins and a central ancilla. Phys. Rev. A, 2022, 105(5): 052431
https://doi.org/10.1103/PhysRevA.105.052431
21 Azimi-Mousolou V. , Bergman A. , Delin A. , Eriksson O. , Pereiro M. , Thonig D. , Sjöqvist E. . Entanglement duality in spin−spin interactions. Phys. Rev. A, 2022, 106(3): 032407
https://doi.org/10.1103/PhysRevA.106.032407
22 Retzker A. , I. Cirac J. , Reznik B. . Detecting vacuum entanglement in a linear ion trap. Phys. Rev. Lett., 2005, 94(5): 050504
https://doi.org/10.1103/PhysRevLett.94.050504
23 X. Li G. , P. Wu S. , M. Huang G. . Generation of entanglement and squeezing in the system of two ions trapped in a cavity. Phys. Rev. A, 2005, 71(6): 063817
https://doi.org/10.1103/PhysRevA.71.063817
24 L. Semião F. , Furuya K. . Entanglement in the dispersive interaction of trapped ions with a quantized field. Phys. Rev. A, 2007, 75(4): 042315
https://doi.org/10.1103/PhysRevA.75.042315
25 Nicacio F. , Furuya K. , L. Semião F. . Motional entanglement with trapped ions and a nanomechanical resonator. Phys. Rev. A, 2013, 88(2): 022330
https://doi.org/10.1103/PhysRevA.88.022330
26 D. B. Bentley C. , R. R. Carvalho A. , Kielpinski D. , J. Hope J. . Detection-enhanced steady state entanglement with ions. Phys. Rev. Lett., 2014, 113(4): 040501
https://doi.org/10.1103/PhysRevLett.113.040501
27 Lake K. , Weidt S. , Randall J. , D. Standing E. , C. Webster S. , K. Hensinger W. . Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation. Phys. Rev. A, 2015, 91(1): 012319
https://doi.org/10.1103/PhysRevA.91.012319
28 Hannegan J. , D. Siverns J. , Cassell J. , Quraishi Q. . Improving entanglement generation rates in trapped-ion quantum networks using nondestructive photon measurement and storage. Phys. Rev. A, 2021, 103(5): 052433
https://doi.org/10.1103/PhysRevA.103.052433
29 C. Cole D. , D. Erickson S. , Zarantonello G. , P. Horn K. , Y. Hou P. , J. Wu J. , H. Slichter D. , Reiter F. , P. Koch C. , Leibfried D. . Resource-efficient dissipative entanglement of two trapped-ion qubits. Phys. Rev. Lett., 2022, 128(8): 080502
https://doi.org/10.1103/PhysRevLett.128.080502
30 S. Eisenberg H. , Khoury G. , A. Durkin G. , Simon C. , Bouwmeester D. . Quantum entanglement of a large number of photons. Phys. Rev. Lett., 2004, 93(19): 193901
https://doi.org/10.1103/PhysRevLett.93.193901
31 O. S. Yin J. , J. van Enk S. . Entanglement and purity of one- and two-photon states. Phys. Rev. A, 2008, 77(6): 062333
https://doi.org/10.1103/PhysRevA.77.062333
32 Salart D. , Landry O. , Sangouard N. , Gisin N. , Herrmann H. , Sanguinetti B. , Simon C. , Sohler W. , T. Thew R. , Thomas A. , Zbinden H. . Purification of single-photon entanglement. Phys. Rev. Lett., 2010, 104(18): 180504
https://doi.org/10.1103/PhysRevLett.104.180504
33 Wang H. , Mariantoni M. , C. Bialczak R. , Lenander M. , Lucero E. , Neeley M. , D. O’Connell A. , Sank D. , Weides M. , Wenner J. , Yamamoto T. , Yin Y. , Zhao J. , M. Martinis J. , N. Cleland A. , N. Cleland Martinis . Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett., 2011, 106(6): 060401
https://doi.org/10.1103/PhysRevLett.106.060401
34 L. Wang X. , K. Chen L. , Li W. , L. Huang H. , Liu C. , Chen C. , H. Luo Y. , E. Su Z. , Wu D. , D. Li Z. , Lu H. , Hu Y. , Jiang X. , Z. Peng C. , Li L. , L. Liu N. , A. Chen Y. , Y. Lu C. , W. Pan J. . Experimental ten-photon entanglement. Phys. Rev. Lett., 2016, 117(21): 210502
https://doi.org/10.1103/PhysRevLett.117.210502
35 Kfir O. . Entanglements of electrons and cavity photons in the strong-coupling regime. Phys. Rev. Lett., 2019, 123(10): 103602
https://doi.org/10.1103/PhysRevLett.123.103602
36 C. Dada A. , Kaniewski J. , Gawith C. , Lavery M. , H. Hadfield R. , Faccio D. , Clerici M. . Near-maximal two-photon entanglement for optical quantum communication at 2.1μm. Phys. Rev. Appl., 2021, 16(5): L051005
https://doi.org/10.1103/PhysRevApplied.16.L051005
37 V. Rakonjac J. , Lago-Rivera D. , Seri A. , Mazzera M. , Grandi S. , de Riedmatten H. . Entanglement between a telecom photon and an on-demand multimode solid-state quantum memory. Phys. Rev. Lett., 2021, 127(21): 210502
https://doi.org/10.1103/PhysRevLett.127.210502
38 Wang H. , C. Ren B. , H. Wang A. , Alsaedi A. , Hayat T. , G. Deng F. . General hyperentanglement concentration for polarization spatial-time-bin multi-photon systems with linear optics. Front. Phys., 2018, 13(5): 130315
https://doi.org/10.1007/s11467-018-0801-3
39 Liu T. , F. Zheng Z. , Zhang Y. , L. Fang Y. , P. Yang C. . Transferring entangled states of photonic cat-state qubits in circuit QED. Front. Phys., 2020, 15(2): 21603
https://doi.org/10.1007/s11467-019-0949-5
40 Akram U. , Munro W. , Nemoto K. , J. Milburn G. . Photon−phonon entanglement in coupled optomechanical arrays. Phys. Rev. A, 2012, 86(4): 042306
https://doi.org/10.1103/PhysRevA.86.042306
41 Finazzi S. , Carusotto I. . Entangled phonons in atomic Bose−Einstein condensates. Phys. Rev. A, 2014, 90(3): 033607
https://doi.org/10.1103/PhysRevA.90.033607
42 S. Chen S. , Zhang H. , Ai Q. , J. Yang G. . Phononic entanglement concentration via optomechanical interactions. Phys. Rev. A, 2019, 100(5): 052306
https://doi.org/10.1103/PhysRevA.100.052306
43 Di Tullio M. , Gigena N. , Rossignoli R. . Fermionic entanglement in superconducting systems. Phys. Rev. A, 2018, 97(6): 062109
https://doi.org/10.1103/PhysRevA.97.062109
44 Gong M. , C. Chen M. , Zheng Y. , Wang S. , Zha C. , Deng H. , Yan Z. , Rong H. , Wu Y. , Li S. , Chen F. , Zhao Y. , Liang F. , Lin J. , Xu Y. , Guo C. , Sun L. , D. Castellano A. , Wang H. , Peng C. , Y. Lu C. , Zhu X. , W. Pan J. . Genuine 12-qubit entanglement on a superconducting quantum processor. Phys. Rev. Lett., 2019, 122(11): 110501
https://doi.org/10.1103/PhysRevLett.122.110501
45 Ning W. , J. Huang X. , R. Han P. , Li H. , Deng H. , B. Yang Z. , R. Zhong Z. , Xia Y. , Xu K. , Zheng D. , B. Zheng S. . Deterministic entanglement swapping in a superconducting circuit. Phys. Rev. Lett., 2019, 123(6): 060502
https://doi.org/10.1103/PhysRevLett.123.060502
46 Ma Y. , Pan X. , Cai W. , Mu X. , Xu Y. , Hu L. , Wang W. , Wang H. , P. Song Y. , B. Yang Z. , B. Zheng S. , Sun L. . Manipulating complex hybrid entanglement and testing multipartite bell inequalities in a superconducting circuit. Phys. Rev. Lett., 2020, 125(18): 180503
https://doi.org/10.1103/PhysRevLett.125.180503
47 Krastanov S. , Raniwala H. , Holzgrafe J. , Jacobs K. , Lončar M. , J. Reagor M. , R. Englund D. . Optically heralded entanglement of superconducting systems in quantum networks. Phys. Rev. Lett., 2021, 127(4): 040503
https://doi.org/10.1103/PhysRevLett.127.040503
48 Cervera-Lierta A. , Krenn M. , Aspuru-Guzik A. , Galda A. . Experimental high-dimensional Greenberger−Horne−Zeilinger entanglement with superconducting transmon qutrits. Phys. Rev. Appl., 2022, 17(2): 024062
https://doi.org/10.1103/PhysRevApplied.17.024062
49 Li J. , Y. Zhu S. , S. Agarwal G. . Magnon−photon−phonon entanglement in cavity magnomechanics. Phys. Rev. Lett., 2018, 121(20): 203601
https://doi.org/10.1103/PhysRevLett.121.203601
50 Li J. , Y. Zhu S. . Entangling two magnon modes via magnetostrictive interaction. New J. Phys., 2019, 21(8): 085001
https://doi.org/10.1088/1367-2630/ab3508
51 Y. Yuan H. , Zheng S. , Ficek Z. , Y. He Q. , H. Yung M. . Enhancement of magnon-magnon entanglement inside a cavity. Phys. Rev. B, 2020, 101(1): 014419
https://doi.org/10.1103/PhysRevB.101.014419
52 Kong D. , Hu X. , Hu L. , Xu J. . Magnon−atom interaction via dispersive cavities: Magnon entanglement. Phys. Rev. B, 2021, 103(22): 224416
https://doi.org/10.1103/PhysRevB.103.224416
53 Azimi Mousolou V. , Liu Y. , Bergman A. , Delin A. , Eriksson O. , Pereiro M. , Thonig D. , Sjöqvist E. . Magnon−magnon entanglement and its quantification via a microwave cavity. Phys. Rev. B, 2021, 104(22): 224302
https://doi.org/10.1103/PhysRevB.104.224302
54 Wang F. , Gou C. , Xu J. , Gong C. . Hybrid magnonatom entanglement and magnon blockade via quantum interference. Phys. Rev. A, 2022, 106(1): 013705
https://doi.org/10.1103/PhysRevA.106.013705
55 Qi S.-F. , Jing J. . Generation of Bell and Greenberger-Horne-Zeilinger states from a hybrid qubit-photon-magnon system. Phys. Rev. A, 2022, 105: 022624
https://doi.org/10.1103/PhysRevA.105.022624
56 Rogers B. , Paternostro M. , M. Palma G. , De Chiara G. . Entanglement control in hybrid optomechanical systems. Phys. Rev. A, 2012, 86(4): 042323
https://doi.org/10.1103/PhysRevA.86.042323
57 Borrelli M. , Rossi M. , Macchiavello C. , Maniscalco S. . Witnessing entanglement in hybrid systems. Phys. Rev. A, 2014, 90: 020301(R)
https://doi.org/10.1103/PhysRevA.90.020301
58 Joshi C. , Larson J. , P. Spiller T. . Quantum state engineering in hybrid open quantum systems. Phys. Rev. A, 2016, 93(4): 043818
https://doi.org/10.1103/PhysRevA.93.043818
59 Z. Ye Q. , T. Liang Z. , X. Zhang W. , J. Pan D. , Y. Xue Z. , Yan H. . Speedup of entanglement generation in hybrid quantum systems through linear driving. Phys. Rev. A, 2022, 106(1): 012407
https://doi.org/10.1103/PhysRevA.106.012407
60 L. Xiang Z. , Ashhab S. , Q. You J. , Nori F. . Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys., 2013, 85(2): 623
https://doi.org/10.1103/RevModPhys.85.623
61 Blais A. , S. Huang R. , Wallraff A. , M. Girvin S. , J. Schoelkopf R. . Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A, 2004, 69(6): 062320
https://doi.org/10.1103/PhysRevA.69.062320
62 Q. You J. , Nori F. . Superconducting circuits and quantum information. Phys. Today, 2005, 58(11): 42
https://doi.org/10.1063/1.2155757
63 Blais A. , L. Grimsmo A. , M. Girvin S. , Wallraff A. . Circuit quantum electrodynamics. Rev. Mod. Phys., 2021, 93(2): 025005
https://doi.org/10.1103/RevModPhys.93.025005
64 Y. Yuan H. , Yan P. , Zheng S. , Y. He Q. , Xia K. , H. Yung M. . Steady Bell state generation via magnon−photon coupling. Phys. Rev. Lett., 2020, 124(5): 053602
https://doi.org/10.1103/PhysRevLett.124.053602
65 Zhao Y. , Wang L. , Xue J. , Zhang Q. , Tian Y. , Yan S. , Bai L. , Harder M. , Guo Q. , Zhai Y. . Measuring the magnon phase in a hybrid magnon−photon system. Phys. Rev. B, 2022, 105(17): 174405
https://doi.org/10.1103/PhysRevB.105.174405
66 Zhang X. , L. Zou C. , Jiang L. , Tang H. . Cavity magnomechanics. Sci. Adv., 2016, 2(3): e1501286
https://doi.org/10.1126/sciadv.1501286
67 Streib S. , Vidal-Silva N. , Shen K. , E. W. Bauer G. . Magnon−phonon interactions in magnetic insulators. Phys. Rev. B, 2019, 99(18): 184442
https://doi.org/10.1103/PhysRevB.99.184442
68 Yu M. , Shen H. , Li J. . Magnetostrictively induced stationary entanglement between two microwave fields. Phys. Rev. Lett., 2020, 124(21): 213604
https://doi.org/10.1103/PhysRevLett.124.213604
69 F. Qi S. , Jing J. . Magnon-assisted photon-phonon conversion in the presence of structured environments. Phys. Rev. A, 2021, 103(4): 043704
https://doi.org/10.1103/PhysRevA.103.043704
70 Zhang X. , L. Zou C. , Jiang L. , X. Tang H. . Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett., 2014, 113(15): 156401
https://doi.org/10.1103/PhysRevLett.113.156401
71 P. Wang Y. , Q. Zhang G. , Zhang D. , Q. Luo X. , Xiong W. , P. Wang S. , F. Li T. , M. Hu C. , Q. You J. . Magnon Kerr effect in a strongly coupled cavity-magnon system. Phys. Rev. B, 2016, 94(22): 224410
https://doi.org/10.1103/PhysRevB.94.224410
72 P. Wang Y. , Q. Zhang G. , Zhang D. , F. Li T. , M. Hu C. , Q. You J. . Bistability of cavity magnon polaritons. Phys. Rev. Lett., 2018, 120(5): 057202
https://doi.org/10.1103/PhysRevLett.120.057202
73 Hisatomi R. , Osada A. , Tabuchi Y. , Ishikawa T. , Noguchi A. , Yamazaki R. , Usami K. , Nakamura Y. . Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B, 2016, 93(17): 174427
https://doi.org/10.1103/PhysRevB.93.174427
74 Li J. , Y. Zhu S. , S. Agarwal G. . Squeezed states of magnons and phonons in cavity magnomechanics. Phys. Rev. A, 2019, 99: 021801(R)
https://doi.org/10.1103/PhysRevA.99.021801
75 Zou J. , K. Kim S. , Tserkovnyak Y. . Tuning entanglement by squeezing magnons in anisotropic magnets. Phys. Rev. B, 2020, 101(1): 014416
https://doi.org/10.1103/PhysRevB.101.014416
76 A. S. V. Bittencourt V. , Feulner V. , V. Kusminskiy S. . Magnon heralding in cavity optomagnonics. Phys. Rev. A, 2019, 100(1): 013810
https://doi.org/10.1103/PhysRevA.100.013810
77 Kittel C. . On the theory of ferromagnetic resonance absorption. Phys. Rev., 1948, 73(2): 155
https://doi.org/10.1103/PhysRev.73.155
78 Chen J. , Liu C. , Liu T. , Xiao Y. , Xia K. , E. W. Bauer G. , Wu M. , Yu H. . Strong interlayer magnon-magnon coupling in magnetic metal-insulator hybrid nanostructures. Phys. Rev. Lett., 2018, 120(21): 217202
https://doi.org/10.1103/PhysRevLett.120.217202
79 Liensberger L. , Kamra A. , Maier-Flaig H. , Geprägs S. , Erb A. , T. B. Goennenwein S. , Gross R. , Belzig W. , Huebl H. , Weiler M. . Exchange-enhanced ultrastrong magnon−magnon coupling in a compensated ferrimagnet. Phys. Rev. Lett., 2019, 123(11): 117204
https://doi.org/10.1103/PhysRevLett.123.117204
80 Li Y. , G. Yefremenko V. , Lisovenko M. , Trevillian C. , Polakovic T. , W. Cecil T. , S. Barry P. , Pearson J. , Divan R. , Tyberkevych V. , L. Chang C. , Welp U. , K. Kwok W. , Novosad V. . Coherent coupling of two remote magnonic resonators mediated by superconducting circuits. Phys. Rev. Lett., 2022, 128(4): 047701
https://doi.org/10.1103/PhysRevLett.128.047701
81 Tabuchi Y. , Ishino S. , Noguchi A. , Ishikawa T. , Yamazaki R. , Usami K. , Nakamura Y. . Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science, 2015, 349(6246): 405
https://doi.org/10.1126/science.aaa3693
82 Lachance-Quirion D. , P. Wolski S. , Tabuchi Y. , Kono S. , Usami K. , Nakamura Y. . Entanglement-based single shot detection of a single magnon with a superconducting qubit. Science, 2020, 367(6476): 425
https://doi.org/10.1126/science.aaz9236
83 K. Xie J. , L. Ma S. , L. Li F. . Quantum-interference enhanced magnon blockade in an yttrium-iron-garnet sphere coupled to superconducting circuits. Phys. Rev. A, 2020, 101(4): 042331
https://doi.org/10.1103/PhysRevA.101.042331
84 F. James D. , Jerke J. . Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys., 2007, 85(6): 625
https://doi.org/10.1139/p07-060
85 Buluta I. , Nori F. . Quantum simulators. Science, 2009, 326(5949): 108
https://doi.org/10.1126/science.1177838
[1] Wei Feng, Dexi Shao, Guo-Qiang Zhang, Qi-Ping Su, Jun-Xiang Zhang, Chui-Ping Yang. Quantum simulation of Hofstadter butterfly with synthetic gauge fields on two-dimensional superconducting-qubit lattices[J]. Front. Phys. , 2023, 18(6): 61302-.
[2] Gaoyang Li, Fuming Xu, Jian Wang. Universal behaviors of magnon-mediated spin transport in disordered nonmagnetic metal-ferromagnetic insulator heterostructures[J]. Front. Phys. , 2023, 18(3): 33310-.
[3] Cui Kong, Jibing Liu, Hao Xiong. Nonreciprocal microwave transmission under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect[J]. Front. Phys. , 2023, 18(1): 12501-.
[4] Tong Liu, Bao-Qing Guo, Yan-Hui Zhou, Jun-Long Zhao, Yu-Liang Fang, Qi-Cheng Wu, Chui-Ping Yang. Transfer of quantum entangled states between superconducting qubits and microwave field qubits[J]. Front. Phys. , 2022, 17(6): 61502-.
[5] Kai Wang, Yong-Pan Gao, Rongzhen Jiao, Chuan Wang. Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics[J]. Front. Phys. , 2022, 17(4): 42201-.
[6] Yexiong Zeng, Biao Xiong, Chong Li. Suppressing laser phase noise in an optomechanical system[J]. Front. Phys. , 2022, 17(1): 12503-.
[7] Yong-Hao Gao, Xu-Ping Yao, Fei-Ye Li, Gang Chen. Spin-1 pyrochlore antiferromagnets: Theory, model, and materials’ survey[J]. Front. Phys. , 2020, 15(6): 63201-.
[8] Xiao-Tao Mo, Zheng-Yuan Xue. Single-step multipartite entangled states generation from coupled circuit cavities[J]. Front. Phys. , 2019, 14(3): 31602-.
[9] J. Batle, A. Farouk, O. Tarawneh, S. Abdalla. Multipartite quantum correlations among atoms in QED cavities[J]. Front. Phys. , 2018, 13(1): 130305-.
[10] Cun-Jin Liu, Wei Ye, Wei-Dong Zhou, Hao-Liang Zhang, Jie-Hui Huang, Li-Yun Hu. Entanglement of coherent superposition of photon-subtraction squeezed vacuum[J]. Front. Phys. , 2017, 12(5): 120307-.
[11] Chao Yu,Jingtao Zhang,Zhenrong Sun,Ju Gao,Dong-Sheng Guo. Conditions for ponderomotive resonances in the Kapitza–Dirac effect[J]. Front. Phys. , 2015, 10(5): 104208-.
[12] Chao Yu, Jingtao Zhang, Zhi-Wei Sun, Zhenrong Sun, Dong-Sheng Guo. A nonperturbative quantum electrodynamic approach to the theory of laser induced high harmonic generation[J]. Front. Phys. , 2015, 10(4): 103202-.
[13] Dong-Sheng Guo, Chao Yu, Jingtao Zhang, Ju Gao, Zhi-Wei Sun, Zhenrong Sun. On the cutoff law of laser induced high harmonic spectra[J]. Front. Phys. , 2015, 10(2): 103201-.
[14] Dong-Sheng Guo, Jing-Tao Zhang, Zhen-Rong Sun, Jin T. Wang, Ju Gao, Zhi-Wei Sun, R. R. Freeman. Even–odd harmonics generated from above-threshold ionization[J]. Front. Phys. , 2014, 9(1): 69-73.
[15] Ming Li, Ming-Jing Zhao, Shao-Ming Fei, Zhi-Xi Wang. Experimental detection of quantum entanglement[J]. Front. Phys. , 2013, 8(4): 357-374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed