|
|
Hardware-efficient quantum principal component analysis for medical image recognition |
Zidong Lin1, Hongfeng Liu1, Kai Tang1, Yidai Liu2, Liangyu Che1, Xinyue Long1, Xiangyu Wang1, Yu-ang Fan1, Keyi Huang1, Xiaodong Yang1,3,4, Tao Xin1,3,4, Xinfang Nie1,4,5(), Dawei Lu1,3,4,5() |
1. Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China 2. Department of Physics, Hong Kong University of Science and Technology, ClearWaterBay, Kowloon, Hong Kong, China 3. International Quantum Academy, Shenzhen 518055, China 4. Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 5. Quantum Science Center of Guangdong–HongKong–Macao Greater Bay Area, Shenzhen–HongKong International Science and Technology Park, No. 3 Binlang Road, Futian District, Shenzhen 518045, China |
|
|
Abstract Principal component analysis (PCA) is a widely used tool in machine learning algorithms, but it can be computationally expensive. In 2014, Lloyd, Mohseni & Rebentrost proposed a quantum PCA (qPCA) algorithm [Nat. Phys. 10, 631 (2014)] that has not yet been experimentally demonstrated due to challenges in preparing multiple quantum state copies and implementing quantum phase estimations. In this study, we presented a hardware-efficient approach for qPCA, utilizing an iterative approach that effectively resets the relevant qubits in a nuclear magnetic resonance (NMR) quantum processor. Additionally, we introduced a quantum scattering circuit that efficiently determines the eigenvalues and eigenvectors (principal components). As an important application of PCA, we focused on classifying thoracic CT images from COVID-19 patients and achieved high accuracy in image classification using the qPCA circuit implemented on the NMR system. Our experiment highlights the potential of near-term quantum devices to accelerate qPCA, opening up new avenues for practical applications of quantum machine learning algorithms.
|
Keywords
quantum simulation
quantum principal component analysis
nuclear magnetic resonance
|
Corresponding Author(s):
Xinfang Nie,Dawei Lu
|
About author: #usheng Xing, Yannan Jian and Xiaodan Zhao contributed equally to this work.]]> |
Issue Date: 30 May 2024
|
|
1 |
M. Mitchell T., Machine Learning, Vol. 1, New York: McGraw-Hill, 1997
|
2 |
I. Jordan M., M. Mitchell T.. Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255
https://doi.org/10.1126/science.aaa8415
|
3 |
Carleo G., Cirac I., Cranmer K., Daudet L., Schuld M., Tishby N., Vogt-Maranto L., Zdeborová L.. Machine learning and the physical sciences. Rev. Mod. Phys., 2019, 91(4): 045002
https://doi.org/10.1103/RevModPhys.91.045002
|
4 |
J. Erickson B., Korfiatis P., Akkus Z., L. Kline T.. Machine learning for medical imaging. Radiographics, 2017, 37(2): 505
https://doi.org/10.1148/rg.2017160130
|
5 |
L. Giger M.. Machine learning in medical imaging. J. Am. Coll. Radiol., 2018, 15(3): 512
https://doi.org/10.1016/j.jacr.2017.12.028
|
6 |
Wang S., Li C., Wang R., Liu Z., Wang M., Tan H., Wu Y., Liu X., Sun H., Yang R., Liu X., Chen J., Zhou H., Ben Ayed I., Zheng H.. Annotation-efficient deep learning for automatic medical image segmentation. Nat. Commun., 2021, 12(1): 5915
https://doi.org/10.1038/s41467-021-26216-9
|
7 |
C. Chiu Y., Zheng S., J. Wang L., S. Iskra B., K. Rao M., J. Houghton P., Huang Y., Chen Y.. Predicting and characterizing a cancer dependency map of tumors with deep learning. Sci. Adv., 2021, 7(34): eabh1275
https://doi.org/10.1126/sciadv.abh1275
|
8 |
Witowski J., Heacock L., Reig B., K. Kang S., Lewin A., Pysarenko K., Patel S., Samreen N., Rudnicki W., Łuczyńska E., Popiela T., Moy L., J. Geras K.. Improving breast cancer diagnostics with deep learning for MRI. Sci. Transl. Med., 2022, 14(664): eabo4802
https://doi.org/10.1126/scitranslmed.abo4802
|
9 |
M. Thomasian N., R. Kamel I., X. Bai H.. Machine intelligence in non-invasive endocrine cancer diagnostics. Nat. Rev. Endocrinol., 2022, 18(2): 81
https://doi.org/10.1038/s41574-021-00543-9
|
10 |
J. Schoepf U., C. Schneider A., Das M., A. Wood S., I. Cheema J., Costello P.. Pulmonary embolism: Computer-aided detection at multidetector row spiral computed tomography. J. Thorac. Imaging, 2007, 22(4): 319
https://doi.org/10.1097/RTI.0b013e31815842a9
|
11 |
M. Dundar M., Fung G., Krishnapuram B., B. Rao R.. Multiple-instance learning algorithms for computer-aided detection. IEEE Trans. Biomed. Eng., 2008, 55(3): 1015
https://doi.org/10.1109/TBME.2007.909544
|
12 |
P. Chan H., C. B. Lo S., Sahiner B., L. Lam K., A. Helvie M.. Computer‐aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network. Med. Phys., 1995, 22(10): 1555
https://doi.org/10.1118/1.597428
|
13 |
Bauer S., Wiest R., P. Nolte L., Reyes M.. A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol., 2013, 58(13): R97
https://doi.org/10.1088/0031-9155/58/13/R97
|
14 |
M. Mitchell T., V. Shinkareva S., Carlson A., M. Chang K., L. Malave V., A. Mason R., A. Just M.. Predicting human brain activity associated with the meanings of nouns. Science, 2008, 320(5880): 1191
https://doi.org/10.1126/science.1152876
|
15 |
Davatzikos C., Fan Y., Wu X., Shen D., M. Resnick S.. Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol. Aging, 2008, 29(4): 514
https://doi.org/10.1016/j.neurobiolaging.2006.11.010
|
16 |
Kim D., Burge J., Lane T., D. Pearlson G., A. Kiehl K., D. Calhoun V.. Hybrid ICA–Bayesian network approach reveals distinct effective connectivity differences in schizophrenia. Neuroimage, 2008, 42(4): 1560
https://doi.org/10.1016/j.neuroimage.2008.05.065
|
17 |
Ning W., Lei S., Yang J., Cao Y., Jiang P., Yang Q., Zhang J., Wang X., Chen F., Geng Z., Xiong L., Zhou H., Guo Y., Zeng Y., Shi H., Wang L., Xue Y., Wang Z.. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng., 2020, 4(12): 1197
https://doi.org/10.1038/s41551-020-00633-5
|
18 |
J. Rodriguez-Morales A., A. Cardona-Ospina J., Guti’errez-Ocampo E., Villamizar-Penã R., Holguin-Rivera Y., P. Escalera-Antezana J., E. Alvarado-Arnez L., K. Bonilla-Aldana D., Franco-Paredes C., F. Henao-Martinez A., Paniz-Mondolfi A., J. Lagos-Grisales G., Ramírez-Vallejo E., A. Suárez J., I. Zambrano L., E. Villamil-Gómez W., J. Balbin-Ramon G., A. Rabaan A., Harapan H., Dhama K., Nishiura H., Kataoka H., Ahmad T., Sah R.. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med. Infect. Dis., 2020, 34: 101623
https://doi.org/10.1016/j.tmaid.2020.101623
|
19 |
Shi H., Han X., Jiang N., Cao Y., Alwalid O., Gu J., Fan Y., Zheng C.. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect. Dis., 2020, 20(4): 425
https://doi.org/10.1016/S1473-3099(20)30086-4
|
20 |
C. Liu K., Xu P., F. Lv W., H. Qiu X., L. Yao J., F. Gu J., Wei W.. CT manifestations of coronavirus disease-2019: A retrospective analysis of 73 cases by disease severity. Eur. J. Radiol., 2020, 126: 108941
https://doi.org/10.1016/j.ejrad.2020.108941
|
21 |
P. M. Schuld F., Sinayskiy I., Petruccione F.. An introduction to quantum machine learning. Contemp. Phys., 2015, 56(2): 172
https://doi.org/10.1080/00107514.2014.964942
|
22 |
Biamonte J., Wittek P., Pancotti N., Rebentrost P., Wiebe N., Lloyd S.. Quantum machine learning. Nature, 2017, 549(7671): 195
https://doi.org/10.1038/nature23474
|
23 |
Ciliberto C., Herbster M., D. Ialongo A., Pontil M., Rocchetto A., Severini S., Wossnig L.. Quantum machine learning: A classical perspective. Proc. Royal Soc. A, 2018, 474(2209): 20170551
https://doi.org/10.1098/rspa.2017.0551
|
24 |
Rebentrost P., Mohseni M., Lloyd S.. Quantum support vector machine for big data classification. Phys. Rev. Lett., 2014, 113(13): 130503
https://doi.org/10.1103/PhysRevLett.113.130503
|
25 |
Li Z., Liu X., Xu N., Du J.. Experimental realization of a quantum support vector machine. Phys. Rev. Lett., 2015, 114(14): 140504
https://doi.org/10.1103/PhysRevLett.114.140504
|
26 |
Kerenidis I., Prakash A., Szilágyi D.. Quantum algorithms for second-order cone programming and support vector machines. Quantum, 2021, 5: 427
https://doi.org/10.22331/q-2021-04-08-427
|
27 |
L. Dallaire-Demers P., Killoran N.. Quantum generative adversarial networks. Phys. Rev. A, 2018, 98(1): 012324
https://doi.org/10.1103/PhysRevA.98.012324
|
28 |
Zoufal C., Lucchi A., Woerner S.. Quantum generative adversarial networks for learning and loading random distributions. npj Quantum Inf., 2019, 5: 103
https://doi.org/10.1038/s41534-019-0223-2
|
29 |
L. Huang H., Du Y., Gong M., Zhao Y., Wu Y., Wang C., Li S., Liang F., Lin J., Xu Y., Yang R., Liu T., H. Hsieh M., Deng H., Rong H., Z. Peng C., Y. Lu C., A. Chen Y., Tao D., Zhu X., W. Pan J.. Experimental quantum generative adversarial networks for image generation. Phys. Rev. Appl., 2021, 16(2): 024051
https://doi.org/10.1103/PhysRevApplied.16.024051
|
30 |
W. Harrow A., Hassidim A., Lloyd S.. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 2009, 103(15): 150502
https://doi.org/10.1103/PhysRevLett.103.150502
|
31 |
Pan J., Cao Y., Yao X., Li Z., Ju C., Chen H., Peng X., Kais S., Du J.. Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A, 2014, 89(2): 022313
https://doi.org/10.1103/PhysRevA.89.022313
|
32 |
W. Berry D.. High-order quantum algorithm for solving linear differential equations. J. Phys. A Math. Theor., 2014, 47(10): 105301
https://doi.org/10.1088/1751-8113/47/10/105301
|
33 |
W. Berry D., M. Childs A., Ostrander A., Wang G.. Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Commun. Math. Phys., 2017, 356(3): 1057
https://doi.org/10.1007/s00220-017-3002-y
|
34 |
Xin T., Wei S., Cui J., Xiao J., Arrazola I., Lamata L., Kong X., Lu D., Solano E., Long G.. Quantum algorithm for solving linear differential equations: Theory and experiment. Phys. Rev. A, 2020, 101(3): 032307
https://doi.org/10.1103/PhysRevA.101.032307
|
35 |
Carleo G., Troyer M.. Solving the quantum many-body problem with artificial neural networks. Science, 2017, 355(6325): 602
https://doi.org/10.1126/science.aag2302
|
36 |
Hu L., H. Wu S., Cai W., Ma Y., Mu X., Xu Y., Wang H., Song Y., L. Deng D., L. Zou C., Sun L.. Quantum generative adversarial learning in a superconducting quantum circuit. Sci. Adv., 2019, 5(1): eaav2761
https://doi.org/10.1126/sciadv.aav2761
|
37 |
Liu Y., Arunachalam S., Temme K.. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys., 2021, 17(9): 1013
https://doi.org/10.1038/s41567-021-01287-z
|
38 |
Lloyd S., Mohseni M., Rebentrost P.. Quantum principal component analysis. Nat. Phys., 2014, 10(9): 631
https://doi.org/10.1038/nphys3029
|
39 |
Xin T., Che L., Xi C., Singh A., Nie X., Li J., Dong Y., Lu D.. Experimental quantum principal component analysis via parametrized quantum circuits. Phys. Rev. Lett., 2021, 126(11): 110502
https://doi.org/10.1103/PhysRevLett.126.110502
|
40 |
Li Z., Chai Z., Guo Y., Ji W., Wang M., Shi F., Wang Y., Lloyd S., Du J.. Resonant quantum principal component analysis. Sci. Adv., 2021, 7(34): eabg2589
https://doi.org/10.1126/sciadv.abg2589
|
41 |
Li Z., Zhou H., Ju C., Chen H., Zheng W., Lu D., Rong X., Duan C., Peng X., Du J.. Experimental realization of a compressed quantum simulation of a 32-spin Ising chain. Phys. Rev. Lett., 2014, 112(22): 220501
https://doi.org/10.1103/PhysRevLett.112.220501
|
42 |
Li Z., Liu X., Wang H., Ashhab S., Cui J., Chen H., Peng I., Du J.. Quantum simulation of resonant transitions for solving the eigenproblem of an effective water Hamiltonian. Phys. Rev. Lett., 2019, 122(9): 090504
https://doi.org/10.1103/PhysRevLett.122.090504
|
43 |
Kjaergaard M., E. Schwartz M., Greene A., O. Samach G., Bengtsson A., O’Keeffe M., M. McNally C., Braumüller J., K. Kim D., Krantz P., Marvian M., Melville A., M. Niedzielski B., Sung Y., Winik R., Yoder J., Rosenberg D., Obenland K., Lloyd S., P. Orlando T., Marvian I., Gustavsson S., D. Oliver W.. Demonstration of density matrix exponentiation using a superconducting quantum processor. Phys. Rev. X, 2022, 12(1): 011005
https://doi.org/10.1103/PhysRevX.12.011005
|
44 |
Pal S., Nishad N., S. Mahesh T., J. Sreejith G.. Temporal order in periodically driven spins in star-shaped clusters. Phys. Rev. Lett., 2018, 120(18): 180602
https://doi.org/10.1103/PhysRevLett.120.180602
|
45 |
Micadei K., P. S. Peterson J., M. Souza A., S. Sarthour R., S. Oliveira I., T. Landi G., M. Serra R., Lutz E.. Experimental validation of fully quantum fluctuation theorems using dynamic Bayesian networks. Phys. Rev. Lett., 2021, 127(18): 180603
https://doi.org/10.1103/PhysRevLett.127.180603
|
46 |
J. de Assis R., M. de Mendonça T., J. Villas-Boas C., M. de Souza A., S. Sarthour R., S. Oliveira I., G. de Almeida N.. Efficiency of a quantum Otto heat engine operating under a reservoir at effective negative temperatures. Phys. Rev. Lett., 2019, 122(24): 240602
https://doi.org/10.1103/PhysRevLett.122.240602
|
47 |
Zhang Z., Long X., Zhao X., Lin Z., Tang K., Liu H., Yang X., Nie X., Wu J., Li J., Xin T., Li K., Lu D.. Identifying Abelian and non-Abelian topological orders in the string-net model using a quantum scattering circuit. Phys. Rev. A, 2022, 105(3): L030402
https://doi.org/10.1103/PhysRevA.105.L030402
|
48 |
Miquel C., P. Paz J., Saraceno M., Knill E., Laflamme R., Negrevergne C.. Interpretation of tomography and spectroscopy as dual forms of quantum computation. Nature, 2002, 418(6893): 59
https://doi.org/10.1038/nature00801
|
49 |
Li Z., H. Yung M., Chen H., Lu D., D. Whitfield J., Peng X., Aspuru-Guzik A., Du J.. Solving quantum ground-state problems with nuclear magnetic resonance. Sci. Rep., 2011, 1: 88
https://doi.org/10.1038/srep00088
|
50 |
B. Batalhão T., M. Souza A., S. Sarthour R., S. Oliveira I., Paternostro M., Lutz E., M. Serra R.. Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett., 2015, 115(19): 190601
https://doi.org/10.1103/PhysRevLett.115.190601
|
51 |
B. Batalhão T., M. Souza A., Mazzola L., Auccaise R., S. Sarthour R., S. Oliveira I., Goold J., De Chiara G., Paternostro M., M. Serra R.. Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett., 2014, 113(14): 140601
https://doi.org/10.1103/PhysRevLett.113.140601
|
52 |
Giovannetti V., Lloyd S., Maccone L.. Quantum random access memory. Phys. Rev. Lett., 2008, 100(16): 160501
https://doi.org/10.1103/PhysRevLett.100.160501
|
53 |
Ning W., Lei S., Yang J., Cao Y., Jiang P., Yang Q., Zhang J., Wang X., Chen F., Geng Z., Xiong J., Zhou H., Guo K., Zeng Y., Chi H., Wang L., Xue Y., Wang Z.. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng., 2020, 4: 1197
https://doi.org/10.1038/s41551-020-00633-5
|
54 |
A. Turk M.P. Pentland A., in: Proceedings of 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, 1991, pp 586–587
|
55 |
Li J., Lu D., Luo Z., Laflamme R., Peng X., Du J.. Approximation of reachable sets for coherently controlled open quantum systems: Application to quantum state engineering. Phys. Rev. A, 2016, 94(1): 012312
https://doi.org/10.1103/PhysRevA.94.012312
|
56 |
Nie X., Zhu X., Huang K., Tang K., Long X., Lin Z., Tian Y., Qiu C., Xi C., Yang X., Li J., Dong Y., Xin T., Lu D.. Experimental realization of a quantum refrigerator driven by indefinite causal orders. Phys. Rev. Lett., 2022, 129(10): 100603
https://doi.org/10.1103/PhysRevLett.129.100603
|
57 |
Xin T., Li Y., A. Fan Y., Zhu X., Zhang Y., Nie X., Li J., Liu Q., Lu D.. Quantum phases of three-dimensional chiral topological insulators on a spin quantum simulator. Phys. Rev. Lett., 2020, 125(9): 090502
https://doi.org/10.1103/PhysRevLett.125.090502
|
58 |
Micadei K., P. Peterson J., M. Souza A., S. Sarthour R., S. Oliveira I., T. Landi G., B. Batalhão T., M. Serra R., Lutz E.. Reversing the direction of heat flow using quantum correlations. Nat. Commun., 2019, 10(1): 2456
https://doi.org/10.1038/s41467-019-10333-7
|
59 |
J. Glaser S., Boscain U., Calarco T., P. Koch C., Köckenberger W., Kosloff R., Kuprov I., Luy B., Schirmer S., Schulte-Herbrüggen T., Sugny D., K. Wilhelm F.. Training Schrödinger’s cat: Quantum optimal control. Eur. Phys. J. D, 2015, 69(12): 279
https://doi.org/10.1140/epjd/e2015-60464-1
|
60 |
de Fouquieres P., G. Schirmer S., J. Glaser S., Kuprov I.. Second order gradient ascent pulse engineering. J. Magn. Reson., 2011, 212(2): 412
https://doi.org/10.1016/j.jmr.2011.07.023
|
61 |
E. Hinton G., R. Salakhutdinov R.. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504
https://doi.org/10.1126/science.1127647
|
62 |
Abdi H., J. Williams L.. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat., 2010, 2(4): 433
https://doi.org/10.1002/wics.101
|
63 |
Li J., Yang X., Peng X., P. Sun C.. Hybrid quantum−classical approach to quantum optimal control. Phys. Rev. Lett., 2017, 118(15): 150503
https://doi.org/10.1103/PhysRevLett.118.150503
|
64 |
Lu D., Li K., Li J., Katiyar H., J. Park A., Feng G., Xin T., Li H., Long G., Brodutch A., Baugh J., Zeng B., Laflamme R.. Enhancing quantum control by bootstrapping a quantum processor of 12 qubits. npj Quantum Inf., 2017, 3: 45
https://doi.org/10.1038/s41534-017-0045-z
|
65 |
T. Flammia S., K. Liu Y.. Direct fidelity estimation from few Pauli measurements. Phys. Rev. Lett., 2011, 106(23): 230501
https://doi.org/10.1103/PhysRevLett.106.230501
|
66 |
P. da Silva M., Landon-Cardinal O., Poulin D.. Practical characterization of quantum devices without tomography. Phys. Rev. Lett., 2011, 107(21): 210404
https://doi.org/10.1103/PhysRevLett.107.210404
|
67 |
Lloyd S.. Universal quantum simulators. Science, 1996, 273(5278): 1073
https://doi.org/10.1126/science.273.5278.1073
|
68 |
A. Gershenfeld N., L. Chuang I.. Bulk spin-resonance quantum computation. Science, 1997, 275(5298): 350
https://doi.org/10.1126/science.275.5298.350
|
69 |
Lu D., Li H., A. Trottier D., Li J., Brodutch A., P. Krismanich A., Ghavami A., I. Dmitrienko G., Long G., Baugh J., Laflamme R.. Experimental estimation of average fidelity of a clifford gate on a 7-qubit quantum processor. Phys. Rev. Lett., 2015, 114(14): 140505
https://doi.org/10.1103/PhysRevLett.114.140505
|
70 |
Feng G., H. Cho F., Katiyar H., Li J., Lu D., Baugh J., Laflamme R.. Gradient-based closed-loop quantum optimal control in a solid-state two-qubit system. Phys. Rev. A, 2018, 98(5): 052341
https://doi.org/10.1103/PhysRevA.98.052341
|
71 |
Xin T., Nie X., Kong X., Wen J., Lu D., Li J.. Quantum pure state tomography via variational hybrid quantum-classical method. Phys. Rev. Appl., 2020, 13(2): 024013
https://doi.org/10.1103/PhysRevApplied.13.024013
|
[1] |
fop-24391-of-ludawei_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|