Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (5) : 51202    https://doi.org/10.1007/s11467-024-1391-x
Hardware-efficient quantum principal component analysis for medical image recognition
Zidong Lin1, Hongfeng Liu1, Kai Tang1, Yidai Liu2, Liangyu Che1, Xinyue Long1, Xiangyu Wang1, Yu-ang Fan1, Keyi Huang1, Xiaodong Yang1,3,4, Tao Xin1,3,4, Xinfang Nie1,4,5(), Dawei Lu1,3,4,5()
1. Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
2. Department of Physics, Hong Kong University of Science and Technology, ClearWaterBay, Kowloon, Hong Kong, China
3. International Quantum Academy, Shenzhen 518055, China
4. Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
5. Quantum Science Center of Guangdong–HongKong–Macao Greater Bay Area, Shenzhen–HongKong International Science and Technology Park, No. 3 Binlang Road, Futian District, Shenzhen 518045, China
 Download: PDF(5917 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Principal component analysis (PCA) is a widely used tool in machine learning algorithms, but it can be computationally expensive. In 2014, Lloyd, Mohseni & Rebentrost proposed a quantum PCA (qPCA) algorithm [Nat. Phys. 10, 631 (2014)] that has not yet been experimentally demonstrated due to challenges in preparing multiple quantum state copies and implementing quantum phase estimations. In this study, we presented a hardware-efficient approach for qPCA, utilizing an iterative approach that effectively resets the relevant qubits in a nuclear magnetic resonance (NMR) quantum processor. Additionally, we introduced a quantum scattering circuit that efficiently determines the eigenvalues and eigenvectors (principal components). As an important application of PCA, we focused on classifying thoracic CT images from COVID-19 patients and achieved high accuracy in image classification using the qPCA circuit implemented on the NMR system. Our experiment highlights the potential of near-term quantum devices to accelerate qPCA, opening up new avenues for practical applications of quantum machine learning algorithms.

Keywords quantum simulation      quantum principal component analysis      nuclear magnetic resonance     
Corresponding Author(s): Xinfang Nie,Dawei Lu   
About author:

#usheng Xing, Yannan Jian and Xiaodan Zhao contributed equally to this work.]]>

Issue Date: 30 May 2024
 Cite this article:   
Zidong Lin,Hongfeng Liu,Kai Tang, et al. Hardware-efficient quantum principal component analysis for medical image recognition[J]. Front. Phys. , 2024, 19(5): 51202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1391-x
https://academic.hep.com.cn/fop/EN/Y2024/V19/I5/51202
Fig.1  PCA-based medical image recognition and the corresponding qPCA circuits. (a) Flowchart illustrating the application of PCA for identifying lung CT images. The information of the CT images is encoded in the covariance matrix, which captures the interdependencies among different data components. Classically, principal components are obtained using iterative eigen-algorithms, e.g., power iteration, allowing for dimension reduction by projecting the data onto the subspace spanned by these principal components. (b) Quantum circuit for extracting the eigenvalues of the data matrix ρ. The Hadamard gate prepares the probe qubit in an equal superposition state, while the controlled- e iρt gate encodes the eigenvalues of ρ into the phase of the probe qubit. The trial qubits are initialized to an arbitrary pure state that must have non-zero overlaps with the eigenvectors of ρ. (c) Quantum circuit for eigenvectors extraction of ρ. The evolution time is set as τ=π/(λ2λ1 ), assuming that λ1<λ2. The single-qubit gate U0 prepares the probe qubit in |0? +e iλ1 τ|1?. (d) Complete circuit incorporating the realization of the controlled- e iρt gate. It requires N copies of the data matrix ρ, and the key component is the e iSΔt gate between the trial qubits and each copy, where S is the standard swap gate and Δt= t/ N.
Fig.2  Data loading and the experimental quantum circuit in the 4-qubit NMR system. (a) Training dataset comprises one positive and one negative CT image from the iCTFT database. Each image is flattened into a 49400×1 vector based on grayscale values, resulting in a training dataset represented by a 49400 ×2 matrix X. After centering the data, instead of the covariance matrix C=XXT, we compute the commuted covariance matrix D= XTX and load it into the quantum register, denoted as ρD. (b) Experimental quantum circuit for performing the iterative qPCA algorithm on the 4-qubit NMR quantum processor. We prepare two copies of ρD and implement the controlled- e iρ Dt operation in N steps, where each step consists of two controlled- eiSΔt gates applied between the trial qubit ( C2) and the data qubits (C3 or C4). In each step, the probe and trial qubits are reinitialized to their final state from the previous iteration using single- and two-qubit gates determined by the state of the previous iteration. Gradient-field pulses are applied to destroy instantaneous quantum coherence, serving as non-unitary operations.
Fig.3  Experimental eigenvalues obtained by the hardware-efficient qPCA approach. (a) Training set images for Group 1 experiment. The left and right images are randomly sampled from lung CT images of negative and positive patients, respectively. Clear textures are observed in the healthy lung CT image, while the diseased lung CT image exhibits a hazy shadow. (b) Magnitude of the probe qubit’s xcomponent Mx(t) [cf. Eq. (2)] for Group 1 at different time instants. (c) Discrete Fourier analysis of Mx(t) in Group 1. The spectral lines of different colors represent the Fourier analysis of Mx(t) at every 200 iterations. (d−f) Results for Group 2. (g) Two eigenvalues obtained from the Fourier analysis every 50 iterations in Group 1 and Group 2. As the number of iterations increases, the eigenvalues λ1,2exp tend to converge towards the theoretical values. (h) Precision of eigenvalue measurement is quantified by the half-widths of the two peaks, denoted as Δ λ1,2. The values in both groups gradually decrease as the number of iterations increases.
Fig.4  Experimental eigenvectors and the iterative process. (a) Experimental results of the eigenvectors for Group 1 (left panel) and Group 2 (right panel). The coefficients of |e1? and |e2?, represented in the computational basis, are illustrated. Both theoretical (green bars) and experimental (yellow bars) coefficients are shown for comparison, and the fidelities of the experimental eigenvectors exceed 0.9998. (b) Change in state fidelity (probe and trial qubits) as a function of the number of iterations. The fidelity is plotted at every 50 iterations for better visualization, while the solid line represents the fitting result. As a reference, we display the density matrices of the probe and trial qubits at the 200th and 800th iterations, as shown in the insets.
Fig.5  Classification of lung CT images after qPCA. (a) Classification results for Group 1. After performing qPCA, each CT image in the dataset is projected onto a two-dimensional space spanned by the two experimental eigenvectors |e1 ex p? and |e2 ex p?. The two training images are denoted by circles, while the test images are represented by crosses. The test dataset consists of 39 virus-negative images (blue) and 39 virus-positive images (red). The decision boundary is depicted by the dashed line. Out of the 78 test images, 72 are correctly identified, resulting in a success rate of 92.31%. (b) Classification results for Group 2. Among the 78 test images, 68 are accurately classified, yielding a success rate of 87.17%.
  Fig. A1 Molecular structure and relevant parameters. (a) Molecular structure of 13C-labeled trans-crotonic acid. C1, C2, C3 and C4 in the green dashed line are used as four qubits in the experiment. (b) Molecular properties and the Hamiltonian relevant parameters of the sample. Chemical shifts (diagonal, Hz), scalar coupling strengths (off-diagonal, Hz), and relaxation times (T1 and T2) are all listed in the table.
1 M. Mitchell T., Machine Learning, Vol. 1, New York: McGraw-Hill, 1997
2 I. Jordan M., M. Mitchell T.. Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255
https://doi.org/10.1126/science.aaa8415
3 Carleo G., Cirac I., Cranmer K., Daudet L., Schuld M., Tishby N., Vogt-Maranto L., Zdeborová L.. Machine learning and the physical sciences. Rev. Mod. Phys., 2019, 91(4): 045002
https://doi.org/10.1103/RevModPhys.91.045002
4 J. Erickson B., Korfiatis P., Akkus Z., L. Kline T.. Machine learning for medical imaging. Radiographics, 2017, 37(2): 505
https://doi.org/10.1148/rg.2017160130
5 L. Giger M.. Machine learning in medical imaging. J. Am. Coll. Radiol., 2018, 15(3): 512
https://doi.org/10.1016/j.jacr.2017.12.028
6 Wang S., Li C., Wang R., Liu Z., Wang M., Tan H., Wu Y., Liu X., Sun H., Yang R., Liu X., Chen J., Zhou H., Ben Ayed I., Zheng H.. Annotation-efficient deep learning for automatic medical image segmentation. Nat. Commun., 2021, 12(1): 5915
https://doi.org/10.1038/s41467-021-26216-9
7 C. Chiu Y., Zheng S., J. Wang L., S. Iskra B., K. Rao M., J. Houghton P., Huang Y., Chen Y.. Predicting and characterizing a cancer dependency map of tumors with deep learning. Sci. Adv., 2021, 7(34): eabh1275
https://doi.org/10.1126/sciadv.abh1275
8 Witowski J., Heacock L., Reig B., K. Kang S., Lewin A., Pysarenko K., Patel S., Samreen N., Rudnicki W., Łuczyńska E., Popiela T., Moy L., J. Geras K.. Improving breast cancer diagnostics with deep learning for MRI. Sci. Transl. Med., 2022, 14(664): eabo4802
https://doi.org/10.1126/scitranslmed.abo4802
9 M. Thomasian N., R. Kamel I., X. Bai H.. Machine intelligence in non-invasive endocrine cancer diagnostics. Nat. Rev. Endocrinol., 2022, 18(2): 81
https://doi.org/10.1038/s41574-021-00543-9
10 J. Schoepf U., C. Schneider A., Das M., A. Wood S., I. Cheema J., Costello P.. Pulmonary embolism: Computer-aided detection at multidetector row spiral computed tomography. J. Thorac. Imaging, 2007, 22(4): 319
https://doi.org/10.1097/RTI.0b013e31815842a9
11 M. Dundar M., Fung G., Krishnapuram B., B. Rao R.. Multiple-instance learning algorithms for computer-aided detection. IEEE Trans. Biomed. Eng., 2008, 55(3): 1015
https://doi.org/10.1109/TBME.2007.909544
12 P. Chan H., C. B. Lo S., Sahiner B., L. Lam K., A. Helvie M.. Computer‐aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network. Med. Phys., 1995, 22(10): 1555
https://doi.org/10.1118/1.597428
13 Bauer S., Wiest R., P. Nolte L., Reyes M.. A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol., 2013, 58(13): R97
https://doi.org/10.1088/0031-9155/58/13/R97
14 M. Mitchell T., V. Shinkareva S., Carlson A., M. Chang K., L. Malave V., A. Mason R., A. Just M.. Predicting human brain activity associated with the meanings of nouns. Science, 2008, 320(5880): 1191
https://doi.org/10.1126/science.1152876
15 Davatzikos C., Fan Y., Wu X., Shen D., M. Resnick S.. Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol. Aging, 2008, 29(4): 514
https://doi.org/10.1016/j.neurobiolaging.2006.11.010
16 Kim D., Burge J., Lane T., D. Pearlson G., A. Kiehl K., D. Calhoun V.. Hybrid ICA–Bayesian network approach reveals distinct effective connectivity differences in schizophrenia. Neuroimage, 2008, 42(4): 1560
https://doi.org/10.1016/j.neuroimage.2008.05.065
17 Ning W., Lei S., Yang J., Cao Y., Jiang P., Yang Q., Zhang J., Wang X., Chen F., Geng Z., Xiong L., Zhou H., Guo Y., Zeng Y., Shi H., Wang L., Xue Y., Wang Z.. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng., 2020, 4(12): 1197
https://doi.org/10.1038/s41551-020-00633-5
18 J. Rodriguez-Morales A., A. Cardona-Ospina J., Guti’errez-Ocampo E., Villamizar-Penã R., Holguin-Rivera Y., P. Escalera-Antezana J., E. Alvarado-Arnez L., K. Bonilla-Aldana D., Franco-Paredes C., F. Henao-Martinez A., Paniz-Mondolfi A., J. Lagos-Grisales G., Ramírez-Vallejo E., A. Suárez J., I. Zambrano L., E. Villamil-Gómez W., J. Balbin-Ramon G., A. Rabaan A., Harapan H., Dhama K., Nishiura H., Kataoka H., Ahmad T., Sah R.. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med. Infect. Dis., 2020, 34: 101623
https://doi.org/10.1016/j.tmaid.2020.101623
19 Shi H., Han X., Jiang N., Cao Y., Alwalid O., Gu J., Fan Y., Zheng C.. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect. Dis., 2020, 20(4): 425
https://doi.org/10.1016/S1473-3099(20)30086-4
20 C. Liu K., Xu P., F. Lv W., H. Qiu X., L. Yao J., F. Gu J., Wei W.. CT manifestations of coronavirus disease-2019: A retrospective analysis of 73 cases by disease severity. Eur. J. Radiol., 2020, 126: 108941
https://doi.org/10.1016/j.ejrad.2020.108941
21 P. M. Schuld F., Sinayskiy I., Petruccione F.. An introduction to quantum machine learning. Contemp. Phys., 2015, 56(2): 172
https://doi.org/10.1080/00107514.2014.964942
22 Biamonte J., Wittek P., Pancotti N., Rebentrost P., Wiebe N., Lloyd S.. Quantum machine learning. Nature, 2017, 549(7671): 195
https://doi.org/10.1038/nature23474
23 Ciliberto C., Herbster M., D. Ialongo A., Pontil M., Rocchetto A., Severini S., Wossnig L.. Quantum machine learning: A classical perspective. Proc. Royal Soc. A, 2018, 474(2209): 20170551
https://doi.org/10.1098/rspa.2017.0551
24 Rebentrost P., Mohseni M., Lloyd S.. Quantum support vector machine for big data classification. Phys. Rev. Lett., 2014, 113(13): 130503
https://doi.org/10.1103/PhysRevLett.113.130503
25 Li Z., Liu X., Xu N., Du J.. Experimental realization of a quantum support vector machine. Phys. Rev. Lett., 2015, 114(14): 140504
https://doi.org/10.1103/PhysRevLett.114.140504
26 Kerenidis I., Prakash A., Szilágyi D.. Quantum algorithms for second-order cone programming and support vector machines. Quantum, 2021, 5: 427
https://doi.org/10.22331/q-2021-04-08-427
27 L. Dallaire-Demers P., Killoran N.. Quantum generative adversarial networks. Phys. Rev. A, 2018, 98(1): 012324
https://doi.org/10.1103/PhysRevA.98.012324
28 Zoufal C., Lucchi A., Woerner S.. Quantum generative adversarial networks for learning and loading random distributions. npj Quantum Inf., 2019, 5: 103
https://doi.org/10.1038/s41534-019-0223-2
29 L. Huang H., Du Y., Gong M., Zhao Y., Wu Y., Wang C., Li S., Liang F., Lin J., Xu Y., Yang R., Liu T., H. Hsieh M., Deng H., Rong H., Z. Peng C., Y. Lu C., A. Chen Y., Tao D., Zhu X., W. Pan J.. Experimental quantum generative adversarial networks for image generation. Phys. Rev. Appl., 2021, 16(2): 024051
https://doi.org/10.1103/PhysRevApplied.16.024051
30 W. Harrow A., Hassidim A., Lloyd S.. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 2009, 103(15): 150502
https://doi.org/10.1103/PhysRevLett.103.150502
31 Pan J., Cao Y., Yao X., Li Z., Ju C., Chen H., Peng X., Kais S., Du J.. Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A, 2014, 89(2): 022313
https://doi.org/10.1103/PhysRevA.89.022313
32 W. Berry D.. High-order quantum algorithm for solving linear differential equations. J. Phys. A Math. Theor., 2014, 47(10): 105301
https://doi.org/10.1088/1751-8113/47/10/105301
33 W. Berry D., M. Childs A., Ostrander A., Wang G.. Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Commun. Math. Phys., 2017, 356(3): 1057
https://doi.org/10.1007/s00220-017-3002-y
34 Xin T., Wei S., Cui J., Xiao J., Arrazola I., Lamata L., Kong X., Lu D., Solano E., Long G.. Quantum algorithm for solving linear differential equations: Theory and experiment. Phys. Rev. A, 2020, 101(3): 032307
https://doi.org/10.1103/PhysRevA.101.032307
35 Carleo G., Troyer M.. Solving the quantum many-body problem with artificial neural networks. Science, 2017, 355(6325): 602
https://doi.org/10.1126/science.aag2302
36 Hu L., H. Wu S., Cai W., Ma Y., Mu X., Xu Y., Wang H., Song Y., L. Deng D., L. Zou C., Sun L.. Quantum generative adversarial learning in a superconducting quantum circuit. Sci. Adv., 2019, 5(1): eaav2761
https://doi.org/10.1126/sciadv.aav2761
37 Liu Y., Arunachalam S., Temme K.. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys., 2021, 17(9): 1013
https://doi.org/10.1038/s41567-021-01287-z
38 Lloyd S., Mohseni M., Rebentrost P.. Quantum principal component analysis. Nat. Phys., 2014, 10(9): 631
https://doi.org/10.1038/nphys3029
39 Xin T., Che L., Xi C., Singh A., Nie X., Li J., Dong Y., Lu D.. Experimental quantum principal component analysis via parametrized quantum circuits. Phys. Rev. Lett., 2021, 126(11): 110502
https://doi.org/10.1103/PhysRevLett.126.110502
40 Li Z., Chai Z., Guo Y., Ji W., Wang M., Shi F., Wang Y., Lloyd S., Du J.. Resonant quantum principal component analysis. Sci. Adv., 2021, 7(34): eabg2589
https://doi.org/10.1126/sciadv.abg2589
41 Li Z., Zhou H., Ju C., Chen H., Zheng W., Lu D., Rong X., Duan C., Peng X., Du J.. Experimental realization of a compressed quantum simulation of a 32-spin Ising chain. Phys. Rev. Lett., 2014, 112(22): 220501
https://doi.org/10.1103/PhysRevLett.112.220501
42 Li Z., Liu X., Wang H., Ashhab S., Cui J., Chen H., Peng I., Du J.. Quantum simulation of resonant transitions for solving the eigenproblem of an effective water Hamiltonian. Phys. Rev. Lett., 2019, 122(9): 090504
https://doi.org/10.1103/PhysRevLett.122.090504
43 Kjaergaard M., E. Schwartz M., Greene A., O. Samach G., Bengtsson A., O’Keeffe M., M. McNally C., Braumüller J., K. Kim D., Krantz P., Marvian M., Melville A., M. Niedzielski B., Sung Y., Winik R., Yoder J., Rosenberg D., Obenland K., Lloyd S., P. Orlando T., Marvian I., Gustavsson S., D. Oliver W.. Demonstration of density matrix exponentiation using a superconducting quantum processor. Phys. Rev. X, 2022, 12(1): 011005
https://doi.org/10.1103/PhysRevX.12.011005
44 Pal S., Nishad N., S. Mahesh T., J. Sreejith G.. Temporal order in periodically driven spins in star-shaped clusters. Phys. Rev. Lett., 2018, 120(18): 180602
https://doi.org/10.1103/PhysRevLett.120.180602
45 Micadei K., P. S. Peterson J., M. Souza A., S. Sarthour R., S. Oliveira I., T. Landi G., M. Serra R., Lutz E.. Experimental validation of fully quantum fluctuation theorems using dynamic Bayesian networks. Phys. Rev. Lett., 2021, 127(18): 180603
https://doi.org/10.1103/PhysRevLett.127.180603
46 J. de Assis R., M. de Mendonça T., J. Villas-Boas C., M. de Souza A., S. Sarthour R., S. Oliveira I., G. de Almeida N.. Efficiency of a quantum Otto heat engine operating under a reservoir at effective negative temperatures. Phys. Rev. Lett., 2019, 122(24): 240602
https://doi.org/10.1103/PhysRevLett.122.240602
47 Zhang Z., Long X., Zhao X., Lin Z., Tang K., Liu H., Yang X., Nie X., Wu J., Li J., Xin T., Li K., Lu D.. Identifying Abelian and non-Abelian topological orders in the string-net model using a quantum scattering circuit. Phys. Rev. A, 2022, 105(3): L030402
https://doi.org/10.1103/PhysRevA.105.L030402
48 Miquel C., P. Paz J., Saraceno M., Knill E., Laflamme R., Negrevergne C.. Interpretation of tomography and spectroscopy as dual forms of quantum computation. Nature, 2002, 418(6893): 59
https://doi.org/10.1038/nature00801
49 Li Z., H. Yung M., Chen H., Lu D., D. Whitfield J., Peng X., Aspuru-Guzik A., Du J.. Solving quantum ground-state problems with nuclear magnetic resonance. Sci. Rep., 2011, 1: 88
https://doi.org/10.1038/srep00088
50 B. Batalhão T., M. Souza A., S. Sarthour R., S. Oliveira I., Paternostro M., Lutz E., M. Serra R.. Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett., 2015, 115(19): 190601
https://doi.org/10.1103/PhysRevLett.115.190601
51 B. Batalhão T., M. Souza A., Mazzola L., Auccaise R., S. Sarthour R., S. Oliveira I., Goold J., De Chiara G., Paternostro M., M. Serra R.. Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett., 2014, 113(14): 140601
https://doi.org/10.1103/PhysRevLett.113.140601
52 Giovannetti V., Lloyd S., Maccone L.. Quantum random access memory. Phys. Rev. Lett., 2008, 100(16): 160501
https://doi.org/10.1103/PhysRevLett.100.160501
53 Ning W., Lei S., Yang J., Cao Y., Jiang P., Yang Q., Zhang J., Wang X., Chen F., Geng Z., Xiong J., Zhou H., Guo K., Zeng Y., Chi H., Wang L., Xue Y., Wang Z.. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng., 2020, 4: 1197
https://doi.org/10.1038/s41551-020-00633-5
54 A. Turk M.P. Pentland A., in: Proceedings of 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, 1991, pp 586–587
55 Li J., Lu D., Luo Z., Laflamme R., Peng X., Du J.. Approximation of reachable sets for coherently controlled open quantum systems: Application to quantum state engineering. Phys. Rev. A, 2016, 94(1): 012312
https://doi.org/10.1103/PhysRevA.94.012312
56 Nie X., Zhu X., Huang K., Tang K., Long X., Lin Z., Tian Y., Qiu C., Xi C., Yang X., Li J., Dong Y., Xin T., Lu D.. Experimental realization of a quantum refrigerator driven by indefinite causal orders. Phys. Rev. Lett., 2022, 129(10): 100603
https://doi.org/10.1103/PhysRevLett.129.100603
57 Xin T., Li Y., A. Fan Y., Zhu X., Zhang Y., Nie X., Li J., Liu Q., Lu D.. Quantum phases of three-dimensional chiral topological insulators on a spin quantum simulator. Phys. Rev. Lett., 2020, 125(9): 090502
https://doi.org/10.1103/PhysRevLett.125.090502
58 Micadei K., P. Peterson J., M. Souza A., S. Sarthour R., S. Oliveira I., T. Landi G., B. Batalhão T., M. Serra R., Lutz E.. Reversing the direction of heat flow using quantum correlations. Nat. Commun., 2019, 10(1): 2456
https://doi.org/10.1038/s41467-019-10333-7
59 J. Glaser S., Boscain U., Calarco T., P. Koch C., Köckenberger W., Kosloff R., Kuprov I., Luy B., Schirmer S., Schulte-Herbrüggen T., Sugny D., K. Wilhelm F.. Training Schrödinger’s cat: Quantum optimal control. Eur. Phys. J. D, 2015, 69(12): 279
https://doi.org/10.1140/epjd/e2015-60464-1
60 de Fouquieres P., G. Schirmer S., J. Glaser S., Kuprov I.. Second order gradient ascent pulse engineering. J. Magn. Reson., 2011, 212(2): 412
https://doi.org/10.1016/j.jmr.2011.07.023
61 E. Hinton G., R. Salakhutdinov R.. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504
https://doi.org/10.1126/science.1127647
62 Abdi H., J. Williams L.. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat., 2010, 2(4): 433
https://doi.org/10.1002/wics.101
63 Li J., Yang X., Peng X., P. Sun C.. Hybrid quantum−classical approach to quantum optimal control. Phys. Rev. Lett., 2017, 118(15): 150503
https://doi.org/10.1103/PhysRevLett.118.150503
64 Lu D., Li K., Li J., Katiyar H., J. Park A., Feng G., Xin T., Li H., Long G., Brodutch A., Baugh J., Zeng B., Laflamme R.. Enhancing quantum control by bootstrapping a quantum processor of 12 qubits. npj Quantum Inf., 2017, 3: 45
https://doi.org/10.1038/s41534-017-0045-z
65 T. Flammia S., K. Liu Y.. Direct fidelity estimation from few Pauli measurements. Phys. Rev. Lett., 2011, 106(23): 230501
https://doi.org/10.1103/PhysRevLett.106.230501
66 P. da Silva M., Landon-Cardinal O., Poulin D.. Practical characterization of quantum devices without tomography. Phys. Rev. Lett., 2011, 107(21): 210404
https://doi.org/10.1103/PhysRevLett.107.210404
67 Lloyd S.. Universal quantum simulators. Science, 1996, 273(5278): 1073
https://doi.org/10.1126/science.273.5278.1073
68 A. Gershenfeld N., L. Chuang I.. Bulk spin-resonance quantum computation. Science, 1997, 275(5298): 350
https://doi.org/10.1126/science.275.5298.350
69 Lu D., Li H., A. Trottier D., Li J., Brodutch A., P. Krismanich A., Ghavami A., I. Dmitrienko G., Long G., Baugh J., Laflamme R.. Experimental estimation of average fidelity of a clifford gate on a 7-qubit quantum processor. Phys. Rev. Lett., 2015, 114(14): 140505
https://doi.org/10.1103/PhysRevLett.114.140505
70 Feng G., H. Cho F., Katiyar H., Li J., Lu D., Baugh J., Laflamme R.. Gradient-based closed-loop quantum optimal control in a solid-state two-qubit system. Phys. Rev. A, 2018, 98(5): 052341
https://doi.org/10.1103/PhysRevA.98.052341
71 Xin T., Nie X., Kong X., Wen J., Lu D., Li J.. Quantum pure state tomography via variational hybrid quantum-classical method. Phys. Rev. Appl., 2020, 13(2): 024013
https://doi.org/10.1103/PhysRevApplied.13.024013
[1] fop-24391-of-ludawei_suppl_1 Download
[1] Wen-Qiang Liu, Zhang-qi Yin. Efficiently simulating the work distribution of multiple identical bosons with boson sampling[J]. Front. Phys. , 2024, 19(3): 32203-.
[2] Wei Feng, Dexi Shao, Guo-Qiang Zhang, Qi-Ping Su, Jun-Xiang Zhang, Chui-Ping Yang. Quantum simulation of Hofstadter butterfly with synthetic gauge fields on two-dimensional superconducting-qubit lattices[J]. Front. Phys. , 2023, 18(6): 61302-.
[3] Xue-Jing Feng, Jin-Xin Li, Lu Qin, Ying-Ying Zhang, ShiQiang Xia, Lu Zhou, ChunJie Yang, ZunLue Zhu, Wu-Ming Liu, Xing-Dong Zhao. Itinerant ferromagnetism entrenched by the anisotropy of spin−orbit coupling in a dipolar Fermi gas[J]. Front. Phys. , 2023, 18(5): 52303-.
[4] Na-Na Zhang (张娜娜), Ming-Jie Tao (陶明杰), Wan-Ting He (何宛亭), Xin-Yu Chen (陈鑫宇), Xiang-Yu Kong (孔祥宇), Fu-Guo Deng (邓富国), Neill Lambert, Qing Ai (艾清). Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities[J]. Front. Phys. , 2021, 16(5): 51501-.
[5] Gaurav Bhole, Jonathan A. Jones. Practical pulse engineering: Gradient ascent without matrix exponentiation[J]. Front. Phys. , 2018, 13(3): 130312-.
[6] Dan-wei Zhang (张丹伟), Zi-dan Wang (汪子丹), Shi-liang Zhu (朱诗亮). Relativistic quantum effects of Dirac particles simulated by ultracold atoms[J]. Front. Phys. , 2012, 7(1): 31-53.
[7] A. M. Mounce, S. Oh, W. P. Halperin. Nuclear magnetic resonance studies of vortices in high temperature superconductors[J]. Front. Phys. , 2011, 6(4): 450-462.
[8] Zi-jing DING (丁子敬), Yang JIAO (焦扬), Sheng MENG (孟胜). Quantum simulation of molecular interaction and dynamics at surfaces[J]. Front. Phys. , 2011, 6(3): 294-308.
[9] Xin-hua PENG (彭新华), Dieter SUTER, . Spin qubits for quantum simulations [J]. Front. Phys. , 2010, 5(1): 1-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed