|
|
Quantum entanglement generation on magnons assisted with microwave cavities coupled to a superconducting qubit |
Jiu-Ming Li, Shao-Ming Fei( ) |
School of Mathematical Sciences, Capital Normal University, Beijing 100048, China |
|
|
Abstract We present protocols to generate quantum entanglement on nonlocal magnons in hybrid systems composed of yttrium iron garnet (YIG) spheres, microwave cavities and a superconducting (SC) qubit. In the schemes, the YIGs are coupled to respective microwave cavities in resonant way, and the SC qubit is placed at the center of the cavities, which interacts with the cavities simultaneously. By exchanging the virtual photon, the cavities can indirectly interact in the far-detuning regime. Detailed protocols are presented to establish entanglement for two, three and arbitrary N magnons with reasonable fidelities.
|
Keywords
magnon
superconducting qubit
quantum electrodynamics
quantum entanglement
indirect interaction
|
Corresponding Author(s):
Shao-Ming Fei
|
Issue Date: 15 February 2023
|
|
1 |
Einstein A. , Podolsky B. , Rosen N. . Can quantum−mechanical description of physical reality be considered complete. Phys. Rev., 1935, 47(10): 777
https://doi.org/10.1103/PhysRev.47.777
|
2 |
Bouwmeester D. , W. Pan J. , Daniell M. , Weinfurter H. , Zeilinger A. . Observation of three-photon Greenberger−Horne−Zeilinger entanglement. Phys. Rev. Lett., 1999, 82(7): 1345
https://doi.org/10.1103/PhysRevLett.82.1345
|
3 |
Dür W. , Vidal G. , I. Cirac J. . Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 2000, 62(6): 062314
https://doi.org/10.1103/PhysRevA.62.062314
|
4 |
Horodecki R. , Horodecki P. , Horodecki M. , Horodecki K. . Quantum entanglement. Rev. Mod. Phys., 2009, 81(2): 865
https://doi.org/10.1103/RevModPhys.81.865
|
5 |
M. Raimond J. , Brune M. , Haroche S. . Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys., 2001, 73(3): 565
https://doi.org/10.1103/RevModPhys.73.565
|
6 |
G. H. Vollbrecht K. , I. Cirac J. . Delocalized entanglement of atoms in optical lattices. Phys. Rev. Lett., 2007, 98(19): 190502
https://doi.org/10.1103/PhysRevLett.98.190502
|
7 |
Bina M. , Casagrande F. , Lulli A. , Solano E. . Monitoring atom−atom entanglement and decoherence in a solvable tripartite open system in cavity QED. Phys. Rev. A, 2008, 77(3): 033839
https://doi.org/10.1103/PhysRevA.77.033839
|
8 |
León J. , Sabín C. . Photon exchange and correlation transfer in atom-atom entanglement dynamics. Phys. Rev. A, 2009, 79(1): 012301
https://doi.org/10.1103/PhysRevA.79.012301
|
9 |
A. Li W. , Y. Huang G. . Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics. Phys. Rev. A, 2011, 83(2): 022322
https://doi.org/10.1103/PhysRevA.83.022322
|
10 |
Roghani M. , Helm H. , P. Breuer H. . Entanglement dynamics of a strongly driven trapped atom. Phys. Rev. Lett., 2011, 106(4): 040502
https://doi.org/10.1103/PhysRevLett.106.040502
|
11 |
Rogers R. , Cummings N. , M. Pedrotti L. , Rice P. . Atom-field entanglement in cavity QED: Nonlinearity and saturation. Phys. Rev. A, 2017, 96(5): 052311
https://doi.org/10.1103/PhysRevA.96.052311
|
12 |
Jo H. , Song Y. , Kim M. , Ahn J. . Rydberg atom entanglements in the weak coupling regime. Phys. Rev. Lett., 2020, 124(3): 033603
https://doi.org/10.1103/PhysRevLett.124.033603
|
13 |
Y. Luo X. , Yu Y. , L. Liu J. , Y. Zheng M. , Y. Wang C. , Wang B. , Li J. , Jiang X. , P. Xie X. , Zhang Q. , H. Bao X. , W. Pan J. . Postselected entanglement between two atomic ensembles separated by 12.5 km. Phys. Rev. Lett., 2022, 129(5): 050503
https://doi.org/10.1103/PhysRevLett.129.050503
|
14 |
Jin Z. , L. Su S. , D. Zhu A. , F. Wang H. , Zhang S. . Engineering multipartite steady entanglement of distant atoms via dissipation. Front. Phys., 2018, 13(5): 134209
https://doi.org/10.1007/s11467-018-0826-7
|
15 |
Michalakis S. , Nachtergaele B. . Entanglement in finitely correlated spin states. Phys. Rev. Lett., 2006, 97(14): 140601
https://doi.org/10.1103/PhysRevLett.97.140601
|
16 |
Tóth G. , Knapp C. , Gühne O. , J. Briegel H. . Spin squeezing and entanglement. Phys. Rev. A, 2009, 79(4): 042334
https://doi.org/10.1103/PhysRevA.79.042334
|
17 |
Zheng H. , T. Dung H. , Hillery M. . Application of entanglement conditions to spin systems. Phys. Rev. A, 2010, 81(6): 062311
https://doi.org/10.1103/PhysRevA.81.062311
|
18 |
Troiani F. , Carretta S. , Santini P. . Detection of entanglement between collective spins. Phys. Rev. B, 2013, 88(19): 195421
https://doi.org/10.1103/PhysRevB.88.195421
|
19 |
Ström A. , Johannesson H. , Recher P. . Controllable spin entanglement production in a quantum spin Hall ring. Phys. Rev. B, 2015, 91(24): 245406
https://doi.org/10.1103/PhysRevB.91.245406
|
20 |
C. Szabo J. , Trivedi N. . Entanglement dynamics between Ising spins and a central ancilla. Phys. Rev. A, 2022, 105(5): 052431
https://doi.org/10.1103/PhysRevA.105.052431
|
21 |
Azimi-Mousolou V. , Bergman A. , Delin A. , Eriksson O. , Pereiro M. , Thonig D. , Sjöqvist E. . Entanglement duality in spin−spin interactions. Phys. Rev. A, 2022, 106(3): 032407
https://doi.org/10.1103/PhysRevA.106.032407
|
22 |
Retzker A. , I. Cirac J. , Reznik B. . Detecting vacuum entanglement in a linear ion trap. Phys. Rev. Lett., 2005, 94(5): 050504
https://doi.org/10.1103/PhysRevLett.94.050504
|
23 |
X. Li G. , P. Wu S. , M. Huang G. . Generation of entanglement and squeezing in the system of two ions trapped in a cavity. Phys. Rev. A, 2005, 71(6): 063817
https://doi.org/10.1103/PhysRevA.71.063817
|
24 |
L. Semião F. , Furuya K. . Entanglement in the dispersive interaction of trapped ions with a quantized field. Phys. Rev. A, 2007, 75(4): 042315
https://doi.org/10.1103/PhysRevA.75.042315
|
25 |
Nicacio F. , Furuya K. , L. Semião F. . Motional entanglement with trapped ions and a nanomechanical resonator. Phys. Rev. A, 2013, 88(2): 022330
https://doi.org/10.1103/PhysRevA.88.022330
|
26 |
D. B. Bentley C. , R. R. Carvalho A. , Kielpinski D. , J. Hope J. . Detection-enhanced steady state entanglement with ions. Phys. Rev. Lett., 2014, 113(4): 040501
https://doi.org/10.1103/PhysRevLett.113.040501
|
27 |
Lake K. , Weidt S. , Randall J. , D. Standing E. , C. Webster S. , K. Hensinger W. . Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation. Phys. Rev. A, 2015, 91(1): 012319
https://doi.org/10.1103/PhysRevA.91.012319
|
28 |
Hannegan J. , D. Siverns J. , Cassell J. , Quraishi Q. . Improving entanglement generation rates in trapped-ion quantum networks using nondestructive photon measurement and storage. Phys. Rev. A, 2021, 103(5): 052433
https://doi.org/10.1103/PhysRevA.103.052433
|
29 |
C. Cole D. , D. Erickson S. , Zarantonello G. , P. Horn K. , Y. Hou P. , J. Wu J. , H. Slichter D. , Reiter F. , P. Koch C. , Leibfried D. . Resource-efficient dissipative entanglement of two trapped-ion qubits. Phys. Rev. Lett., 2022, 128(8): 080502
https://doi.org/10.1103/PhysRevLett.128.080502
|
30 |
S. Eisenberg H. , Khoury G. , A. Durkin G. , Simon C. , Bouwmeester D. . Quantum entanglement of a large number of photons. Phys. Rev. Lett., 2004, 93(19): 193901
https://doi.org/10.1103/PhysRevLett.93.193901
|
31 |
O. S. Yin J. , J. van Enk S. . Entanglement and purity of one- and two-photon states. Phys. Rev. A, 2008, 77(6): 062333
https://doi.org/10.1103/PhysRevA.77.062333
|
32 |
Salart D. , Landry O. , Sangouard N. , Gisin N. , Herrmann H. , Sanguinetti B. , Simon C. , Sohler W. , T. Thew R. , Thomas A. , Zbinden H. . Purification of single-photon entanglement. Phys. Rev. Lett., 2010, 104(18): 180504
https://doi.org/10.1103/PhysRevLett.104.180504
|
33 |
Wang H. , Mariantoni M. , C. Bialczak R. , Lenander M. , Lucero E. , Neeley M. , D. O’Connell A. , Sank D. , Weides M. , Wenner J. , Yamamoto T. , Yin Y. , Zhao J. , M. Martinis J. , N. Cleland A. , N. Cleland Martinis . Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett., 2011, 106(6): 060401
https://doi.org/10.1103/PhysRevLett.106.060401
|
34 |
L. Wang X. , K. Chen L. , Li W. , L. Huang H. , Liu C. , Chen C. , H. Luo Y. , E. Su Z. , Wu D. , D. Li Z. , Lu H. , Hu Y. , Jiang X. , Z. Peng C. , Li L. , L. Liu N. , A. Chen Y. , Y. Lu C. , W. Pan J. . Experimental ten-photon entanglement. Phys. Rev. Lett., 2016, 117(21): 210502
https://doi.org/10.1103/PhysRevLett.117.210502
|
35 |
Kfir O. . Entanglements of electrons and cavity photons in the strong-coupling regime. Phys. Rev. Lett., 2019, 123(10): 103602
https://doi.org/10.1103/PhysRevLett.123.103602
|
36 |
C. Dada A. , Kaniewski J. , Gawith C. , Lavery M. , H. Hadfield R. , Faccio D. , Clerici M. . Near-maximal two-photon entanglement for optical quantum communication at 2.1μm. Phys. Rev. Appl., 2021, 16(5): L051005
https://doi.org/10.1103/PhysRevApplied.16.L051005
|
37 |
V. Rakonjac J. , Lago-Rivera D. , Seri A. , Mazzera M. , Grandi S. , de Riedmatten H. . Entanglement between a telecom photon and an on-demand multimode solid-state quantum memory. Phys. Rev. Lett., 2021, 127(21): 210502
https://doi.org/10.1103/PhysRevLett.127.210502
|
38 |
Wang H. , C. Ren B. , H. Wang A. , Alsaedi A. , Hayat T. , G. Deng F. . General hyperentanglement concentration for polarization spatial-time-bin multi-photon systems with linear optics. Front. Phys., 2018, 13(5): 130315
https://doi.org/10.1007/s11467-018-0801-3
|
39 |
Liu T. , F. Zheng Z. , Zhang Y. , L. Fang Y. , P. Yang C. . Transferring entangled states of photonic cat-state qubits in circuit QED. Front. Phys., 2020, 15(2): 21603
https://doi.org/10.1007/s11467-019-0949-5
|
40 |
Akram U. , Munro W. , Nemoto K. , J. Milburn G. . Photon−phonon entanglement in coupled optomechanical arrays. Phys. Rev. A, 2012, 86(4): 042306
https://doi.org/10.1103/PhysRevA.86.042306
|
41 |
Finazzi S. , Carusotto I. . Entangled phonons in atomic Bose−Einstein condensates. Phys. Rev. A, 2014, 90(3): 033607
https://doi.org/10.1103/PhysRevA.90.033607
|
42 |
S. Chen S. , Zhang H. , Ai Q. , J. Yang G. . Phononic entanglement concentration via optomechanical interactions. Phys. Rev. A, 2019, 100(5): 052306
https://doi.org/10.1103/PhysRevA.100.052306
|
43 |
Di Tullio M. , Gigena N. , Rossignoli R. . Fermionic entanglement in superconducting systems. Phys. Rev. A, 2018, 97(6): 062109
https://doi.org/10.1103/PhysRevA.97.062109
|
44 |
Gong M. , C. Chen M. , Zheng Y. , Wang S. , Zha C. , Deng H. , Yan Z. , Rong H. , Wu Y. , Li S. , Chen F. , Zhao Y. , Liang F. , Lin J. , Xu Y. , Guo C. , Sun L. , D. Castellano A. , Wang H. , Peng C. , Y. Lu C. , Zhu X. , W. Pan J. . Genuine 12-qubit entanglement on a superconducting quantum processor. Phys. Rev. Lett., 2019, 122(11): 110501
https://doi.org/10.1103/PhysRevLett.122.110501
|
45 |
Ning W. , J. Huang X. , R. Han P. , Li H. , Deng H. , B. Yang Z. , R. Zhong Z. , Xia Y. , Xu K. , Zheng D. , B. Zheng S. . Deterministic entanglement swapping in a superconducting circuit. Phys. Rev. Lett., 2019, 123(6): 060502
https://doi.org/10.1103/PhysRevLett.123.060502
|
46 |
Ma Y. , Pan X. , Cai W. , Mu X. , Xu Y. , Hu L. , Wang W. , Wang H. , P. Song Y. , B. Yang Z. , B. Zheng S. , Sun L. . Manipulating complex hybrid entanglement and testing multipartite bell inequalities in a superconducting circuit. Phys. Rev. Lett., 2020, 125(18): 180503
https://doi.org/10.1103/PhysRevLett.125.180503
|
47 |
Krastanov S. , Raniwala H. , Holzgrafe J. , Jacobs K. , Lončar M. , J. Reagor M. , R. Englund D. . Optically heralded entanglement of superconducting systems in quantum networks. Phys. Rev. Lett., 2021, 127(4): 040503
https://doi.org/10.1103/PhysRevLett.127.040503
|
48 |
Cervera-Lierta A. , Krenn M. , Aspuru-Guzik A. , Galda A. . Experimental high-dimensional Greenberger−Horne−Zeilinger entanglement with superconducting transmon qutrits. Phys. Rev. Appl., 2022, 17(2): 024062
https://doi.org/10.1103/PhysRevApplied.17.024062
|
49 |
Li J. , Y. Zhu S. , S. Agarwal G. . Magnon−photon−phonon entanglement in cavity magnomechanics. Phys. Rev. Lett., 2018, 121(20): 203601
https://doi.org/10.1103/PhysRevLett.121.203601
|
50 |
Li J. , Y. Zhu S. . Entangling two magnon modes via magnetostrictive interaction. New J. Phys., 2019, 21(8): 085001
https://doi.org/10.1088/1367-2630/ab3508
|
51 |
Y. Yuan H. , Zheng S. , Ficek Z. , Y. He Q. , H. Yung M. . Enhancement of magnon-magnon entanglement inside a cavity. Phys. Rev. B, 2020, 101(1): 014419
https://doi.org/10.1103/PhysRevB.101.014419
|
52 |
Kong D. , Hu X. , Hu L. , Xu J. . Magnon−atom interaction via dispersive cavities: Magnon entanglement. Phys. Rev. B, 2021, 103(22): 224416
https://doi.org/10.1103/PhysRevB.103.224416
|
53 |
Azimi Mousolou V. , Liu Y. , Bergman A. , Delin A. , Eriksson O. , Pereiro M. , Thonig D. , Sjöqvist E. . Magnon−magnon entanglement and its quantification via a microwave cavity. Phys. Rev. B, 2021, 104(22): 224302
https://doi.org/10.1103/PhysRevB.104.224302
|
54 |
Wang F. , Gou C. , Xu J. , Gong C. . Hybrid magnonatom entanglement and magnon blockade via quantum interference. Phys. Rev. A, 2022, 106(1): 013705
https://doi.org/10.1103/PhysRevA.106.013705
|
55 |
Qi S.-F. , Jing J. . Generation of Bell and Greenberger-Horne-Zeilinger states from a hybrid qubit-photon-magnon system. Phys. Rev. A, 2022, 105: 022624
https://doi.org/10.1103/PhysRevA.105.022624
|
56 |
Rogers B. , Paternostro M. , M. Palma G. , De Chiara G. . Entanglement control in hybrid optomechanical systems. Phys. Rev. A, 2012, 86(4): 042323
https://doi.org/10.1103/PhysRevA.86.042323
|
57 |
Borrelli M. , Rossi M. , Macchiavello C. , Maniscalco S. . Witnessing entanglement in hybrid systems. Phys. Rev. A, 2014, 90: 020301(R)
https://doi.org/10.1103/PhysRevA.90.020301
|
58 |
Joshi C. , Larson J. , P. Spiller T. . Quantum state engineering in hybrid open quantum systems. Phys. Rev. A, 2016, 93(4): 043818
https://doi.org/10.1103/PhysRevA.93.043818
|
59 |
Z. Ye Q. , T. Liang Z. , X. Zhang W. , J. Pan D. , Y. Xue Z. , Yan H. . Speedup of entanglement generation in hybrid quantum systems through linear driving. Phys. Rev. A, 2022, 106(1): 012407
https://doi.org/10.1103/PhysRevA.106.012407
|
60 |
L. Xiang Z. , Ashhab S. , Q. You J. , Nori F. . Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys., 2013, 85(2): 623
https://doi.org/10.1103/RevModPhys.85.623
|
61 |
Blais A. , S. Huang R. , Wallraff A. , M. Girvin S. , J. Schoelkopf R. . Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A, 2004, 69(6): 062320
https://doi.org/10.1103/PhysRevA.69.062320
|
62 |
Q. You J. , Nori F. . Superconducting circuits and quantum information. Phys. Today, 2005, 58(11): 42
https://doi.org/10.1063/1.2155757
|
63 |
Blais A. , L. Grimsmo A. , M. Girvin S. , Wallraff A. . Circuit quantum electrodynamics. Rev. Mod. Phys., 2021, 93(2): 025005
https://doi.org/10.1103/RevModPhys.93.025005
|
64 |
Y. Yuan H. , Yan P. , Zheng S. , Y. He Q. , Xia K. , H. Yung M. . Steady Bell state generation via magnon−photon coupling. Phys. Rev. Lett., 2020, 124(5): 053602
https://doi.org/10.1103/PhysRevLett.124.053602
|
65 |
Zhao Y. , Wang L. , Xue J. , Zhang Q. , Tian Y. , Yan S. , Bai L. , Harder M. , Guo Q. , Zhai Y. . Measuring the magnon phase in a hybrid magnon−photon system. Phys. Rev. B, 2022, 105(17): 174405
https://doi.org/10.1103/PhysRevB.105.174405
|
66 |
Zhang X. , L. Zou C. , Jiang L. , Tang H. . Cavity magnomechanics. Sci. Adv., 2016, 2(3): e1501286
https://doi.org/10.1126/sciadv.1501286
|
67 |
Streib S. , Vidal-Silva N. , Shen K. , E. W. Bauer G. . Magnon−phonon interactions in magnetic insulators. Phys. Rev. B, 2019, 99(18): 184442
https://doi.org/10.1103/PhysRevB.99.184442
|
68 |
Yu M. , Shen H. , Li J. . Magnetostrictively induced stationary entanglement between two microwave fields. Phys. Rev. Lett., 2020, 124(21): 213604
https://doi.org/10.1103/PhysRevLett.124.213604
|
69 |
F. Qi S. , Jing J. . Magnon-assisted photon-phonon conversion in the presence of structured environments. Phys. Rev. A, 2021, 103(4): 043704
https://doi.org/10.1103/PhysRevA.103.043704
|
70 |
Zhang X. , L. Zou C. , Jiang L. , X. Tang H. . Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett., 2014, 113(15): 156401
https://doi.org/10.1103/PhysRevLett.113.156401
|
71 |
P. Wang Y. , Q. Zhang G. , Zhang D. , Q. Luo X. , Xiong W. , P. Wang S. , F. Li T. , M. Hu C. , Q. You J. . Magnon Kerr effect in a strongly coupled cavity-magnon system. Phys. Rev. B, 2016, 94(22): 224410
https://doi.org/10.1103/PhysRevB.94.224410
|
72 |
P. Wang Y. , Q. Zhang G. , Zhang D. , F. Li T. , M. Hu C. , Q. You J. . Bistability of cavity magnon polaritons. Phys. Rev. Lett., 2018, 120(5): 057202
https://doi.org/10.1103/PhysRevLett.120.057202
|
73 |
Hisatomi R. , Osada A. , Tabuchi Y. , Ishikawa T. , Noguchi A. , Yamazaki R. , Usami K. , Nakamura Y. . Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B, 2016, 93(17): 174427
https://doi.org/10.1103/PhysRevB.93.174427
|
74 |
Li J. , Y. Zhu S. , S. Agarwal G. . Squeezed states of magnons and phonons in cavity magnomechanics. Phys. Rev. A, 2019, 99: 021801(R)
https://doi.org/10.1103/PhysRevA.99.021801
|
75 |
Zou J. , K. Kim S. , Tserkovnyak Y. . Tuning entanglement by squeezing magnons in anisotropic magnets. Phys. Rev. B, 2020, 101(1): 014416
https://doi.org/10.1103/PhysRevB.101.014416
|
76 |
A. S. V. Bittencourt V. , Feulner V. , V. Kusminskiy S. . Magnon heralding in cavity optomagnonics. Phys. Rev. A, 2019, 100(1): 013810
https://doi.org/10.1103/PhysRevA.100.013810
|
77 |
Kittel C. . On the theory of ferromagnetic resonance absorption. Phys. Rev., 1948, 73(2): 155
https://doi.org/10.1103/PhysRev.73.155
|
78 |
Chen J. , Liu C. , Liu T. , Xiao Y. , Xia K. , E. W. Bauer G. , Wu M. , Yu H. . Strong interlayer magnon-magnon coupling in magnetic metal-insulator hybrid nanostructures. Phys. Rev. Lett., 2018, 120(21): 217202
https://doi.org/10.1103/PhysRevLett.120.217202
|
79 |
Liensberger L. , Kamra A. , Maier-Flaig H. , Geprägs S. , Erb A. , T. B. Goennenwein S. , Gross R. , Belzig W. , Huebl H. , Weiler M. . Exchange-enhanced ultrastrong magnon−magnon coupling in a compensated ferrimagnet. Phys. Rev. Lett., 2019, 123(11): 117204
https://doi.org/10.1103/PhysRevLett.123.117204
|
80 |
Li Y. , G. Yefremenko V. , Lisovenko M. , Trevillian C. , Polakovic T. , W. Cecil T. , S. Barry P. , Pearson J. , Divan R. , Tyberkevych V. , L. Chang C. , Welp U. , K. Kwok W. , Novosad V. . Coherent coupling of two remote magnonic resonators mediated by superconducting circuits. Phys. Rev. Lett., 2022, 128(4): 047701
https://doi.org/10.1103/PhysRevLett.128.047701
|
81 |
Tabuchi Y. , Ishino S. , Noguchi A. , Ishikawa T. , Yamazaki R. , Usami K. , Nakamura Y. . Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science, 2015, 349(6246): 405
https://doi.org/10.1126/science.aaa3693
|
82 |
Lachance-Quirion D. , P. Wolski S. , Tabuchi Y. , Kono S. , Usami K. , Nakamura Y. . Entanglement-based single shot detection of a single magnon with a superconducting qubit. Science, 2020, 367(6476): 425
https://doi.org/10.1126/science.aaz9236
|
83 |
K. Xie J. , L. Ma S. , L. Li F. . Quantum-interference enhanced magnon blockade in an yttrium-iron-garnet sphere coupled to superconducting circuits. Phys. Rev. A, 2020, 101(4): 042331
https://doi.org/10.1103/PhysRevA.101.042331
|
84 |
F. James D. , Jerke J. . Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys., 2007, 85(6): 625
https://doi.org/10.1139/p07-060
|
85 |
Buluta I. , Nori F. . Quantum simulators. Science, 2009, 326(5949): 108
https://doi.org/10.1126/science.1177838
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|