Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (4) : 44301    https://doi.org/10.1007/s11467-023-1257-7
RESEARCH ARTICLE
Interpretations of the cosmic ray secondary-to-primary ratios measured by DAMPE
Peng-Xiong Ma1, Zhi-Hui Xu1,2, Qiang Yuan1,2(), Xiao-Jun Bi3,4, Yi-Zhong Fan1,2, Igor V. Moskalenko5, Chuan Yue1
1. Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China
2. School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China
3. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
4. University of Chinese Academy of Sciences, Beijing 100049, China
5. W. W. Hansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA
 Download: PDF(7598 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Precise measurements of the boron-to-carbon and boron-to-oxygen ratios by DAMPE show clear hardenings around 100 GeV/n, which provide important implications on the production, propagation, and interaction of Galactic cosmic rays. In this work we investigate a number of models proposed in literature in light of the DAMPE findings. These models can roughly be classified into two classes, driven by propagation effects or by source ones. Among these models discussed, we find that the re-acceleration of cosmic rays, during their propagation, by random magnetohydrodynamic waves may not reproduce sufficient hardenings of B/C and B/O, and an additional spectral break of the diffusion coefficient is required. The other models can properly explain the hardenings of the ratios. However, depending on simplifications assumed, the models differ in their quality in reproducing the data in a wide energy range. The models with significant re-acceleration effect will under-predict low-energy antiprotons but over-predict low-energy positrons, and the models with secondary production at sources over-predict high-energy antiprotons. For all models high-energy positron excess exists.

Keywords cosmic rays      propagation     
Corresponding Author(s): Qiang Yuan   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Issue Date: 27 February 2023
 Cite this article:   
Peng-Xiong Ma,Zhi-Hui Xu,Qiang Yuan, et al. Interpretations of the cosmic ray secondary-to-primary ratios measured by DAMPE[J]. Front. Phys. , 2023, 18(4): 44301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1257-7
https://academic.hep.com.cn/fop/EN/Y2023/V18/I4/44301
Fig.1  B/C and B/O ratios (top panels), and C, O fluxes (bottom panels) for the NLB model.
Experiment Time Ref.
B/C Voyager 2012/12-2015/06 [14]
ACE 2011/05-2016/05 [55]
AMS-02 2011/05-2016/05 [4]
DAMPE 2016/01-2021/12 [35]
B/O ACE 2011/05-2016/05
AMS-02 2011/05-2016/05 [4]
DAMPE 2016/01-2021/12 [35]
C & O Voyager 2012/12-2015/06 [14]
ACE 2011/05-2016/05 [55]
AMS-02 2011/05-2016/05 [38]
10Be/9Be Voyager 1977/01-1998/12 [65]
ACE 1997/08-1999/04 [66]
IMP 1974/01-1980/05 [67]
Ulysses 1990/10-1997/12 [68]
ISOMAX 1998/08-1998/08 [69]
Tab.1  Data used in the fitting.
Model B B′ D E F G
D 0 (1028 cm2·s1) 6.02 3.32 8.14 ... 7.30 6.94
δ 0.40 0.46 0.60 ... 0.47 0.43
z h (kpc) 5.77 3.61 8.48 ... 6.23 6.29
δ h ... 0.25 ... ... ... ...
Rh (GV) ... 212.5 ... ... ... ...
v A (km·s−1) 30.0 22.4 10.3 ... 35.4 32.5
η −0.10 −0.61 −0.42 ... −0.27 −0.33
ξ ... ... ... ... ... ...
ξδ ... ... 0.02 ... ... ...
h (kpc) ... ... 0.41 ... ... ...
τ (Myr) ... ... ... ... 0.46 0.24
Rac (GV) ... ... ... ... ... 4.0 × 103
γ0 0.19 0.41 0.13 0.85 0.46 0.45
γ1 2.36 2.35 2.38 2.37 2.31 2.34
γ2 2.34 2.42 ... ... 2.15 2.18
Rbr,1 (GV) 0.93 1.02 1.03 1.75 1.05 1.05
Rbr,2 (GV) 243.2 142.3 ... ... 467.0 467.0
ϕ (GV) 0.71 0.69 0.71 0.68 0.71 0.69
Tab.2  Parameters of the models discussed in Section 3.
Fig.2  B/C and B/O ratios (top panels), and C, O fluxes (bottom panels) for the re-acceleration model. Red thick lines show the results for the diffusion coefficient of Eq. (2), and blue thin lines show the results for the diffusion coefficient with an additional high-energy break. Dashed lines are the spectra in the local ISM, and solid lines are modulated spectra near the Earth. Sub-panels of bottom ones show the residuals of the model fittings to the C and O spectra. The open symbols are for model B and filled symbols are for model B .
Fig.3  B/C and B/O ratios (top panels), and C, O fluxes (bottom panels) for the model with re-acceleration by a nearby source.
Fig.4  B/C and B/O ratios (top panels), and C, O fluxes (bottom panels) for the spatially-dependent propagation model. Dashed lines are the spectra in the local ISM, and solid lines are modulated spectra near the Earth. Sub-panels of bottom ones show the residuals of the model fittings to the C and O spectra.
Fig.5  B/C and B/O ratios (top panels), and C, O fluxes (bottom panels) for the Self-generated turbulence model. Dashed lines are the spectra in the local ISM, and solid lines are modulated spectra near the Earth. Sub-panels of bottom ones show the residuals of the model fittings to the C and O spectra.
Fig.6  B/C and B/O ratios (top panels), and C, O fluxes (bottom panels) for the models with secondary production (model F; red thin lines) and acceleration (model G; green thick lines) at source. Dashed lines are the spectra in the local ISM, and solid lines are modulated spectra near the Earth. Sub-panels of bottom ones show the residuals of the model fittings to the C and O spectra. The filled symbols are for model F and open symbols are for model G.
Fig.7  Spectra of protons (top panels), antiprotons (middle panels), and positrons (bottom panels) for the model predictions, compared with the data [14, 41, 98-100]. The left panels show the predictions of models B, B′, D, E, and the right panels show the predictions of models F and G. The solar modulation potential is about 0.7 GV for all species.
1 K. Gaisser T., Cosmic Rays and Particle Physics, Cambridge and New York: Cambridge University Press, 1990
2 S. Berezinskii V.V. Bulanov S.A. Dogiel V.S. Ptuskin V., Astrophysics of Cosmic Rays, Amsterdam: North Holland, 1990, edited by V. L. Ginzburg, 1990
3 L. Ginzburg V.I. Syrovatskii S., The Origin of Cosmic Rays, New York: Macmillan, 1964
4 Aguilar M., Ali Cavasonza L., Ambrosi G., Arruda L., Attig N.. et al.. Observation of new properties of secondary cosmic rays lithium, beryllium, and boron by the alpha magnetic spectrometer on the International Space Station. Phys. Rev. Lett., 2018, 120(2): 021101
https://doi.org/10.1103/PhysRevLett.120.021101
5 J. Engelmann J., Ferrando P., Soutoul A., Goret P., Juliusson E.. Charge composition and energy spectra of cosmic-ray nuclei for elements from Be to NI - Results from HEAO-3-C2. Astron. Astrophys., 1990, 233: 96
6 P. Swordy S., Mueller D., Meyer P., L’Heureux J., M. Grunsfeld J.. Relative abundances of secondary and primary cosmic rays at high energies. Astrophys. J., 1990, 349: 625
https://doi.org/10.1086/168349
7 Aguilar M., Alcaraz J., Allaby J., Alpat B., Ambrosi G.. et al.. Relative composition and energy spectra of light nuclei in cosmic rays: Results from AMS-01. Astrophys. J., 2010, 724(1): 329
https://doi.org/10.1088/0004-637X/724/1/329
8 D. Panov A., et al.., Relative abundances of cosmic ray nuclei B-C-N-O in the energy region from 10 GeV/n to 300 GeV/n, Results from ATIC-2 (the science flight of ATIC), in: International Cosmic Ray Conference, International Cosmic Ray Conference, Vol. 2 (2008), pp 3–6, arXiv: 0707.4415
9 S. Ahn H., S. Allison P., G. Bagliesi M., J. Beatty J., Bigongiari G.. et al.. Measurements of cosmic-ray secondary nuclei at high energies with the first flight of the CREAM balloon-borne experiment. Astropart. Phys., 2008, 30(3): 133
https://doi.org/10.1016/j.astropartphys.2008.07.010
10 Obermeier A., Ave M., Boyle P., Höppner C., Hörandel J., Müller D.. Energy spectra of primary and secondary cosmic-ray nuclei measured with TRACER. Astrophys. J., 2011, 742(1): 14
https://doi.org/10.1088/0004-637X/742/1/14
11 Adriani O., C. Barbarino G., A. Bazilevskaya G., Bellotti R., Boezio M.. et al.. Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment. Astrophys. J., 2014, 791(2): 93
https://doi.org/10.1088/0004-637X/791/2/93
12 Aguilar M., Ali Cavasonza L., Ambrosi G., Arruda L., Attig N.. et al.. Precise measurement of the boron to carbon flux ratio in cosmic rays from 1.9 GV to 2.6 TV with the alpha magnetic spectrometer on the International Space Station. Phys. Rev. Lett., 2016, 117(23): 231102
https://doi.org/10.1103/PhysRevLett.117.231102
13 Grebenyuk V., Karmanov D., Kovalev I., Kudryashov I., Kurganov A., Panov A., Podorozhny D., Tkachenko A., Tkachev L., Turundaevskiy A., Vasiliev O., Voronin A.. Secondary cosmic rays in the NUCLEON space experiment. Adv. Space Res., 2019, 64(12): 2559
https://doi.org/10.1016/j.asr.2019.06.030
14 C. Cummings A., C. Stone E., C. Heikkila B., Lal N., R. Webber W., Johannesson G., V. Moskalenko I., Orlando E., A. Porter T.. Galactic cosmic rays in the local interstellar medium: Voyager 1 observations and model results. Astrophys. J., 2016, 831(1): 18
https://doi.org/10.3847/0004-637X/831/1/18
15 Ferrando P., Lal N., B. McDonald F., R. Webber W.. Studies of low-energy Galactic cosmic-ray composition at 22 AU. I — Secondary/primary ratios. Astron. Astrophys., 1991, 247(1): 163
16 S. George J., A. Lave K., E. Wiedenbeck M., R. Binns W., C. Cummings A., J. Davis A., A. de Nolfo G., L. Hink P., H. Israel M., A. Leske R., A. Mewaldt R., M. Scott L., C. Stone E., T. von Rosenvinge T., E. Yanasak N.. Elemental composition and energy spectra of Galactic cosmic rays during solar cycle 23. Astrophys. J., 2009, 698(2): 1666
https://doi.org/10.1088/0004-637X/698/2/1666
17 Yuan Q., J. Lin S., Fang K., J. Bi X.. Propagation of cosmic rays in the AMS-02 era. Phys. Rev. D, 2017, 95(8): 083007
https://doi.org/10.1103/PhysRevD.95.083007
18 W. Strong A., V. Moskalenko I.. Propagation of cosmic-ray nucleons in the Galaxy. Astrophys. J., 1998, 509(1): 212
https://doi.org/10.1086/306470
19 Feng J., Tomassetti N., Oliva A.. Bayesian analysis of spatial-dependent cosmic-ray propagation: Astrophysical background of antiprotons and positrons. Phys. Rev. D, 2016, 94(12): 123007
https://doi.org/10.1103/PhysRevD.94.123007
20 Mueller D., P. Swordy S., Meyer P., L’Heureux J., M. Grunsfeld J.. Energy spectra and composition of primary cosmic rays. Astrophys. J., 1991, 374: 356
https://doi.org/10.1086/170125
21 Maurin D., Donato F., Taillet R., Salati P.. Cosmic rays below Z = 30 in a diffusion model: New constraints on propagation parameters. Astrophys. J., 2001, 555(2): 585
https://doi.org/10.1086/321496
22 Ave M., J. Boyle P., Hoppner C., Marshall J., Müller D.. Propagation and source energy spectra of cosmic ray nuclei at high energies. Astrophys. J., 2009, 697(1): 106
https://doi.org/10.1088/0004-637X/697/1/106
23 Putze A., Derome L., Maurin D.. A Markov chain Monte Carlo technique to sample transport and source parameters of Galactic cosmic rays (II): Results for the diffusion model combining B/C and radioactive nuclei. Astron. Astrophys., 2010, 516: A66
https://doi.org/10.1051/0004-6361/201014010
24 Trotta R., Johannesson G., V. Moskalenko I., A. Porter T., Ruiz de Austri R., W. Strong A.. Constraints on cosmic ray propagation models from a global Bayesian analysis. Astrophys. J., 2011, 729(2): 106
https://doi.org/10.1088/0004-637X/729/2/106
25 Obermeier A., Boyle P., Horandel J., Müller D.. The boron-to-carbon abundance ratio and Galactic propagation of cosmic radiation. Astrophys. J., 2012, 752(1): 69
https://doi.org/10.1088/0004-637X/752/1/69
26 B. Jin H., L. Wu Y., F. Zhou Y.. Cosmic ray propagation and dark matter in light of the latest AMS-02 data. J. Cosmol. Astropart. Phys., 2015, 9: 049
https://doi.org/10.1088/1475-7516/2015/09/049
27 Jóhannesson G., R. Austri R., C. Vincent A., V. Moskalenko I., Orlando E., A. Porter T., W. Strong A., Trotta R., Feroz F., Graff P., P. Hobson M.. Bayesian analysis of cosmic ray propagation: Evidence against homogeneous diffusion. Astrophys. J., 2016, 824(1): 16
https://doi.org/10.3847/0004-637X/824/1/16
28 Korsmeier M., Cuoco A.. Galactic cosmic-ray propagation in the light of AMS-02: Analysis of protons, helium, and antiprotons. Phys. Rev. D, 2016, 94(12): 123019
https://doi.org/10.1103/PhysRevD.94.123019
29 S. Niu J., Li T.. Galactic cosmic-ray model in the light of AMS-02 nuclei data. Phys. Rev. D, 2018, 97(2): 023015
https://doi.org/10.1103/PhysRevD.97.023015
30 Wu J., Chen H.. Revisit cosmic ray propagation by using 1H, 2H, 3He and 4He. Phys. Lett. B, 2019, 789: 292
https://doi.org/10.1016/j.physletb.2018.11.052
31 Kolmogorov A.. The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Akademiia Nauk SSSR Doklady, 1941, 30: 301
32 Aguilar M., Ali Cavasonza L., Ambrosi G., Arruda L., Attig N.. et al.. The Alpha Magnetic Spectrometer (AMS) on the international space station (Part II): Results from the first seven years. Phys. Rep., 2021, 894: 1
https://doi.org/10.1016/j.physrep.2020.09.003
33 Chang J.. Dark matter particle explorer: The first Chinese cosmic ray and hard gamma-ray detector in space. Chin. J. Space Sci., 2014, 34: 550
https://doi.org/10.11728/cjss2014.05.550
34 Chang J., Ambrosi G., An Q., Asfandiyarov R., Azzarello P.. et al.. The DArk matter particle explorer mission. Astropart. Phys., 2017, 95: 6
https://doi.org/10.1016/j.astropartphys.2017.08.005
35 Alemanno F.. et al.. Detection of spectral hardenings in cosmic-ray boron-to-carbon and boron-to-oxygen flux ratios with DAMPE. Sci. Bull. (Beijing), 2022, 67(21): 2162
https://doi.org/10.1016/j.scib.2022.10.002
36 D. Panov A., H. Jr Adams J., S. Ahn H., L. Bashinzhagyan G., W. Watts J., P. Wefel J., Wu J., Ganel O., G. Guzik T., I. Zatsepin V., Isbert I., C. Kim K., Christl M., N. Kouznetsov E., I. Panasyuk M., S. Seo E., V. Sokolskaya N., Chang J., K. H. Schmidt W., R. Fazely A.. Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results. Bull. Russ. Acad. Sci. Physics, 2009, 73(5): 564
https://doi.org/10.3103/S1062873809050098
37 S. Ahn H., Allison P., G. Bagliesi M., J. Beatty J., Bigongiari G.. et al.. Discrepant hardening observed in cosmic ray elemental spectra. Astrophys. J. Lett., 2010, 714(1): L89
https://doi.org/10.1088/2041-8205/714/1/L89
38 Aguilar M., Ali Cavasonza L., Alpat B., Ambrosi G., Arruda L.. et al.. Observation of the identical rigidity dependence of He, C, and O cosmic rays at high rigidities by the alpha magnetic spectrometer on the International Space Station. Phys. Rev. Lett., 2017, 119(25): 251101
https://doi.org/10.1103/PhysRevLett.119.251101
39 Adriani O., Akaike Y., Asano K., Asaoka Y., G. Bagliesi M.. et al.. Direct measurement of the cosmic-ray carbon and oxygen spectra from 10 GeV/n to 2.2 TeV/n with the calorimetric electron telescope on the International Space Station. Phys. Rev. Lett., 2020, 125(25): 251102
https://doi.org/10.1103/PhysRevLett.125.251102
40 Adriani O., C. Barbarino G., A. Bazilevskaya G., Bellotti R., Boezio M.. et al.. PAMELA measurements of cosmic-ray proton and helium spectra. Science, 2011, 332(6025): 69
https://doi.org/10.1126/science.1199172
41 An Q., Asfandiyarov R., Azzarello P., Bernardini P., J. Bi X.. et al.. Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite. Sci. Adv., 2019, 5(9): eaax3793
https://doi.org/10.1126/sciadv.aax3793
42 Alemanno F., An Q., Azzarello P., C. T. Barbato F., Bernardini P.. et al.. Measurement of the cosmic ray helium energy spectrum from 70 GeV to 80 TeV with the DAMPE space mission. Phys. Rev. Lett., 2021, 126(20): 201102
https://doi.org/10.1103/PhysRevLett.126.201102
43 Génolini Y., D. Serpico P., Boudaud M., Caroff S., Poulin V., Derome L., Lavalle J., Maurin D., Poireau V., Rosier S., Salati P., Vecchi M.. Indications for a high-rigidity break in the cosmic-ray diffusion coefficient. Phys. Rev. Lett., 2017, 119(24): 241101
https://doi.org/10.1103/PhysRevLett.119.241101
44 E. Vladimirov A., Johannesson G., V. Moskalenko I., A. Porter T.. Testing the origin of high-energy cosmic rays. Astrophys. J., 2012, 752(1): 68
https://doi.org/10.1088/0004-637X/752/1/68
45 J. Boschini M., D. Torre S., Gervasi M., Grandi D., Jóhannesson G., L. Vacca G., Masi N., V. Moskalenko I., Pensotti S., A. Porter T., Quadrani L., G. Rancoita P., Rozza D., Tacconi M.. Inference of the local interstellar spectra of cosmic-ray nuclei Z ≤ 28 with the GALPROPHELMOD framework. Astrophys. J. Suppl. Ser., 2020, 250(2 Suppl.): 27
https://doi.org/10.3847/1538-4365/aba901
46 Blasi P., Amato E., D. Serpico P.. Spectral breaks as a signature of cosmic ray induced turbulence in the Galaxy. Phys. Rev. Lett., 2012, 109(6): 061101
https://doi.org/10.1103/PhysRevLett.109.0101
47 Cowsik R., Madziwa-Nussinov T.. Spectral intensities of antiprotons and the nested leaky-box model for cosmic rays in the Galaxy. Astrophys. J., 2016, 827(2): 119
https://doi.org/10.3847/0004-637X/827/2/119
48 Yuan Q., Zhu C.-R., Bi X.-J., Wei D.-M.. Secondary cosmic-ray nucleus spectra disfavor particle transport in the Galaxy without reacceleration. J. Cosmol. Astropart. Phys., 2020, 2020: 027
https://doi.org/10.1088/1475-7516/2020/11/027
49 A. Malkov M., V. Moskalenko I.. On the origin of observed cosmic-ray spectrum below 100 TV. Astrophys. J., 2022, 933(1): 78
https://doi.org/10.3847/1538-4357/ac7049
50 Q. Guo Y., Yuan Q.. Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse γ rays with spatially-dependent propagation. Phys. Rev. D, 2018, 97(6): 063008
https://doi.org/10.1103/PhysRevD.97.063008
51 Mertsch P., Vittino A., Sarkar S.. Explaining cosmic ray antimatter with secondaries from old supernova remnants. Phys. Rev. D, 2021, 104(10): 103029
https://doi.org/10.1103/PhysRevD.104.103029
52 Bresci V., Amato E., Blasi P., Morlino G.. Effects of reacceleration and source grammage on secondary cosmic rays spectra. Mon. Not. R. Astron. Soc., 2019, 488(2): 2068
https://doi.org/10.1093/mnras/stz1806
53 Kawanaka N., H. Lee S.. Origin of spectral hardening of secondary cosmic-ray nuclei. Astrophys. J., 2021, 917(2): 61
https://doi.org/10.3847/1538-4357/ac0a71
54 W. Strong A., V. Moskalenko I., S. Ptuskin V.. Cosmic-ray propagation and interactions in the Galaxy. Annu. Rev. Nucl. Part. Sci., 2007, 57(1): 285
https://doi.org/10.1146/annurev.nucl.57.090506.123011
55 Yuan Q.. Implications on cosmic ray injection and propagation parameters from Voyager/ACE/AMS-02 nucleus data. Sci. China Phys. Mech. Astron., 2019, 62(4): 49511
https://doi.org/10.1007/s11433-018-9300-0
56 S. Seo E., S. Ptuskin V.. Stochastic reacceleration of cosmic rays in the interstellar medium. Astrophys. J., 1994, 431: 705
https://doi.org/10.1086/174520
57 A. Porter T., Johannesson G., V. Moskalenko I.. The GALPROP cosmic-ray propagation and nonthermal emissions framework: Release v57. Astrophys. J. Suppl. Ser., 2022, 262(1 Suppl.): 30
https://doi.org/10.3847/1538-4365/ac80f6
58 J. Gleeson L., I. Axford W.. Solar Modulation of Galactic Cosmic Rays. Astrophys. J., 1968, 154: 1011
https://doi.org/10.1086/149822
59 J. Boschini M., Della Torre S., Gervasi M., La Vacca G., G. Rancoita P.. The transport of Galactic cosmic rays in heliosphere: The HELMOD model compared with other commonly employed solar modulation models. Adv. Space Res., 2022, 70(9): 2636
https://doi.org/10.1016/j.asr.2022.03.026
60 Cowsik R.W. Wilson L., Is the residence time of cosmic rays in the Galaxy energy-dependent? in: International Cosmic Ray Conference, International Cosmic Ray Conference, Vol. 1 (1973), p. 500
61 Cowsik R., Burch B.. Positron fraction in cosmic rays and models of cosmic-ray propagation. Phys. Rev. D, 2010, 82(2): 023009
https://doi.org/10.1103/PhysRevD.82.023009
62 Génolini Y., Maurin D., V. Moskalenko I., Unger M., status Current, precision of the isotopic production cross sections relevant to astrophysics of cosmic rays: Li desired. Be, B, C, and N. Phys. Rev. C, 2018, 98(3): 034611
https://doi.org/10.1103/PhysRevC.98.034611
63 V. Moskalenko I.E. Vladimirov A.A. Porter T.W. Strong A., Isotopic Production Cross Sections for CR Applications (ISOPROCS Project), in: International Cosmic Ray Conference, International Cosmic Ray Conference, Vol. 33 (2013), p. 803
64 V. Moskalenko I., W. Strong A., F. Ormes J., S. Potgieter M.. Secondary antiprotons and propagation of cosmic rays in the Galaxy and heliosphere. Astrophys. J., 2002, 565(1): 280
https://doi.org/10.1086/324402
65 Lukasiak A., Voyager measurements of the charge and isotopic composition of cosmic ray Li, Be and B nuclei and implications for their production in the Galaxy, in: International Cosmic Ray Conference, Vol. 3 (1999), p. 41
66 E. Yanasak N., E. Wiedenbeck M., A. Mewaldt R., J. Davis A., C. Cummings A., S. George J., A. Leske R., C. Stone E., R. Christian E., T. von Rosenvinge T., R. Binns W., L. Hink P., H. Israel M.. Measurement of the secondary radionuclides 10Be, 26Al, 36Cl, 54Mn, and 14C and implications for the Galactic cosmic-ray age. Astrophys. J., 2001, 563(2): 768
https://doi.org/10.1086/323842
67 A. Simpson J., Garcia-Munoz M.. Cosmic-ray lifetime in the Galaxy — Experimental results and models. Space Sci. Rev., 1988, 46(3−4): 205
https://doi.org/10.1007/BF00212240
68 J. Connell J.. Galactic cosmic-ray confinement time: ULYSSES high energy telescope measurements of the secondary radionuclide 10Be. Astrophys. J., 1998, 501(1): L59
https://doi.org/10.1086/311437
69 Hams T., M. Barbier L., Bremerich M., R. Christian E., A. de Nolfo G., Geier S., Gobel H., K. Gupta S., Hof M., Menn W., A. Mewaldt R., W. Mitchell J., M. Schindler S., Simon M., E. Streitmatter R.. Measurement of the abundance of radioactive 10Be and other light isotopes in cosmic radiation up to 2 GeV nucleon-1 with the balloon-borne instrument ISOMAX. Astrophys. J., 2004, 611(2): 892
https://doi.org/10.1086/422384
70 Foreman-Mackey D.W. Hogg D.Lang D. Goodman J., emcee: The MCMC hammer, Publ. Astron. Soc. Pac. 125(925), 306 (2013), doi:
71 A. Malkov M., V. Moskalenko I.. The TeV cosmic-ray bump: A message from the Epsilon Indi or Epsilon Eridani star. Astrophys. J., 2021, 911(2): 151
https://doi.org/10.3847/1538-4357/abe855
72 Ackermann M., Ajello M., B. Atwood W., Baldini L., Ballet J.. et al.. Fermi-LAT observations of the diffuse γ-ray emission: Implications for cosmic rays and the interstellar medium. Astrophys. J., 2012, 750(1): 3
https://doi.org/10.1088/0004-637X/750/1/3
73 U. Abeysekara A., Albert A., Alfaro R., Alvarez C., D. Álvarez J.. et al.. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth. Science, 2017, 358(6365): 911
https://doi.org/10.1126/science.aan4880
74 Aharonian F., An Q., X. Bai Axikegu, X. Bai L.. et al.. Extended very-high-energy gamma-ray emission surrounding PSR J 0622 +3749 observed by LHAASO-KM2A. Phys. Rev. Lett., 2021, 126(24): 241103
https://doi.org/10.1103/PhysRevLett.126.241103
75 Hooper D., Cholis I., Linden T., Fang K.. HAWC observations strongly favor pulsar interpretations of the cosmic-ray positron excess. Phys. Rev. D, 2017, 96(10): 103013
https://doi.org/10.1103/PhysRevD.96.103013
76 Fang K., J. Bi X., F. Yin P., Yuan Q.. Two-zone diffusion of electrons and positrons from Geminga explains the positron anomaly. Astrophys. J., 2018, 863(1): 30
https://doi.org/10.3847/1538-4357/aad092
77 Tomassetti N.. Origin of the cosmic-ray spectral hardening. Astrophys. J. Lett., 2012, 752(1): L13
https://doi.org/10.1088/2041-8205/752/1/L13
78 Q. Qiao B., Liu W., J. Zhao M., J. Bi X., Q. Guo Y.. Galactic cosmic ray propagation: sub-PeV diffuse gammaray and neutrino emission. Front. Phys., 2022, 17(4): 44501
https://doi.org/10.1007/s11467-022-1160-7
79 J. Zhao M., Fang K., J. Bi X.. Constraints on the spatially dependent cosmic-ray propagation model from Bayesian analysis. Phys. Rev. D, 2021, 104(12): 123001
https://doi.org/10.1103/PhysRevD.104.123001
80 Q. Guo Y., Tian Z., Jin C.. Spatial-dependent propagation of cosmic rays results in the spectrum of proton, ratios of P/P, and B/C, and anisotropy of nuclei. Astrophys. J., 2016, 819(1): 54
https://doi.org/10.3847/0004-637X/819/1/54
81 Skilling J.. Cosmic rays in the Galaxy: Convection or diffusion. Astrophys. J., 1971, 170: 265
https://doi.org/10.1086/151210
82 Recchia S., Blasi P., Morlino G.. On the radial distribution of Galactic cosmic rays. Mon. Not. R. Astron. Soc., 2016, 462(1): L88
https://doi.org/10.1093/mnrasl/slw136
83 Fujita Y., Kohri K., Yamazaki R., Ioka K.. Is the PAMELA anomaly caused by supernova explosions near the Earth. Phys. Rev. D, 2009, 80(6): 063003
https://doi.org/10.1103/PhysRevD.80.063003
84 Liu W., J. Bi X., J. Lin S., B. Wang B., F. Yin P.. Excesses of cosmic ray spectra from a single nearby source. Phys. Rev. D, 2017, 96(2): 023006
https://doi.org/10.1103/PhysRevD.96.023006
85 Yang R., Aharonian F.. Interpretation of the excess of antiparticles within a modified paradigm of Galactic cosmic rays. Phys. Rev. D, 2019, 100(6): 063020
https://doi.org/10.1103/PhysRevD.100.063020
86 A. Malkov M., H. Diamond P., Z. Sagdeev R.. Positive charge prevalence in cosmic rays: Room for dark matter in the positron spectrum. Phys. Rev. D, 2016, 94(6): 063006
https://doi.org/10.1103/PhysRevD.94.063006
87 Kohri K., Ioka K., Fujita Y., Yamazaki R.. Can we explain AMS-02 antiproton and positron excesses simultaneously by nearby supernovae without pulsars or dark matter. Prog. Theor. Exper. Phys., 2016, 2016: 021E01
https://doi.org/10.1093/ptep/ptv193
88 Amenomori M., W. Bao Y., J. Bi X., Chen D., L. Chen T.. et al.. First detection of sub-PeV diffuse gamma rays from the Galactic disk: Evidence for ubiquitous Galactic cosmic rays beyond PeV energies. Phys. Rev. Lett., 2021, 126(14): 141101
https://doi.org/10.1103/PhysRevLett.126.141101
89 P. Zhang P., Q. Qiao B., Yuan Q., W. Cui S., Q. Guo Y.. Ultrahigh-energy diffuse gamma-ray emission from cosmic-ray interactions with the medium surrounding acceleration sources. Phys. Rev. D, 2022, 105(2): 023002
https://doi.org/10.1103/PhysRevD.105.023002
90 P. Zhang P., Y. He X., Liu W., Q. Guo Y.. Evidence of fresh cosmic ray in Galactic plane based on DAMPE measurement of B/C and B/O ratios. J. Cosmol. Astropart. Phys., 2023, 02: 007
https://doi.org/10.1088/1475-7516/2023/02/007
91 Zeng H., Xin Y., Liu S.. Evolution of high-energy particle distribution in supernova remnants. Astrophys. J., 2019, 874(1): 50
https://doi.org/10.3847/1538-4357/aaf392
92 Blasi P.. Origin of the positron excess in cosmic rays. Phys. Rev. Lett., 2009, 103(5): 051104
https://doi.org/10.1103/PhysRevLett.103.051104
93 Ahlers M., Mertsch P., Sarkar S.. Cosmic ray acceleration in supernova remnants and the FERMI/PAMELA data. Phys. Rev. D, 2009, 80(12): 123017
https://doi.org/10.1103/PhysRevD.80.123017
94 G. Berezhko E., T. Ksenofontov L., S. Ptuskin V., N. Zirakashvili V., J. Volk H.. Cosmic ray production in super-nova remnants including reacceleration: The secondary to primary ratio. Astron. Astrophys., 2003, 410(1): 189
https://doi.org/10.1051/0004-6361:20031274
95 Mertsch P., Sarkar S.. Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei. Phys. Rev. Lett., 2009, 103(8): 081104
https://doi.org/10.1103/PhysRevLett.103.081104
96 Cholis I., Hooper D.. Constraining the origin of the rising cosmic ray positron fraction with the boron-to-carbon ratio. Phys. Rev. D, 2014, 89(4): 043013
https://doi.org/10.1103/PhysRevD.89.043013
97 Blasi P., D. Serpico P.. High-energy antiprotons from old supernova remnants. Phys. Rev. Lett., 2009, 103(8): 081103
https://doi.org/10.1103/PhysRevLett.103.081103
98 Aguilar M., Ali Cavasonza L., Alpat B., Ambrosi G., Arruda L.. et al.. Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the International Space Station. Phys. Rev. Lett., 2016, 117(9): 091103
https://doi.org/10.1103/PhysRevLett.117.091103
99 Aguilar M., Aisa D., Alpat B., Alvino A., Ambrosi G.. et al.. Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the alpha magnetic spectrometer on the International Space Station. Phys. Rev. Lett., 2015, 114(17): 171103
https://doi.org/10.1103/PhysRevLett.114.171103
100 Aguilar M., Ali Cavasonza L., Ambrosi G., Arruda L., Attig N.. et al.. Towards understanding the origin of cosmic-ray positrons. Phys. Rev. Lett., 2019, 122(4): 041102
https://doi.org/10.1103/PhysRevLett.122.041102
101 Y. Cui M., Yuan Q., L. Sming Tsai Y., Z. Fan Y.. A possible dark matter annihilation signal in the AMS-02 antiproton data. Phys. Rev. Lett., 2017, 118(19): 191101
https://doi.org/10.1103/PhysRevLett.118.191101
102 Z. Fan Y., P. Tang T., L. S. Tsai Y., Wu L.. Inert Higgs dark matter for CDF II W — Boson mass and detection prospects. Phys. Rev. Lett., 2022, 129(9): 091802
https://doi.org/10.1103/PhysRevLett.129.091802
103 V. Moskalenko I., W. Strong A., G. Mashnik S., F. Ormes J.. Challenging cosmic-ray propagation with antiprotons: Evidence for a “fresh” nuclei component. Astrophys. J., 2003, 586(2): 1050
https://doi.org/10.1086/367697
[1] Zhiming Chen, Xiuye Liu, Jianhua Zeng. Electromagnetically induced moiré optical lattices in a coherent atomic gas[J]. Front. Phys. , 2022, 17(4): 42508-.
[2] Tianwei Wu, Xinhua Zhang, Zonghua Liu. Understanding the mechanisms of brain functions from the angle of synchronization and complex network[J]. Front. Phys. , 2022, 17(3): 31504-.
[3] Qiang Yuan, Bing-Qiang Qiao, Yi-Qing Guo, Yi-Zhong Fan, Xiao-Jun Bi. Nearby source interpretation of differences among light and medium composition spectra in cosmic rays[J]. Front. Phys. , 2021, 16(2): 24501-.
[4] Chuan Yue, Peng-Xiong Ma, Qiang Yuan, Yi-Zhong Fan, Zhan-Fang Chen, Ming-Yang Cui, Hao-Ting Dai, Tie-Kuang Dong, Xiaoyuan Huang, Wei Jiang, Shi-Jun Lei, Xiang Li, Cheng-Ming Liu, Hao Liu, Yang Liu, Chuan-Ning Luo, Xu Pan, Wen-Xi Peng, Rui Qiao, Yi-Feng Wei, Li-Bo Wu, Zhi-Hui Xu, Zun-Lei Xu, Guan-Wen Yuan, Jing-Jing Zang, Ya-Peng Zhang, Yong-Jie Zhang, Yun-Long Zhang. Implications on the origin of cosmic rays in light of 10 TV spectral softenings[J]. Front. Phys. , 2020, 15(2): 24601-.
[5] V. Zhukova, J. M. Blanco, A. Chizhik, M. Ipatov, A. Zhukov. AC-current-induced magnetization switching in amorphous microwires[J]. Front. Phys. , 2018, 13(2): 137501-.
[6] Jun-Ying Huang, Zu-Hui Wu, Ji-Ping Huang. Spectral blueshift as a three-dimensional structure-ordering process[J]. Front. Phys. , 2017, 12(3): 124205-.
[7] Xu-hong LIAO (廖旭红), Yu QIAN (钱郁), Yuan-yuan MI (弭元元), Qin-zhi XIA (夏勤智), Xiao-qing HUANG (黄晓清), Gang HU (胡岗). Oscillation sources and wave propagation paths in complex networks consisting of excitable nodes[J]. Front. Phys. , 2011, 6(1): 124-132.
[8] ZHOU Jie, LIU Zong-hua. Epidemic spreading in complex networks[J]. Front. Phys. , 2008, 3(3): 331-348.
[9] LIN Qiang, CAI Yang-jian, WANG Li-gang. Partially coherent beam and its applications[J]. Front. Phys. , 2007, 2(2): 153-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed